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Selection of parameter values

The study by Moreira et al. (1) demonstrated that populations comprised entirely of naive

agents will efficiently—that is, rapidly and accurately—solve the density classification task

under very broad conditions. In particular, they demonstrated:

• Infinitely large populations of agents in a one dimensinal circular lattice require only

an infinitesimal number of random connections and an infinitesimal degree of noise

in the communication between agents in order to be able to detect even extremely

small majorities.

• There is a phase transition to an inefficient regime for a critical value of the noise

amplitude.

• For fixed topology (that is circular networks with a certain probability of rewiring),

the critical value of the noise amplitude is an increasing function of the average

number k of neighbors of the agents.

• Finite populations require a finite fraction of random connections among agents in

order to display efficient behavior. This fraction decreases with population size.

In the studies reported in our manuscript, we set our system to populations of 401

agents. For this size, (1) reported that for populations comprised entirely of naive agents
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the efficient regime is achieved, for a broad range of noise amplitudes, for a rewiring

probability of p ' 0.1.

Rewiring probability

In this study, we are primarily interested in the effect of conservative and partisan strate-

gies on the efficiency of the system. For this reason, we chose a set of system parmeters

such that for which a population comprised entirely of naive agents would be efficient.

First, we set the rewiring probability to 0.15. This way we assure that the system is

connected as a small-world.

Magnitude of initial majority

In order to avoid finite-size effects, we determine the initial magnitude of the majority,

that is the fraction of agents initially in the same state, above which perfect accuracy is

achieved. Specifically, we define a parameter c > 0.5, which is the probability that an

agent is initially in state “1.” This implies that the majority state will always be “1.”

To find the “best” value for c, we explore the accuracy with which a population of

N agents completes the density classification task within 2N time steps as a function of

c and for a variety of system sizes N ≥ 401 (Fig. S1A). For these population sizes, a

rewiring probability of 0.15 guaranties that the systems is connected as a small-world.

We want to select the combination {N, c}, such that c is as small as possible (so

the problem is as hard as possible) while allowing the system to attain a high accuracy

(≥ 0.95%) with a low computational cost. Our results suggest that N = 401 and c = 0.57

fulfill our requirements 1.

1Note that while c sets the distribution of preferred states for well-intentioned agents, it does not
for partisans. Partisans have a pre-assigned preferred state, thus they will immediately change to their
preferred state. This effect is visible if one compares the results of Figs. 2C and S3. The results shown in
Fig. 2C were obtained for systems in which the preferred states of partisan agents are equally distributed,
while the results shown in Fig. S3 were obtained for systems in which the probability of a partisan
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Definition of efficiency

To better quantify the effect of non-naive agents in the efficiency of the system, we in-

troduce an alternative definition of efficiency to that considered in (1) (see main text

for details). Figure S1B demonstrates that, despite the change in definition, the average

efficiency we obtain for systems with naive agents using c = 0.57 is consistent with the

efficiency measured using the definition in (1).

Robustness to change of parameter values

The results reported in the main manuscript show that the presence of conservatives also

makes the system more robust to noise. To analyze whether conservatives make a system

more robust to noise independently of k, we explore the efficiency for k = 4, N = 401,

p = 0.15, s = 2/5, and s = 3/5 (Fig. S4). Despite the differences in the range of s, for

s = 2/5 one can see the same trend since the presence of conservatives makes the system

more robust to noise.

Estimation of the convergence time

To estimate the “typical” number of time steps it takes for a system to reach the steady

state, we use the following method. First, we generate Nh time series εi(t) for the same

population parameters. For each time series, we start from different initial conditions

and let the system evolve for T time steps (Fig. S5A). We then compute the average

time series for the Nh histories ε(t) = 1
Nh

∑Nh
i=1 εi(t). To estimate the convergence time

we consider the “cumulative efficiency” at time t, that is, at each time step t we compute

the average efficiency for the remaining time steps εav(t) = 1
T−t

∑
t′>t ε(t′). The resulting

preferring state “1” is equal to c = 0.57. Our results show that having equally distributed preferred
states or having slightly more partisans toward the majority position does not have a significant impact
on the systems’ ability to solve the density classification task.
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curve (Fig. S5B) shows how the system reaches a constant average efficiency. We find

that this curve can be fit to a stretched exponential

f(x) = A(1−Be−( t
τ
)β

) (1)

We estimate the convergence time t∗ as the time at which the average efficiency is within

5% of the asymptotic efficiency ε∞(t)

t∗ = τ(− ln
0.05

B
)β. (2)

As shown in Fig. 3A in the main text, the time needed for a system to reach the steady

state increases with the fraction of conservatives fc. The effect of conservatives on the

convergence time can be explained in terms of resistance to a driving force. The driving

force that pushes the system toward consensus is provided by three parameters: c, p and

η. Because c > 0.5, the system is driven toward state “1.” Conservatives holding state

“−1,” however, oppose the driving force by resisting the influence of their naive neighbors.

Therefore, the larger the bias strength and the larger the fraction of conservatives, the

longer it takes the system to overcome that resistance.

The same idea explains why the system is more robust to noise if there are conserva-

tives present. The stronger the bias strength, the stronger the resistance to noise and, as

a consequence, to the loss of efficiency. Therefore, increasing the fraction of conservatives

also helps the system to increase its efficiency. In particular, for the cases in which the

noise is high enough to prevent the system from being efficient, increasing the fraction of

conservatives will make the system transition from an inefficient to an inefficient regime.

The fraction of conservatives needed to enter in the efficient regime depends on the bias

strength. Systems comprising conservatives with a larger bias strength need less conser-

vatives to efficiently solve the density classification task than systems with a lower bias

strength.
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Figure S1: Effect of the initial distribution of states on the system’s efficiency—(A)
Efficiency attained by a system of N naive agents after 2N time steps as a function of
c, the probability that an agent’s state at t = 0 is “1.” We consider systems of sizes
N = 101, 201, 401, 801 and 1601 with a noise intensity η = 0.2. (B) Comparison between
the efficiency obtained for a system of N = 401 agents following: (i) the method in (1)
for c = 0.5, and (ii) the definition of efficiency we use for c = 0.57.
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Figure S2: Efficiency of the system when c = 0.52—Efficiency of the system at solving the
density classification versus noise intensity η and the fraction of (A) conservative agents
and (B) partisans holding the minority position. Panels A and B are directly comparable
with Figs. 2A and 2B in the main text, respectively. Note that, in both cases, there is an
overall reduction in efficiency.
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Figure S3: Distribution of preferred states for partisan agents—Efficiency of a system in
solving the density classification task as a function of noise intensity and the fraction of
partisans for three bias strengths, s = 2/7, 4/7, and 6/7. In here, we consider that the
probability of a partisan agent preferring state 1 is 0.57.
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Figure S4: Effect of the agents’ degree k—Efficiency of the system in solving the density
classification task as a function of the fraction of conservatives and of the noise intensity
considering k = 4 instead of k = 6. Note that the change in k means a change in the range
of s. Despite such factor, the overall trend is similar to the results shown in Fig. 2A in
the main text, so that conservatives will increase the robustness of the system regardless
of k.
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Figure S5: Estimation of the convergence time t∗—(A) Efficiency versus time for a system
with N = 401, η = 0.4, p = 0.15, fc = 0.4, and s = 4/7. We show for a single time history
the efficiency at each time step and the the average time series ε(t) for 5000 histories.
(B) Average cumulative efficiency εav(t) =

∑
t′>t ε(t′)

1
T−t

versus time. Note that with this
transformation one can measure the time needed for the system to reach the stationary
state. The solid line shows the fit to the curve using a stretched exponential.
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