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Server input 
 
CM Input. The Clever Machine accepts two datasets (FASTA format). The first input set is considered positive 
(P) and - due to the fact that algorithm is comparative and based on strength difference - the second is called 
negative (N). However, despite the distinction between the datasets, there is no bias applied to their processing.  
 
CC Input. CC accepts sequences in FASTA format. Apart from the dataset, there is one more required field – a 
reference to the model previously generate by CM (provided in the CM output).  
 
Server output 
 
Individual scale view (CC). The individual scale view shows the coverage, area under the ROC curve, Z-score 
and p-value for each physico-chemical propensity (Fig. S3). Depending on property enrichment or depletion, 
color-coded bars point to either positive or negative set. The colors reflect property’s assignation to a group – for 
instance purple bars represent hydrophobicity. The view is interactive – the user can click on graph’s bars and see 
which element of the table corresponds to it. Also, the table can be sorted according to the coverage, ROC, Z-
score a p-value by clicking on the table header. The output is designed to be simple to interpret – e.g. the size of 
bars is proportional to their coverage.  
 
Grouped property view (CC). The second section provides a view of individual scales grouped by class 
assignment. The server visualizes individual property consistencies and their relative strengths in separate plots 
(Fig. S3). Elements of the plots are interactive and linked to information about individual property coverage and 
Z-score. The scales that did not pass the signal strength filter are devoid of their group-specific color. 
 
Propensity scale combinations (CC). We provide a plot showing relation between the number of combined 
scales and the individual dataset coverages for both positive and negative dataset (Fig. 4). We also report the 
statistics for each scale combination and its individual members. The user can click through the combination titles 
to reveal which scales are contained and their statistics. 
 
Dataset assignment (CM). First part of the output is the dataset assignation (the output is similar to that 
presented in Fig. S1 and S3). The statistics is reported. For each protein of the query set, p-values are reported 
(Fig. S3). The relevant physico-chemical profiles are shown in the second part of the output (Fig. 4).  
  



 
Independent validations 
 
RePROF (Rost, 1996) For alpha helical assignment, we use minimum alpha-helical content of 50% (40% for 
beta-sheet proteins. 
 
The FoldIndex (Prilusky et al., 2005) scores were used to evaluate disordered proteins. Negative scores are 
associated with disordered proteins (positive scores for structured proteins). 
 
NetSurfP (Petersen et al., 2009) For alpha helical assignment, we use minimum alpha-helical content of 50% 
(40% for beta-sheet proteins). To detect disordered proteins, we use minimum coil content of 50%. For each 
residue, we consider structural assignment probability larger than 0.5. 
 
Limbo (Van Durme et al., 2009) We consider sequences that have at least one DnaK binding motif as positive. If 
the threshold  is changed to 5 binding motifs, the true positive rate on GroEL substrates is 67%, the true positive 
rate on DnaK substrates is 55% and the true negative rate on independently folding proteins is 99%. 
 
For RNApred (Kumar et al., 2011) predictions, we used the default prediction threshold to determine if a protein is 
RNA-binding (SVM cutoff = -0.2). 
 
For PROSO II (Smialowski et al., 2012), we use the default score threshold value of 0.6, which matches the 
associated soluble/insoluble labels. 
  



 

Table S1 - Links to CM and CC submissions and further related information. 

Description URL 
Further information  

cleverSuite main portal http://service.tartaglialab.com/clever_suite 
Featured submissions http://service.tartaglialab.com/clever_community 
CM documentation http://s.tartaglialab.com/static_files/algorithms/clever_machine/documentation.html 
CM tutorial http://s.tartaglialab.com/static_files/algorithms/clever_machine/tutorial.html 

    CC documentation http://s.tartaglialab.com/static_files/algorithms/clever_classifier/documentation.html 
    CC tutorial http://s.tartaglialab.com/static_files/algorithms/clever_classifier/tutorial.html 

 
 

Table S2. Signal strength with respect to random set (same AA composition as reference sets).   
 

 

Signal strength 

CM CC (P) CC (N) 

Alpha-beta 0.5 0.4 0.4 

Disorder 0.4 0.4 0.2 

Solubility 0.5 0.5 0.1 

Chaperones 0.3 0.2 0.2 

mRNA 0.5 0.4 0.1 
 

              The signal strength ranges from 0 (no discrimination between prediction and random sets) to 0.5 (complete separation) 
 
  



 
Fig. S1. Grouped property view. 8	
  Properties	
  are	
  grouped	
  by	
  class	
  assignment	
  and	
  color.	
  Low-­‐significance	
  properties	
  
(Z-­‐score	
  <	
  Zth;	
  p>0.01;)	
  are	
  devoid	
  of	
  color.	
  In	
  the	
  webserver,	
  this	
  view	
  is	
  interactive	
  and	
  shows	
  information	
  about	
  each	
  
scale	
  after	
  clicking	
  (the	
  E.	
  coli	
  solubility	
  analysis	
  is	
  used	
  as	
  example).  



 
Fig. S2. Coverage vs Area Under the ROC Curve (AUC). For each of the examples presented in the main text, 
coverage and AUC are highly correlated. a) Alpha-helix vs beta sheet proteins (Pearson’s correlation r=0.97); b) 
Structured vs unstructured proteins (r=0.99); c) Soluble vs insoluble proteins (r=0.95); d) Chaperone-dependent vs 
independently folding proteins (r=0.85).  
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Fig. S3. Individual properties output. A) Depending on enrichment or depletion of physico-chemical properties, 
associated color-coded bars point to either positive or negative set; B) Coverage and Area under the ROC curve 
(Cov and ROC) and statistical significance (Z-score and P-value) are reported per each property (the E. coli 
solubility analysis is used here as example). References from literature are reported. The web-view is interactive – 
the user can click on graph’s bars and see which element of the table corresponds to it. 
  



 
Fig. S4. Physico-chemical profiles. The CC algorithm generates physico-chemical profiles for each input protein. 
Here, we show the aggregation propensity of Alzheimer’s Aβ42 calculated with the scale derived by Ventura and 
coworkers. The profile significantly correlates with the one predicted by Zyggregator and highlights regions that 
are important for the aggregation process. 
  

Amino&Acid&Posi+on&

Ag
gr
eg
a+

on
&P
ro
pe

ns
ity

&



 
 
 
 

 
Fig. S5. Optimization of the internal parameter 𝛼. For each of the 5 cases presented in this work, we calculated the 
coverage enrichment with respect to the shuffled sets:  𝛿 = 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑃,𝑁 − !

!
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑃! ,𝑁!   ! (Methods). 

The signal to noise ratio (i.e., ratio of mean to standard deviation) was evaluated at different values of 𝛼. We found 
that the optimal discrimination between signal and noise corresponds to 𝛼 = 0.75.  
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