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a) Sample Preparation 

The initial silica liquid was obtained by heating α−cristobalite silica to 7000 K and 

equilibrating it for at least 1 ns. This well-equilibrated silica liquid was then used as the common 

starting point for subsequent sample preparation. The pressure quenching method1 as shown in Fig. 

S1 was employed to prepare all densified a-silica samples (0, 2, 4, 6, 8, 10, 12 and 15 GPa). 

Dimensions of as-quenched samples are listed in Table. S1 and used for uniaxial tension tests. 

 

Fig. S1. Schematic diagram of the pressure quenching route (e.g., 0, 2, 6, 8 10 GPa pressure was 

applied during the melt-quenching process). 
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Table. S1. Dimensions, number of atoms and density of samples for three types of 

mechanical tests. 

Samples Dimension (nm) 

(x, y, z) 

Number of Atoms Density (g/cm3) 

Uniaxial Tension Test 

0 GPa 14.12 × 14.12 × 2.82 38400 2.27 

2 GPa 13.78 × 13.78 × 2.76 38400 2.44 

4 GPa 13.54 × 13.54 × 2.71 38400 2.57 

6 GPa 13.36 × 13.36 × 2.67 38400 2.68 

8 GPa 13.18 × 13.18 × 2.64 38400 2.78 

10 GPa 13.01 × 13.01 × 2.60 38400 2.89 

12 GPa 12.87 × 12.87 × 2.57 38400 2.99 

15 GPa 12.84 × 12.84 × 2.57 38400 3.01 

V-Crack Tension Test 

0 GPa 56.48 × 56.48 × 2.82 614400 2.27 

8 GPa 52.72 × 52.72 × 2.64 614400 2.78 

10 GPa 52.04 × 52.04 × 2.60 614400 2.89 

12 GPa 51.48 × 51.48 × 2.57 614400 2.99 

15 GPa 51.36 × 51.36 × 2.57 614400 3.01 

Nanoindentation Test 

0 GPa 56.48 × 56.48 × 2.82 614400 2.27 

15 GPa 51.36 × 38.52 × 2.57 460800 3.01 
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Fig. S2. Fraction of (a) 3-, (b) 4-, (c) 5- and (d) 6-fold Si as a function of temperature during the 

pressure quenching process. 
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Fig. S3. Density and enthalpy as a function of temperature during the pressure quenching process. 

Fraction of 3-, 4-, 5- and 6-fold Si, density and enthalpy as a function of temperature during 

the pressure quenching process are shown in Fig. S2 and S3. The appearance of the pressure-

induced coordination defects in silica liquid in our study is consistent with ab initio MD 

simulations2. It is noteworthy that the density of silica melt has a shallow maximum in Fig. S3(a), 

consistent with Vollmayr’s MD simulations using the same modified BKS potential and a similar 

cooling rate3. The density maximum gradually shifts to lower temperatures with increasing of 

quenching pressure and diminishes when the pressure is above 10 GPa. These trends are followed 

by the evolution of the fraction of 5-fold Si coordination defects as a function of temperature in 

Fig. S2(c), implying that they may be closely related to the compression mechanisms of silica melt.  

Density (after the pressure release) and fictive temperature of densified samples are plotted as 

a function of quenching pressure in Fig. S4. Error bars in Fig. S4 are from four parallel samples, 

which are smaller than the symbol size for density. The fictive temperature was measured, 

according to Toole and Eichlin’s approach4, at the intersection of the slopes of the liquid state and 

the glassy state in the enthalpy versus temperature curve during the pressure quenching process in 
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Fig. S3(b). Density and fictive temperature show a linear increase with quenching pressure in the 

pressure range of 0~8 GPa, but become nonlinear beyond 10 GPa. The saturation density in the 

high pressure region can be regarded as the maximum densification attainable with the cooling 

rate of 10 K/ps, analogous to the maximum permanent densification observed in static cold 

compression experiments at room temperature5. Young’s modulus and Poisson’s ratio as a function 

of density are shown in Fig. S5(a) and (b), and a systematic increasing trend is observed for both 

elastic properties, consistent with experimental results6. It should be pointed out the Poisson’s ratio 

is substantially over-estimated, especially for samples with low densities (see Fig. S5(b)), and the 

amount of increase with increasing density is much less in our simulations than in experiments6. 

This might be due to the deficiency of the BKS potential, as pointed out by Tanguy7. 

 

 

Fig. S4. Density and fictive temperature as a function of quenching pressure. 
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Fig. S5. Young’s modulus (a) and Poisson’s ratio (b) as a function of density from pressure 

quenching in our simulations and from cold compression in Rouxel’s experiments6. 

To further test the reliability of the modified version of the BKS potential3,8 in describing the 

deformation of silica under pressure, we carried out cold compression of the 0 GPa sample at 300 

K. The average coordination number of Si as a function of pressure from our MD simulations is 

shown in Fig. S6(a), which is in good agreement with results from Benmore’s9 and Sato’s10 

experiments and from Wu’s ab initio MD simulations11. Therefore, we can rule out the possibility 

that the coordination defects in pressure-quenched samples are due to the artifacts of the force field 

used in this study. The reason that higher coordination states of Si have not been observed in 

retrieved a-silica after static cold compression12–14 may be due to the experimental procedures, 

such as slow decompression rate, or different compression mechanisms in the cold state than in 

the liquid state as indicated from the shock compression of a-silica15. Fig. S6(b) shows that 

densified a-silica from cold compression contains substantially smaller amount of 5-fold Si, 

compared with the one from pressure quenching that has experienced the same maximum pressure. 

It is reasonable to expect that the amount of 5-fold Si quenchable in cold compression experiments 

would be even smaller, given the relaxation on the experimental time scale during decompression. 
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Such a small amount of 5-fold coordination defects in recovered a-silica after cold compression 

may not be discernable in spectroscopic studies. 

          

Fig. S6. (a) Average coordination number of Si as a function of pressure during cold compression 

from our MD simulations. Results from Benmore’s9 and Sato’s10 experiments and from Wu’s ab 

initio MD simulations11 are also shown for comparison. (b) Fraction of 5-fold Si in retrieved a-

silica as a function of the maximum pressure experienced in cold compression at 300 K compared 

with that in pressure-quenched silica glass as a function of the maximum pressure applied during 

the pressure quenching process. 
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b) Mechanical Tests 

1) Uniaxial Tension Test 

Uniaxial tension tests were carried out by straining samples along the x-axis with a constant 

strain rate of 2.48×109/s. The effect of strain rate was systematically studied in our previous work16. 

As seen in Fig. S7, this strain rate is slow enough to reproduce the clean brittle fracture in the 0 

GPa sample (i.e., no pressure applied during quenching) as seen in Fig. 2(a). Table. S2 shows that 

for each sample, the length along the tensile direction has been chosen to be larger than the critical 

length needed to avoid the artificial ductility during uniaxial tension test16. We doubled the 

thickness in the z direction for the 0 GPa sample, as seen in Fig. S8, there is no obvious change in 

the fracture mechanism based on the stress-strain curves. The 0 GPa sample (pristine silica glass) 

of either thickness fractures in a clean brittle manner, same as in experiments. So we believe the 

thickness of 2.8 nm in the z direction we used in our work is sufficient to reproduce the bulk 

behavior of silica glass. The lateral axes (y and z axis) were relaxed to keep zero stress while the 

tensile axis was elongated. Damping parameters for the thermostat (1.0) and barostat (10.0) were 

also carefully chosen to ensure that they have negligible effects on the dynamics of the system 

(Fig. S9).  
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Fig. S7. Effect of strain rate on the uniaxial tension test of silica glass. 

      

Fig. S8. Stress-strain curves for the 0 GPa sample with thickness of Lz=2.8 and 5.6 nm. 
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Fig. S9. Effect of thermostat damping parameter (a) and barostat damping parameter (b) on the 

uniaxial tension test of silica glass. Note: damping parameter of 1.0 means to relax the 

temperature/pressure every 40 fs. 

 

Table. S2. Young’s modulus, bulk modulus, fracture surface energy, elastic strain energy, 

sample dimensions of pressure-quenched samples and the critical length to avoid the 

artificial ductility during uniaxial tension test. 

Quenching 
Pressure 
(GPa) 

Young’s 
Modulus 

(GPa) 

Bulk 
Modulus 

(GPa) 

Fracture 
Surface 
Energy 
(J/m2) 

Elastic 
Strain 
Energy 
(J/m3) 

Lx, Ly 
(nm) 

Critical 
Length 
(nm) 

0 84.1 53.3 3.89 0.61 14.12 12.9 
2 100.3 65.0 4.42 0.72 13.78 12.2 
4 114.6 76.5 4.34 0.83 13.54 10.5 
6 118.5 82.7 5.14 0.85 13.36 12.0 
8 123.1 85.1 5.01 0.87 13.18 11.3 
10 126.0 83.8 5.42 0.91 13.01 11.9 
12 141.9 92.0 5.51 1.02 12.87 10.8 
15 142.4 92.4 4.92 1.03 12.84 9.6 
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2) V-Crack Tension Test 

 

Fig. S10. Sample geometry for the V-crack tension test in MD simulations. y is the loading 

direction, blue arrows indicate the extension direction of the V-crack to have an ideal cleavage 

surface perpendicular to the loading direction. 

 

As-quenched samples were duplicated in the x and y axis for four times to be used for V-

crack tension tests. A central V-shaped crack was created by removing atoms in the crack region 

for each sample (Fig. S10). Crack dimensions along the x and y axis are 2a and 2h, respectively, 

L/2a=4, 8 and 16, a/h=12, where L is the sample dimension along the x or y axis. Relaxation up to 

1 ns after the crack creation was carried out for each sample, and then a similar uniaxial tension 

test along the y-axis was performed as shown above.  

Crack size-dependent stress-strain curves for 0 GPa and 15 GPa quenched silica glass under 

V-crack tension tests are shown in Fig. S11. For the 0 GPa sample, no crack size-dependency of 

the fracture mode is observed.  In other words, it always fractures in a brittle manner even there is 
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no pre-existing crack, although the fracture strain decreases with increasing crack size. In contrast, 

the 15 GPa sample shows a crossover from ductile to brittle fracture with increasing crack size 

(smaller L/2a ratio in Fig. S11). Therefore, the characteristic quenching pressure for densified 

silica glass to exhibit the brittle to ductile transition changes with the crack size used in the V-rack 

tension tests. In the rest of the study, the ratio between the sample dimension (L) and the crack size 

(2a) and is set to be 4. Without any pre-existing crack, a clear brittle to ductile transition can be 

found in samples quenched under pressures of 2 to 4 GPa (seen in Fig. 2(a). A higher characteristic 

quenching pressure would be expected for densified silica glass to show the brittle to ductile 

transition (seen in Fig. 3(a) with L/2a=4). 

 

              

 

Fig. S11. Crack size-dependent stress-strain curves in V-crack tension tests for (a) 0 GPa and (b) 

15 GPa sample. Note: legends indicate the L/2a ratios. 

 

Atomic configuration of the 0, 8 and 15 GPa sample right after fracture during V-crack 

tension test are shown in Fig. S12, which shows the fracture surfaces become rougher with the 

increase of quenching pressure, a signature of enhanced ductility in densified samples. We 
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computed the fracture surface roughness in reference to an ideal cleavage surface shown in Fig. 

S10 (indicated by blue arrows). The surface of the pre-existing crack was excluded, i.e., only the 

area covered by blue arrows in Fig. S10 was considered for calculating the fracture surface 

roughness. The specific procedure for fracture surface roughness calculation is as follows: 1) select 

the ideal cleavage surface as a reference plane perpendicular to the y axis and intersects with it  at 

the crack center; 2) partition all atoms right after fracture into 5 Å bins along the x and z axis; 3) 

find the outmost atoms in each bin to the fracture surface and choose the atoms that satisfy 

|y(atom)-y(outmost atom)|<=2 Å as the surface layer; 4) the fracture surface roughness is 

calculated from the root-mean-squared average over the distance from atoms in the surface layer 

to the reference plane. The fracture surface roughness is 7.6, 20.2 and 33.3 Å for the 0, 8 and 15 

GPa sample, respectively, implying a increasingly higher resistance to crack propagation in 

densified silica glass quenched under higher pressure. Three movies of V-crack tension tests for 0, 

8, 15 GPa samples are attached, which are color-coded according to the local shear strain. 

 

 

Fig. S12. Atomic configuration of the 0 (left), 8 (middle) and 15 GPa (right) sample right after 

fracture during the V-crack tension test. 
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To further quantify the ductility in V-crack tension test, we defined the strain at fracture or 

fracture strain as the strain at the stress equal to half of the ultimate strength prior to the final 

fracture. The fracture strain increases steadily with quenching pressure in Fig. S13, indicating a 

steady increase of ductility in densified silica glass.  

 

Fig. S13. Fracture strain versus quenching pressure in V-crack tension tests.  

 

3) Nanoindentation Test 

For nanoindentation tests, the as-quenched 0 GPa sample was duplicated in the x and y axis for 

four times, the 15 GPa sample was duplicated in the x and y axis for four and three times, 

respectively. For each sample, a free surface was created by releasing the periodic boundary 

condition along the y-axis and the bottom 1 nm layer was fixed to mimic the bulk properties (Fig. 

S14). A V-shaped nanoindenter with a round tip was created and implemented in LAMMPS17. The 

interaction between the nanoindenter and atoms in this study is purely repulsive and the force is 
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perpendicular to surface of the nanoindenter and can be expressed as: ( )repF r K r= × , where K is 

the force constant of 1000 eV/nm3, and r is the penetration depth of each atom into the indenter 

surface along the plane normal direction. The geometry of the indenter is defined by two 

parameters: one is the intersecting angle between the two rectangular side planes, the other is the 

tip radius (1 nm in this study). In Fig. S15, configurations of the 15 GPa sample under a 

nanoindenter with 60º and 90º angle are compared. Obviously, a sharper indenter (i.e., smaller 

intersecting angle) induces more pile-up, consistent with Gross’18 and Yoshida’s19 experimental 

observations. For the rest of this study, we chose the intersecting angle to be 60º to facilitate the 

possible shear flow and pile-up during nanoindentation. The nanoindenter was lowered into the 

sample with a nominal speed of 12.5 m/s, which is much smaller than the sound velocity in a-silica 

(~km/s).  The whole system is fixed in a NVT (constant number of atoms, constant volume and 

constant temperature) ensemble except the fixed bottom layer. This is to mimic the real 

experimental process where the generated heat can be dissipated fast into the surrounding without 

causing a substantial local heating underneath the indenter. Samples are indented to different 

depths (e.g., 14.6 nm, 22.4 nm and 28.4 nm for the 0 GPa sample and 14.6 nm for the 15 GPa 

sample), followed by an equilibration and a subsequent unloading process using the same speed 

of 12.5 m/s. The load-displacement curves for the 0 and 15 GPa sample are shown in Fig. S16.  
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Fig. S14. Nanoindentation geometry in MD simulations: periodic boundary condition (PBC) is 

applied in x-y and y-z planes. Top x-z plane is a free surface. The lowest portion of the sample (i.e., 

near the bottom x-z plane) is fixed to mimic the bulk properties. 

 

Fig. S15. Configuration of the 15 GPa sample after unloading from an indention depth of 14.6 nm 

using a nanoindenter with 60º (left) and 90º (right) angle. 
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Fig. S16. Load-displacement curves of nanoindentation test for the 0 GPa and 15 GPa sample. 

 

 

Fig. S17. Local shear strain (a) and local density map (b) for the 0 GPa and 15 GPa sample at the 

indentation depth of 5.4, 10.0, 14.6 nm and after unloading using a 60º nanoindenter. 
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Local shear strain and local density map for the 0 GPa and 15 GPa sample at the indentation 

depth of 5.4, 10, 14.6 nm and after unloading using a 60º nanoindenter are shown in Fig. S17. It 

can be seen that densification is the dominant deformation mode in the pristine a-silica, while shear 

flow becomes more prominent in the densified sample. How does the local shear flow lead to the 

pile-up during nanoindentation is shown in two attached movies for 0 and 15 GPa samples, which 

are color-coded according to the local shear strain. 

It should be pointed out that the amount of pile-up depends not only on the sharpness of the 

indenter, but also on the indentation depth. As seen in Fig. S18, at a larger indentation depth (e.g., 

28.4 nm), an obvious pile-up can be seen in the 0 GPa sample. This agrees with Nomura et al.’s 

MD simulation of nanoindentation in a-silica20. However, the 0 GPa sample does not exhibit 

purely elastic recovery during the unloading process in our MD simulation, while the density of 

a-silica under indenter goes back to the bulk density (2.2 g/cm3) after unloading in Nomura et al.’s 

MD simulation20. Our results agree with Gross’18  and Yoshida’s19 experimental observations. Our 

MD simulations show that, in absence of water moisture, a-silica can undergo both densification 

and shear flow under sharp contact loading without cracking, in good agreement with Vickers 

indentation experiments by Gross and Tomozawa21.  



19 
 

 

Fig. S18. Atomic configuration (first row), local shear strain (second row), local density (third row) 

and local density change map under indenter (fourth row) for the 0 GPa sample after unloading 

from 14.6, 22.4 and 28.4 nm indentation depth using a 60º nanoindenter. Note: in the fourth row, 

only density change below the original sample top surface is shown. 

 

c) Calculation of Fracture Surface Energy and Shear Banding energy  

1) Fracture Surface Energy 

In order to measure the fracture surface energy, we need to create the fracture surface manually. 

First, we cut the as-quenched sample into two halves. Second, we relaxed the two separated halves 

under NVE ensemble (constant number of atoms, constant volume and constant energy). Finally, 

we obtained the potential energy difference () between the final state of the two halves and the 

original state before cutting and normalized over the total fracture surface area (2A) to calculate 

the fracture surface energy: . The separation distance between the two halves 

E∆

fse E / (2A)γ = ∆
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should be large enough to avoid any interaction between them and for the current study we set it 

to be 20 nm.  

 

2) Shear Banding Energy 

Pure shear simulations (stress state shown in Fig. S19(a)) in as-quenched samples were used 

to calculate the shearing banding energy. The stress-strain curves are plotted in Fig. S19(b). The 

overshooting of shear stress in samples quenched under lower pressures (e.g., 0, 2, 4,6, 8 GPa) 

disappears in those quenched under high pressures, consistent with the reported trend from the 

cold compression of a-silica7. The stress softening in the former can be attributed to dissipative 

local structural rearrangements22,23. In addition, the densification achieved by the pressure 

quenching process substantially decreases the maximum shear stress, which is indicative of easy 

shear deformation in densified samples. In order to estimate the activation energy for shear banding, 

we subtract the elastic energy from the total potential energy to obtain the plastic energy and use 

the plastic energy stored up to the maximum shear stress as the final shear banding energy. The 

reach of maximum shear stress would ensure a continuous shear deformation without the need of 

increasing the shear stress furthermore and the system can shear in a sustainable manner. The last 

step is to normalize the stored plastic energy by the total shear area to obtain the shear banding 

energy γsbe. In our study the total shear area is the area of the xy plane, by assuming shear bands 

are uniformly distributed over the whole area. 
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Fig. S19. (a) Geometry of pure shear test in MD simulations; (b) Stress-strain curves of pure shear 

test for pressure-quenched a-silica samples. 

 

d) Structure Difference between Pristine and Densified a-silica 

1) Short Range Order 

To characterize the short range order, we computed the atom-based bond angle deviation 

distribution, following the procedures used by Demkowicz and Argon24  in amorphous silicon. For 

each Si atom in the silica glass network, there are multiple <O-Si-O> angles centered on it. The 

average <O-Si-O> bond angle and the <O-Si-O> bond angle deviation were calculated for all <O-

Si-O> angles centered on this Si atom. Histogram of such atom-based average bond angle and 

bond angle deviation were accumulated and plotted in Fig. S20, which show that in the 0 GPa 

sample, the <O-Si-O> bond angle and the <O-Si-O> bond angle deviation are centered around 

109º and 6º, respectively. With the increase of quenching pressure, another peak in the range of 

105 to 108º in the <O-Si-O> bond angle distribution and one around 25º in the <O-Si-O> bond 

angle deviation emerge and increase in intensity, at the expense of those peaks in the pristine a-
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silica. We calculated the coordination number associated with every Si atom in the system and 

showed that central Si atoms having the <O-Si-O> bond angle deviation larger than 20º (indicated 

by the vertical line in Fig. S20(b)) are 5-fold coordinated with O atoms, while those having the 

deviation smaller than 20º have four O neighbors. Fig. S20(b) shows that in the pristine a-silica 

(the 0 GPa sample), all Si atoms are 4-folded coordinated, characteristic of a perfect tetrahedral 

network. In densified samples, more and more Si atoms become 5-fold coordinated when the 

quenching pressure is increased. This indicates that the network topology changes with the 

increase of densification due to the appearance of 5-fold Si coordination defects. Fig. S20 shows 

that there are two different Si local environments associated with 4- and 5-fold coordination states 

in densified samples. The 5-fold coordination state has a broader <O-Si-O> bond angle distribution 

and a larger <O-Si-O> bond angle deviation, indicating a less rigid local environment.  

    

Fig. S20. Atom-based <O-Si-O> bond angle distribution (a) and <O-Si-O> bond angle deviation 

distribution (b). 

In order to understand the role of five-fold Si atoms in the plastic deformation of densified 

silica glass, we tracked the Si coordination change at various strains during the uniaxial tensile test 
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with respect to the stress-free state and correlated with the local shear strain centered on Si atoms. 

In densified silica glass, the major coordination defects are five-fold Si atoms, and thus there are 

four possible states during the uniaxial tension test, namely a four-fold Si remains four-fold 

(Si4->Si4), a five-fold Si remains five-fold (Si5->Si5), a four-fold Si changes to five-fold (Si4->Si5), 

a five-fold Si changes to four-fold (Si5->Si4).  As seen in Fig. S21, at 2% and 6.2% uniaxial tensile 

strain, Si atoms going through the Si5->Si4 and Si4->Si5 conversions show larger local shear strain 

than those that keep their original coordination state. This is consistent with the observation in Fig. 

S20 that five-fold coordination state has a less rigid local environment, more amenable to local 

shear deformation as compared with the four-fold coordination state. 

  

 

Fig. S21. Probability of Si4->Si4, Si5->Si5, Si4->Si5 and Si5->Si4 state versus the local shear strain 

centered on Si atoms at (a) 2% and (b) 6.2% strain during the uniaxial tensile test of the 8 GPa 

sample. Note: The probability distribution is normalized by all possible conversion events within 

each category. 
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2) Intermediate Range Order 

To understand the packing of tetrahedral network, we tracked where the fifth nearest Si 

neighbor of a Si atom is25, as shown in Fig. S22(a). The g5(r) (i.e., histogram of the fifth nearest 

Si-Si pair) of the 0 and 15 GPa sample are shown in Fig. S22(b). As expected, for a homogeneous 

system like the 0 GPa sample, there is only one dominant peak in g5(r), while for the 15 GPa 

sample, g5(r) splits into two peaks, corresponding to two different packing states in densified a-

silica.  

        

Fig. S22. (a) Schematic of tetrahedral network of a-silica (the central tetrahedron is 0 and nearest 

neighboring tetrahedra in the first shell (the yellow circle) are 1, 2, 3 and 4 and the second shell is 

indicated by the red circle); (b) Distribution of the fifth Si–Si neighbor g5(r) in the 0 GPa and 15 

GPa sample. 
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e) Energy Dissipation in Pristine and Densified a-silica 

To better understand the energy dissipation mechanisms in pristine and densified a-silica, we 

carried out a hydrostatic stretching test for the 0 and 15 GPa sample. Fig. S23 shows that the 15 

GPa sample cavitates at a lower pressure and at a larger volumetric strain than the 0 GPa sample. 

Upon stretching, the pristine silica network expands isotropically, indicated by the shift of the g5(r) 

peak to larger Si-Si distance in Fig. S24(a). On the other hand, for the 15 GPa sample, the inner 

peak g5(r) diminishes in intensity with the increase of the volume expansion (Fig. S24(b)). This 

indicates that upon expansion, the dense packing state achieved by the pressure quenching process 

gradually converts back to the normal (loose) packing state as in the pristine a-silica. For the 0 

GPa sample, the initial volume expansion is sustained by stretching the Si-O bond, while the 

fraction of 4-fold Si remains constant (Fig. S25(a)). For the 15 GPa sample, the Si-O bond is 

stretched to a much less extent upon initial expansion (Fig. S25(b)), most of the deformation is up-

taken by the conversion of the dense packing state into the loose one, indicated by the g5(r) in Fig. 

S24(b) and the fraction of 4-fold Si in Fig. S25(b). This kind of conversion provides additional 

mechanism for energy dissipation in densified a-silica. 



26 
 

 

Fig. S23. Pressure versus volumetric strain during hydrostatic stretching test for the 0 GPa and 

15 GPa sample. 

 

            

Fig. S24. Distribution of the fifth Si–Si neighbor g5(r) at different volume strain during hydrostatic 

stretching test for the (a) 0 GPa and (b) 15 GPa sample. 
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Fig. S25. Si-O distance and fraction of 4-fold Si versus volumetric strain during hydrostatic 

stretching test for the (a) 0 GPa and (b) 15 GPa sample. 
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