Supplementary data

Supplementary tables

 Table S1. Degenerate oligonucleotides for PCR (numbering according to bovine rhodopsin)

			Direction of	
Name	Target opsin	Sequence 5' - 3'	primer	AA site
AvesRH2_1018R	RH2	gac gga sga gac ctc rgt ytt gct	R	1018
AvesRH2_898R	RH2	tca tga gsa crt aga tga ygg ggt t	R	898
AvesRH2_179F	RH2	tgg tca cct tca arc aca aga agc t	F	179
AvesRH2_785R	RH2	ger tag ggy gte cag gee age at	R	785
VertS2_103R	SWS2	aag tac ats tgg gag aag ctg ta	R	103
VertS2_315R	SWS2	cga vcg gaa ctg ytk gtt cat	R	315
VertS2_95F	SWS2	tte tae age tte tes cag atg tae tt	F	95
VertS2_22F	SWS2	agc ccn ttc ctg gtv ccs ca	F	22
AvesS2_258R	SWS2	cac cat cac vay yac cat cyt sgt	R	258
VertUV_243F	SWS1	acg cag aag gci gag mri gar gt	F	243
VertUV_232F	SWS1	gcc gtg gcc gci car car car ga	F	232
TetUV_187F	SWS1	tgc gcc cig act cct aya cn	F	187
VertUV_230R	SWS1	ctg ctg cgc cgc iac igc nyk nag	R	237
TetUV_239R	SWS1	tcc tgc tgc tgi gci gcn acn gc	R	239
AvesUV_306R	SWS1	gaa ctg ctt gtt cat raa rca rta	R	313
VertUV_230F	SWS1	ctg cgc gcc gtc gci gcn car ca	F	230
AvesUV_306R	SWS1	gaa ctg ctt gtt cat raa rca rta	R	306

Order	Family	Species	Common Name	Accession #	Reference	Name used in phylogeny
Bucerotiformes	Upupidae	Upupa epops	Eurasian hoopoe	AY227191	(Ödeen and Håstad 2003)	Upupa
Coraciiformes	Alcedinidae	Alcedo atthis	common kingfisher	AY227169	(Ödeen and Håstad 2003)	Alcedo
Coraciiformes	Coraciidae	Coracias garrulus	common roller	AY227170	(Ödeen and Håstad 2003)	Coracias
Piciformes	Picidae	Dendrocopos major	great spotted woodpecker	AY227184	(Ödeen and Håstad 2003)	Dendrocop
Trogoniformes	Trogonidae	Trogon curucui	blue-crowned trogon	AY227190	(Ödeen and Håstad 2003)	Trogon
Falconiformes	Falconidae	Falco peregrinus	peregrine falcon	AY227157	(Ödeen and Håstad 2003)	Falco
Passeriformes	Corvidae	Corvus corone cornix	hooded crow	AY227176	(Ödeen and Håstad 2003)	CorvusC
Passeriformes	Corvidae	Pica pica	Eurasian magpie	GQ305970	(Ödeen and Håstad 2009)	Pica
Passeriformes	Vireonidae	Cyclarhis gujanensis	rufous-browed peppershrike	HE601826	(Ödeen, et al. 2011)	Cyclarhis
Passeriformes	Oriolidae	Oriolus oriolus	Eurasian golden oriole	HE601828	(Ödeen, et al. 2011)	Oriolus
Passeriformes	Paradisaeidae	Ptiloris magnificus	magnificent riflebird	HE601835	(Ödeen, et al. 2011)	Ptiloris
Passeriformes	Corvidae	Corvus frugilegus	rook	DQ451006	Browne et al. (Genbank 2006)	CorvusF
Passeriformes	Campephagidae	Coracina novaehollandiae	black-faced cuckooshrike	HE601825	(Odeen, et al. 2012)	Coracina
Passeriformes	Dicruridae	Dicrurus bracteatus	spangled drongo	HE601829	(Odeen, et al. 2012)	Dicrurus
Passeriformes	Corvidae	Cyanocorax chrysops	plush-crested jay	HE601832	(Odeen, et al. 2012)	Cyanocora
Passeriformes	Dicruridae	Rhipidura fuliginosa	New Zealand fantail	HM159132	Hauber & Chong (GenBank 2010)	Rhipidura
Passeriformes	Callaetidae	Creadion carunculatus	saddleback	HM159129	Hauber & Chong (GenBank 2010)	Creadion
Passeriformes	Meliphagidae	Lichenostomus flavescens	yellow-tinted honeyeater	GQ305955	(Ödeen and Håstad 2009)	Lichenost
Passeriformes	Maluridae	Acanthorhynchus tenuirostris	eastern spinebill	GQ305959	(Ödeen and Håstad 2009)	Acanthorh
Passeriformes	Maluridae	Malurus grayi	broad-billed fairywren	HE588093	(Odeen, et al. 2012)	MalurusG
Passeriformes	Maluridae	Malurus cyanocephalus	emperor fairywren	HE588094	(Odeen, et al. 2012)	MalarusCy
Passeriformes	Maluridae	Malurus amabilis	loverly fairywren	HE588095	(Odeen, et al. 2012)	MalarusA
Passeriformes	Maluridae	Malurus elegans	red-winged fairywren	HE588099	(Odeen, et al. 2012)	MalurusE
Passeriformes	Maluridae	Malurus splendendens musgravi	turquoise fairywren	HE588101	(Odeen, et al. 2012)	MalurusS
Passeriformes	Maluridae	Malurus coronatus	purple-crowned fairywren	HE588108, HE588109	(Odeen, et al. 2012)	MalurusCo
Passeriformes	Maluridae	Malurus melanocephalus	red-backed fairywren	HE588111- HE588113	(Odeen, et al. 2012)	MalurusM
Passeriformes	Maluridae	Malurus leucopterus edouradi	white-winged fairywren	HE588114- HE588116	(Odeen, et al. 2012)	MalurusL
Passeriformes	Maluridae	Clytomias insignis	orange crowned fairywren	HE588121	(Odeen, et al. 2012)	Clytomyia
Passeriformes	Maluridae	Amytorins barbatus	grey grasswren	HE588123	(Odeen, et al. 2012)	Amytornis
Passeriformes	Acanthizidae	Gerygone igata	grey gerygone	HM159130,	Hauber & Chong (GenBank	Gerygone

Table S2. Species names & accession numbers for Landbird SWS1 data set used in ancestral reconstruction analysis:

				HM159131	2010)	
Passeriformes	Menuridae	Menura novaehollandiae	superb lyrebird	HE601819	(Ödeen, et al. 2011)	Menura
Passeriformes	Ptilonorhynchidae	Sericulus chrysocephalus	regent catbird	HE588091	(Ödeen, et al. 2011)	Sericulus
Passeriformes	Pomatostomidae	Pomatostomus temporalis	grey-crowned babbler	HE601820	(Ödeen, et al. 2011)	PomatostT
Passeriformes	Pomatostomidae	Pomatostomus ruficeps	chestnut-crowned babbler	HE601821	(Ödeen, et al. 2011)	PomatostR
Passeriformes	Orthonychidae	Orthonyx temminckii	Australian logrunner	HE601822	(Ödeen, et al. 2011)	Orthonyx
Passeriformes	Cnemophilidae	Cnemophilus loriae	Loria's satinbird	HE601823	(Ödeen, et al. 2011)	Cnemophil
Passeriformes	Melanocharitidae	Toxorhamphus poliopterus	slaty-headed longbill	HE601824	(Ödeen, et al. 2011)	Toxorham
Passeriformes	Ptilonorhynchidae	Chlamydera nuchalis	great bowerbird		This Study	Chlamyder
Passeriformes	Sittidae	Sitta europaea	Eurasian nuthatch	HE601851, HE601852	(Ödeen, et al. 2011)	Sitta
Passeriformes	Sturnidae	Sturnus vulgaris	common starling	AY227180	(Ödeen and Håstad 2003)	Sturnus
Passeriformes	Muscicapidae	Luscinia svecica	bluethroat	AY274225	Raman & Andersson (Genbank 2003)	LusciniaS
Passeriformes	Muscicapidae	Luscinia calliope	Siberian rubythroat	AY274226	Raman & Andersson (Genbank 2003)	LusciniaC
Passeriformes	Mimidae	Mimus saturninus	chalk-browed mockingbird	GQ305972	(Ödeen and Håstad 2009)	Mimus
Passeriformes	Turdidae	Turdus iliacus	redwing	HE601854	(Ödeen, et al. 2011)	Turdus
Passeriformes	Paridae	Parus caeruleus	blue tit	AY274220	Raman & Andersson (Genbank 2003)	
Passeriformes	Paridae	Parus major	great tit	AY274221	Raman & Andersson (Genbank 2003)	Parus
Passeriformes	Paridae	Parus palustris	marsh tit	AY274222	Raman & Andersson (Genbank 2003)	
Passeriformes	Passeridae	Taeniopygia guttata	zebra finch	AF222331	(Yokoyama, et al. 2000)	Taeniopyg
Passeriformes	Fringillidae	Serinus canaria	common canary	AJ277922	(Das, et al. 1999)	Serinus
Passeriformes	Passeridae	Euplectes afer	yellow crowned bishop	AY274223	Raman & Andersson (Genbank 2003)	Euplectes
Passeriformes	Estrilidae	Amadina fasciata	cut-throat finch	FJ440639	(Ödeen and Håstad 2009)	Amadina
Passeriformes	Estrilidae	Lonchura maja	white-headed munia	FJ440641	(Ödeen and Håstad 2009)	Lonchura
Passeriformes	Passeridae	Neochmia modesta	plum-headed finch	FJ440642	(Ödeen and Håstad 2009)	Neichima
Passeriformes	Nectariniidae	Cinnyris pulchellus	beautiful sunbird	GQ305964	(Ödeen and Håstad 2009)	Cinnyris
Passeriformes	Motacillidae	Anthus cervinus	red-throated pipit	HE601865	(Ödeen, et al. 2011)	Anthus
Passeriformes	Icteridae	Sturnella neglecta	Western meadowlark	HE601868	(Ödeen, et al. 2011)	Sturnella
Passeriformes	Phylloscopidae	Phylloscopus trochilus	willow warbler	AY227181	(Ödeen and Håstad 2003)	Phyllosco
Passeriformes	Timaliidae	Leiothrix lutea	red-billed leiothrix	FJ440645	(Ödeen and Håstad 2009)	Leiothrix
Passeriformes	Hirundinidae	Hirundo rustica	barn swallow	HE601843	(Ödeen, et al. 2011)	Hirundo
Passeriformes	Donacobiidae	Donacobius atricapilla	black-capped donacobius	HE601848	(Ödeen, et al. 2011)	Donacobiu
Passeriformes	Zosteropidae	Zosterops lateralis	silver-eye	HM159125	Hauber & Chong (GenBank 2010)	Zosterops
Passeriformes	Petroicidae	Petroica rosea	rose robin	HE601839	(Ödeen, et al. 2011)	PetroicaR

Passeriformes	Acanthisittidae	Acanthisitta chloris	rifleman	HM159126	Hauber & Chong (GenBank 2010)	Acanthisi
Passeriformes	Pittidae	Hydrornis elliotii	bar-bellied pitta	HE601813	(Ödeen, et al. 2011)	Pitta
Passeriformes	Thamnophilidae	Myrmeciza hemimelaena	southern chestnut-tailed antbird	GQ924591	(Seddon, et al. 2010)	Myrmeciza
Passeriformes	Thamnophilidae	Phlegopsis nigromaculata	black-spotted bare-eye	GQ924592	(Seddon, et al. 2010)	Phlegopsi
Passeriformes	Pipridae	Manacus manacus	white-bearded manakin	AY227182	(Ödeen and Håstad 2003)	Manacus
Passeriformes	Tityridae	Onychorhynchus coronatus	Amazonian royal flycatcher	HE601817	(Ödeen, et al. 2011)	Onychorhy
Passeriformes	Tyrannidae	Myiarchus tyrannulus	brown-crested flycatcher	AY227183	(Ödeen and Håstad 2003)	Myiarchus
Passeriformes	Tyrannidae	Camptostoma obsoletum	southern beardless tyrannulet	HE601814	(Ödeen, et al. 2011)	Camptosto
Passeriformes	Tyrannidae	Xolmis irupero	white monjita	HE601815	(Ödeen, et al. 2011)	Xolmis
Passeriformes	Tyrannidae	Tyrannus savana	fork-tailed flycatcher	HE601816	(Ödeen, et al. 2011)	Tyrannus
Psittaciformes	Cacatuidae	Calyptorhynchus latirostris	Carnaby's black cockatoo	HM150800	(Carvalho, et al. 2011)	Calyptorh
Psittaciformes	Cacatuidae	Eolophus roseicapilla	galah	HM150801	(Carvalho, et al. 2011)	Elophus
Psittaciformes	Cacatuidae	Cacatua galerita	sulphur-crested cockatoo	HM150802	(Carvalho, et al. 2011)	Cacatua
Psittaciformes	Psittacidae	Ara macao	scarlet macaw	HM150792	(Carvalho, et al. 2011)	AraM
Psittaciformes	Psittacidae	Amazona versicolor	St. Lucia amazon	HM150793	(Carvalho, et al. 2011)	Amazona
Psittaciformes	Psittacidae	Ara ararauna	blue-and-yellow macaw	HM150803	(Carvalho, et al. 2011)	AraA
Psittaciformes	Psittacidae	Psittacus erithacus	grey parrot	HM150804	(Carvalho, et al. 2011)	Psittacus
Psittaciformes	Psittacidae	Ara chloropterus	red-and-green macaw	HM150805	(Carvalho, et al. 2011)	AraC
Psittaciformes	Psittacidae	Anodorhynchus hyacinthinus	hyacinth macaw	HM150806	(Carvalho, et al. 2011)	Anodorhyn
Psittaciformes	Psittacidae	Platycercus elegans	crimson rosella	HM150794	(Carvalho, et al. 2011)	Platycerc
Psittaciformes	Psittacidae	Barnardius zonarius semitorquatus	Twenty eight parrot	HM150799	(Carvalho, et al. 2011)	Barnardiu
Psittaciformes	Psittacidae	Melopsittacus undulatus	budgerigar	Y11787	(Wilkie, et al. 1998)	Melopsitt
Psittaciformes	Strigopidae	Nestor notabilis	Kea	HM150807	(Carvalho, et al. 2011)	Nestor

Table S3. Likelihood scores of codon models used for ancestral reconstruction

Model		lnL
codon	M7	-865.7970
	M8	-865.7973

Table S4. Maximum likelihood ancestral reconstruction of ancestral passerine/parrot, an passerine SWS1 pigments, with posterior probabilities (numbering according to bovine rhodo

	Passeri	ne/pa	rrot		Passeri	ne		
AA#	codon	PP	AA	PP	codon	РР	AA	PP
72	CTC	1	(L	1.000)	CTC	1	(L	1.000)
73	AAC	1	(N	1.000)	AAC	1	(N	1.000)
74	TAC	1	(Y	1.000)	TAC	1	(Y	1.000)
75	ATC	1	(I	1.000)	ATC	0.998	(I	1.000)
76	CTG	1	(L	1.000)	CTG	1	(L	1.000)
77	GTG	1	(V	1.000)	GTG	1	(V	1.000)
78	AAC	1	(N	1.000)	AAC	1	(N	1.000)
79	ATC	1	(I	1.000)	ATC	0.998	(I	1.000)
80	TCC	1	(S	1.000)	TCC	1	(S	1.000)
81	TTC	1	(F	1.000)	TTC	0.997	(F	0.999)
82	AGC	1	(S	1.000)	AGC	0.999	(S	1.000)
83	GGC	1	(G	1.000)	GGC	1	(G	1.000)
84	TTC	1	(F	1.000)	TTC	0.998	(F	1.000)
85	CTG	1	(L	1.000)	CTG	0.978	(L	1.000)
86	TCC	1	(S	1.000)	TGC	0.999	(C	0.999)
87	TGC	1	(C	1.000)	TGC	1	(C	1.000)
88	ATC	1	(I	1.000)	ATC	0.998	(I	1.000)
89	TTC	1	(F	1.000)	TTC	0.998	(F	1.000)
90	AGC	1	(S	1.000)	AGC	1	(S	1.000)
91	GTC	1	(V	1.000)	GTC	0.999	(V	1.000)
92	TTC	1	(F	1.000)	TTC	0.998	(F	1.000)
93	ACC	1	(T	1.000)	ACC	1	(T	1.000)
94	GTC	1	(V	1.000)	GTC	0.999	(V	1.000)
95	TTC	1	(F	1.000)	TTC	0.998	(F	1.000)
96	GTC	1	(V	1.000)	GTC	0.999	(V	1.000)
97	TCC	1	(S	1.000)	TCC	1	(S	1.000)
98	AGC	1	(S	1.000)	AGC	0.999	(S	1.000)
99	TCC	1	(S	1.000)	TCC	0.832	(S	0.832)
100	CAG	1	(Q	1.000)	CAG	1	(Q	1.000)
101	GGC	1	(G	1.000)	GGA	0.571	(G	1.000)

Supplementary figures

Figure S1. Alignment of SWS1 opsin gene, helix 2 from Landbirds used in ancestral reconstruction, highlighting sites 86, 90 & 93.

1

							1
	7	8	8	1	9	9	0
	2345678	901234	5 <mark>6</mark>	789	<mark>0</mark> 12	2 <mark>3</mark>	45678901
Alcedo	LNYILVN	ISFSGF	IS	CIF	<mark>s</mark> vi	7 T	VFVSSSQG
Coracias	LNYILVN	ISFSGF	IS	CIF	<mark>s</mark> vi	FT	VFVSS
Dendrocop	LNYILVN	ISFSGF	LS	CIF	<mark>s</mark> vi	FT	VFVSSSQG
Trogon	LNYILVN	ISLGGF	IF	CVF	<mark>s</mark> vi	FT	VFVSS
Upupa	LNYILVN	ISFSGF	MS	CIF	<mark>s</mark> vi	7 T	VFVSSSQG
Falco	YILVN	ISFSGF	IS	CIF	<mark>s</mark> vi	? <mark>?</mark>	VFVS
Acanthisi	LNYILVN	ISLSGL	г <mark>с</mark>	CIL	<mark>C</mark> VI	FL	VFVASTQG
Manacus	-NYILVN	ISFSGF	IS	CIF	<mark>s</mark> vi	FT	V
Myrmeciza	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	VF
Phlegopsi	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	7 T	VFV
Pitta	LNYILVN	ISFSGF	L?	CIF	<mark>s</mark> vi	FT	V
Myiarchus	LNYILVN	ISVSGF	М <mark>С</mark>	CIF	<mark>s</mark> vi	FT	VFVSSSQG
Camptosto	LNYILVN	ISVSGF	М <mark>С</mark>	CIF	<mark>s</mark> vi	FT	V
Xolmis	LNYILVN	ISVSGF	М <mark>С</mark>	CIF	<mark>s</mark> vi	FT	V
Tyrannus	YILVN	ISVSGF	М <mark>С</mark>	CIF	<mark>s</mark> vi	FT	VFV
Onychorhy	LNYILVN	ISVSGF	F <mark>C</mark>	CIF	<mark>s</mark> vi	r <mark>v</mark>	V
Menura	N	ISVSGF	F <mark>C</mark>	CIF	<mark>C</mark> VI	FT	VFVSS?QG
Sericulus	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	7 T	VFVSSAQG
Chlamyder	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	VFVSSAQG
PomatostT	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	7 T	VFVSSAQG
PomatostR	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	7 T	VFVSSAQG
Orthonyx	LNYILVN	ISVSGF	F <mark>C</mark>	CIF	<mark>C</mark> VI	7 T	VFVSSAQG
Cnemophil	LNYILVN	MSISGL	М <mark>С</mark>	CIF	<mark>s</mark> vi	FT	VF
Toxorhamp	LNYILVN	ISVSGL	М <mark>С</mark>	CVF	CII	FT	V
Lichenost	LNYILVN	ISFAGF	М <mark>С</mark>	CIF	<mark>s</mark> vi	7 T	VFVSSAQG
Acanthorh	LNYILVN	ISFAGF	М <mark>С</mark>	CIF	<mark>s</mark> vi	FT	VFVS
MalurusA	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	CII	7 T	V
MalurusE	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	CII	FT	VFVSSSQG
MalurusCy	N	ISFSGF	г <mark>с</mark>	CIF	CII	FT	VFVSSSQG
MalurusS	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	CII	7 T	VFV
MalurusM	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	VFVSSSQG
MalurusL	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	VFVSS
MalurusCo	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	V
MalurusG	YILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	VFV
Clytomyia	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	V
Amytornis	ILVN	ISFSGF	г <mark>с</mark>	CIF	<mark>s</mark> vi	FT	VF
Gerygone	N	ISFSGF	М <mark>С</mark>	CIF	SVI	?T	VFVSSAQG
Creadion	N	ISVSGL	М <mark>С</mark>	CVF	CIF	7 T	VFVSSSQG
Rhipidura	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	SVI	7 T	VFVSSAQG
CorvusC	-NYILVN	ISFSGF	М <mark>С</mark>	CIF	SVI	7 T	VF?S
CorvusF	LNYILVN	ISFSGF	г <mark>с</mark>	CIF	SVI	?T	VFISSSQG

									1
	7	8	8		9	9			0
	23456789	01234	5 <mark>6</mark>	789	<mark>0</mark> 12	2 <mark>3</mark> 4	56	789	901
Pica	LNYILVNI	SFSGF	'L <mark>C</mark>	CIF	<mark>s</mark> vi	F <mark>T</mark> V	ΓI	SSS	3QG
Cyclarhis	LNYIL?N?	SVSGL	MC	CVF	CII	r <mark>T</mark> V	FV	ASS	3Q-
Coracina	LNYILVNV	SFSGF	'L <mark>C</mark>	CIF	SVI	F T V	'F-		
Oriolus	LNYILVNV	SFSGF	'L <mark>C</mark>	CIF	SVI	F T V	FV	SSI	4QG
Dicrurus	LNYILVNI	SFSGF	'L <mark>C</mark>	CIF	SVI	F T V	FV	SSS	3QG
Cyanocora	YILVNI	SFSGF	'L <mark>C</mark>	CIF	SVI	F T V			
Ptiloris	LNYILVNI	SFSGF	'L <mark>C</mark>	CIF	SVI	F T V	FV	SSI	4QG
PetroicaR	NI	SVSGL	MC	CIF	CLI	TV.	ΓI	SSS	3QG
Parus	LNYILVNI	SVSGL	MC	CVF	CII	TV.	FV	SSS	3QG
Sitta	LNYILVNI	SVSGL	MC	CIF	CII	F T V	ΓI	SSS	3QG
Turdus	LNYILVNI	SVSGL	MC	CVF	CII	TV.	FV	SSS	3QG
Sturnus	NI	SVSGL	MC	CIF	CII	TV.	FV	SSS	3QG
Mimus	LVNI	SVSGL	MC	CIF		FTV	FV	S?S	SQG
LusciniaS	LNYILVNI	SVSGL	MC	CVF	CII	TV.	FV	SSS	3QG
LusciniaC	LNYILVNI	SVSGL	MC	CVF		FTV	FV	SSS	3QG
Phyllosco	LNYILVNI	SVSGL	MM	CIF	CII	TV.	FV	SSS	3QG
Hirundo	LNYILVNI	SVSGL	MM	CIF	CII	F T V	FV	SSS	3QG
Donacobiu	YILVNI	SVSGL	MM	CIF	CII	TV.	FV	SSS	3QG
Leiothrix	NI	SVSGL	MM	CVF		FTV	FV	SSS	3QG
Zosterops	NI	SVSGL	MM	CIF	CII	?V	FV	SSS	3QG
Cinnyris	LNYILVNI	SVSGL	MC	CVF	CII	TV.	FV	SSS	3QG
Serinus	LNYILVNI	SVSGL	MC	CVF	CII	TV.	FV.	ASS	3QG
Sturnella	LNYILVNI	SVSGL	MC	CVF		FTV	FV.	ASS	SQG
Anthus	LNYILVNI	SVSGL	MC	CVF		FTV	F-		
Lonchura	LNYILVNI	SVAGL	MC	CVF	CII	TV.	FI.	ASS	3QG
Amadina	-NYILVNI	SVSGL	MC	CVF	CII	TV.	FV.	ASS	3QG
Taeniopyg	LNYILVNI	SVSGL	MC	CVF	CII	TV.	FI.	ASS	3QG
Euplectes	LNYILVNI	SVSGL	MC	CVF		FTV	FV.	ASS	SQG
Neochmia	LNYILVNI	SVSGL	MC	CVF		FTV	FI.	ASS	SQG
Cacatua	LNYILVNI	SFCGF	'LA	CIF		TV	FV	SSS	3QG
Eolophus	LNYILVNI	SFCGF	'LA	CIF		TV	FV	SSS	3QG
Calyptorh	LNYILVNI	SFCGF	'LA	CIF		TV	FV	SSS	3QG
Psittacus	LNYILVNI	SFCGF	'LA	CIF		"TV	'F'V	SSS	SQG
AraA	LNYILVNI	SFCGF	'LA	CIF		ľΤV	'F'V	SSS	3QG
AraM	LNYILVNI	SFCGF	'LA	CIF		ľΤV	'F'V	SSS	3QG
AraC	LNYILVNI	SFCGF	'LA	CIF		TV	FV	SSS	3QG
Amazona	LNYILVNI	SFCGF	'LA	CIF		TV	FV	SSS	3QG
Anodorhyn	LNYILVNI	SFCGF	PA	CIF		TV.	'F'V	555	зQG
Platycerc	LNYILVNI	SFCGF	ЪA	CIF		TV.	'F'V	555	зQG
Barnardiu	LNYILVNI	SFCGF	ЪA	CIF		TV.	F'V	SSS	зQG
Melopsitt	LNYILVNI	SFCGF	ĽÂ	CII		TV	FV	SSS	3QG
Nestor	TNATTAN1	SFCGF	Ъ <mark>А</mark> Ц	CTE	UT F	Γ Ι ν	F.A	555	sQG

Figure S2. Alignment of visual pigment sequences in *C. nuchalis*. The seven transmembrane domains (TMD) are indicated by gray shading. Key functional sites are highlighted in black. All site numbers are according to corresponding sites in bovine rhodopsin. The sequence of the SWS2 gene is missing 6 amino acids at 5' end. The intron locations of SWS1, as determined by genomic PCR, are at residues G119, R177-Y178, V233 and Q312-F313 (underlined and in bold).

	TMD I	
SWS1	MDEDEFYLFKNQSSVGPWDGPQYHIAPMWAFYLQTIFMGVVFVVGTPLNAIVLIVTVKYK	[66]
RH1	M NGTEGQDFYVPMSNKTGVVRSPFEYPQYYLAEPWKFSALAAYMFMLILLGFPINFLTLYVTIQHK	[66]
RH2	MNGTEGINFYVPMSNKTGVVRSPFEYPQYYLAEPWKYRLVCCYIFFLISTGFPINFLTLLVTFKHK	[66]
LWS	${\tt MATWDGAVFAARRRHDDDDTTRDSVFTYTNSNNTRGPFEGPNYHIAPRwVYNLTSLWMIFVVVASVFTNGLVLVATAKFK}$	[66]
SWS2	??????RDELP?DFYISAALDAPNLTALSPFLVPQTHLGSPGVFRAMAAFMFLLIALGVPVNALTVVCTAKYK	[66]
	TMD II TMD III	
SWS1	KLRQPLNYILVNISFSGFLCCIFSVFTVFVSSAQGYFVFGKHMCALEGFAGATGGLVTGWSLAFLAFERYIVICKPFGNF	[146]
RH1	KLRTPLNYILLNLAVANLFMVFGGFTTTMYTSMNGYFVFGVTG <mark>C</mark> YI <mark>E</mark> GFFATLGGEIALWSLVVLAIERYVVVCKPMSNF	[146]
RH2	KLRQPLNYILVNLAVADLCMACFGFTVTFYTAWNGYFVFGPIG <mark>C</mark> AV <mark>E</mark> GFFATLGGQVALWSLVVLAIERYIVICKPMGNF	[146]
LWS	KLRHPLNWILVNLAVADLGETVIASTISVVNQIFGYFILGHPMCIIEGYTVSACGITALWSLAIISWERWFVVCKPFGNI	[146]
SWS2	KLRSHLNYILVNLAVANLLVVCVGSTTAFYSFSQMYFALGPTACKVEGFAATLGGMVSLWSLAVVAFERFLVICKPLGNF	[146]
	TMD IV TMD V	
SWS1	RFSSRHALLVVAATWVIGISVAIPPFLGWS RY VPEGLQCSCGPDWYTVGTKYKSEYYTWFLFIFCFIVPLSLIIFSYSQL	[226]
RH1	RFGENHAILGVAFSWIMALACAAPPLFGWSRYIPEGMQCSCGIDYYTLKPEVNNESFVIYMFVVHFMIPLLIIFFCYGNL	[226]
RH2	RFSASHAMMGIVFTWVMAISCAAPPLFGWSRYIPEGMQCSCGPDYYTHNPDFHNESYVLYMFVIHFIIPVIIIFFSYGRL	[226]
LWS	KFDGKLAVAGVLFSWIWSCAWTAPPIFGWSRYWPHGLKTSCGPDVFSGSTDPGVQSYMVVLMVTCCLFPLSVIIFCYLQV	[226]
SWS2	TFRGSHAVLGCAITWIFGLIASAPPLFGWSRYIPEGLQCSCGPDWYTTDNKWNNESYVIFLFCFCFGFPLAVIVLSYGRL	[226]
CHIC 1		12061
SWSI	LSALKAVAAQQQESATTQAAEKEVSKMVVMVGSFCLCIVPIAALAMIMVNNRDHGLDLKLVTVPAFFSSACVINPIII	[306]
KH1	VCTVhEAAAQQQESATTQAAEKEVTKMVIIMVIAFLICWVIASVAFIIFTNQGSDFGPIFMTIFAFFAASSAIINPVII VCVVDEAAAQQQESATTQAAEKEVTKMVIIMVIAFLICWVIASVAFIIFTNQGSDFGPIFMTIFAFFAASSAIINPVII	[306]
TWO	VCAVREARAQQQESATIQAAEKEVIRMVILMVIGGMLAWIPIAVVAFWIFINAGADFIAILMAVFAFFSNSSSIINFII	[300]
TMS	WLAIRAVAAQQREEESIQAAEREVSKWVVWILLAIIICWGFIIFFACFAAANGIAFIPLIAALPAFFACSAIIINPIII	[300]
SWSZ	LLILRAVARQQEQSATIQRAEREVIRMVVMVLGFLVCWAPISAFALWVVIRRGRRFDVGLASTPSVF3RASIVINFVII	[300]
GWG 1		
RH1	TYMNKA KARTINI CARNEL CEPTERS C	
RH2		
TWS	VEMIRAGERNCILOLEGKKV_DDGSEVSTS_PTEVSSVSNSSVSPA* [356]	
SM23	VEMNKOFBSCM22LLVF CRSDFCDDDDVSCSSSSSOLSDATE [356]	
DWDZ	ALWWATWOON WEAL OCCULLODDDD AD OD DAD AD A	

Figure S3. Phylogenetic relationships of the *C. nuchalis* opsin genes with those of other vertebrates. Opsin sequences isolated in this study from the great bowerbird are highlighted in yellow. These were aligned with other sequences obtained from NCBI using ClustalW and subjected to phylogenetic analyses. Maximum likelihood methods were implemented in the program PHYML 3.0 (Guindon and Gascuel 2003; Guindon, et al. 2005), and Bayesian inference in MrBayes 3.2.1(Ronquist and Huelsenbeck 2003), both under the HKY+I+ Γ model, favoured under the Akaike Information Criterion (AIC) using MrModeltest2.3 (Nylander 2008). For ML and NJ analyses, bootstrapping methods (100 replicates) were used to assess the degree of confidence in nodes of the phylogeny (Felsenstein 1985). The Bayesian analysis was run for 3 million generations, sampling every 100, and a 25% burn-in. Shown is the ML bootstrap consensus tree with both ML and NJ support values. An asterix denotes a posterior probability of ≥0.95 in the Bayesian analysis.

Figure S4. Alternate Landbird topologies used to confirm ancestral sequence reconstruction. Left: original tree based on consensus of current phylogenetics studies (Barker, et al. 2004; Barker, et al. 2002; Beresford, et al. 2005; Driskell, et al. 2011; Gardner, et al. 2010; Hackett, et al. 2008; Irestedt and Ohlson 2008; Johansson, et al. 2008; Jønsson, et al. 2011; Lee, et al. 2012; Suh, et al. 2011; Wang, et al. 2012; Wright, et al. 2008). Right: Secondary tree based on topology of Ödeen et al., (2011). The trees differ in the relationships among higher passerines (Passerida and core-Corvoidea). The reconstructed ancestral nodes are indicated by circles: Passerines (blue), Passerines and Parrots (P + P, green). The corresponding reconstructed fragments are indicated in boxes pointing to their respective nodes. The residue substitutions at sites 86, 90, & 93 are indicated. The reconstructed ancestral nodes are identical in sequence regardless of the topology used. But, the alternate topologies produce slightly dissimilar hypothesis regarding substitutions at site 90 in higher passerines (in red): a single event in the left tree, and two events in the right tree.

References

- Barker F, Cibois A, Schikler P, Feinstein J, Cracraft J 2004. Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci U S A 101: 11040-11045.
- Barker FK, Barrowclough GF, Groth JG 2002. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc Biol Sci 269: 295-308.
- Beresford P, Barker FK, Ryan PG, Crowe TM 2005. African endemics span the tree of songbirds (Passeri): molecular systematics of several evolutionary 'enigmas'. Proc Biol Sci 272: 849-858.
- Carvalho LS, Knott B, Berg ML, Bennett AT, Hunt DM 2011. Ultraviolet-sensitive vision in long-lived birds. Proc Biol Sci 278: 107-114.
- Das D, Wilkie SE, Hunt DM, Bowmaker JK 1999. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision Res 39: 2801-2815.
- Driskell AC, Norman JA, Pruett-Jones S, Mangall E, Sonsthagen S, Christidis L 2011. A multigene phylogeny examining evolutionary and ecological relationships in the Australo-papuan wrens of the subfamily Malurinae (Aves). Molecular Phylogenetics and Evolution 60: 480-485.
- Felsenstein J 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
- Gardner JL, Trueman JWH, Ebert D, Joseph L, Magrath RD 2010. Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Molecular Phylogenetics and Evolution 55: 1087-1102.
- Guindon S, Gascuel O 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696-704.
- Guindon S, Lethiec F, Duroux P, Gascuel O 2005. PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33: W557-559.
- Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763-1768.
- Irestedt M, Ohlson JI 2008. The division of the major songbird radiation into Passerida and 'core Corvoidea' (Aves: Passeriformes) the species tree vs. gene trees. Zoologica Scripta 37: 305-313.
- Johansson US, Fjeldså J, Bowie RCK 2008. Phylogenetic relationships within Passerida (Aves: Passeriformes): a review and a new molecular phylogeny based on three nuclear intron markers. Molecular Phylogenetics and Evolution 48: 858-876. doi: 10.1016/j.ympev.2008.05.029
- Jønsson KA, Fabre P-H, Ricklefs RE, Fjeldså J 2011. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proc Natl Acad Sci U S A 108: 2328-2333.
- Lee JY, Joseph L, Edwards SV 2012. A species tree for the Australo-Papuan Fairy-wrens and allies (Aves: Maluridae). Syst Biol 61: 253-271.
- Nylander J. 2008. MrModeltest v2.3 Program distributed by the author Evolutionary Biology Centre, Uppsala Sweden.
- Ödeen A, Håstad O 2003. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20: 855-861.
- Ödeen A, Håstad O 2009. New primers for the avian SWS1 pigment opsin gene reveal new amino acid configurations in spectral sensitivity tuning sites. J Hered 100: 784-789.

- Ödeen A, Håstad O, Alström P 2011. Evolution of ultraviolet vision in the largest avian radiation the passerines. Bmc Evolutionary Biology 11: 313.
- Ödeen A, Pruett-Jones S, Driskell AC, Armenta JK, Hastad O 2012. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc Biol Sci 279: 1269-1276.
- Ronquist F, Huelsenbeck JP 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
- Seddon N, Tobias JA, Eaton M, Odeen A 2010. Human Vision Can Provide a Valid Proxy for Avian Perception of Sexual Dichromatism. Auk 127: 283-292.
- Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J 2011. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nature Communications 2: 443.
- Wang N, Braun EL, Kimball RT 2012. Testing hypotheses about the sister group of the passeriformes using an independent 30-locus data set. Mol Biol Evol 29: 737-750.
- Wilkie SE, Vissers PM, Das D, Degrip WJ, Bowmaker JK, Hunt DM 1998. The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (*Melopsittacus undulatus*). Biochemistry Journal 330 (Pt 1): 541-547.
- Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Müller H, Scharpegge J, Chambers GK, Fleischer RC 2008. A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the cretaceous. Mol Biol Evol 25: 2141-2156.
- Yokoyama S, Blow NS, Radlwimmer FB 2000. Molecular evolution of color vision of zebra finch. Gene 259: 17-24.