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a) Sample Preparation

The initial silica liquid was obtained by heating-cristobalite silica to 7000 K and
equilibrating it for at least 1 ns. This well-eqgorated silica liquid was then used as the common
starting point for subsequent sample preparatiba.pfessure quenching methad shown in Fig.

S1 was employed to prepare all densifeedilica samples (0, 2, 4, 6, 8, 10, 12 and 15 GPa).

Dimensions of as-quenched samples are listed iteT8k and used for uniaxial tension tests.
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Fig. S1.Schematic diagram of the pressure quenching reue, O, 2, 6, 8 10 GPa pressure was

applied during the melt-quenching process).



Table. S1. Dimensions, number of atoms and densitf samples for three types of

mechanical tests.

Samples Dimension (nm) | Number of Atoms | Density (g/cn¥)
xy.2
Uniaxial Tension Test
0 GPa 14.12 x 14.12 x 2.82 38400 2.27
2 GPa 13.78 x 13.78 x 2.7/6 38400 2.44
4 GPa 13.54 x 13.54 x 2.71 38400 2.57
6 GPa 13.36 x 13.36 x 2.67 38400 2.68
8 GPa 13.18 x 13.18 x 2.64 38400 2.78
10 GPa 13.01 x 13.01 x 2.60 38400 2.89
12 GPa 12.87 x 12.87 x 2.7 38400 2.99
15 GPa 12.84 x 12.84 x 2.7 38400 3.01

V-Crack Tension Test

0 GPa 56.48 x 56.48 x 2.82 614400 2.27
8 GPa 52.72 x 52.72 x 2.64 614400 2.78
10 GPa 52.04 x 52.04 x 2.60 614400 2.89
12 GPa 51.48 x 51.48 x 2.57 614400 2.99
15 GPa 51.36 x 51.36 x 2.57 614400 3.01

Nanoindentation Test

0 GPa 56.48 x 56.48 x 2.82 614400 2.27

15 GPa 51.36 x 38.52 x 2.57 460800 3.01
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Fig. S2.Fraction of (a) 3-, (b) 4-, (c) 5- and (d) 6-fold&S a function of temperature during the
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Fig. S3.Density and enthalpy as a function of temperaturend the pressure quenching process.

Fraction of 3-, 4-, 5- and 6-fold Si, density amdhalpy as a function of temperature during
the pressure quenching process are shown in Fign8253. The appearance of the pressure-
induced coordination defects in silica liquid inrostudy is consistent witlab initio MD
simulation$. It is noteworthy that the density of silica migdts a shallow maximum in Fig. S3(a),
consistent with Vollmayr's MD simulations using tb@me modified BKS potential and a similar
cooling raté. The density maximum gradually shifts to lower pematures with increasing of
guenching pressure and diminishes when the pressab®mve 10 GPa. These trends are followed
by the evolution of the fraction of 5-fold Si coordtion defects as a function of temperature in

Fig. S2(c), implying that they may be closely rethto the compression mechanisms of silica melt.

Density (after the pressure release) and fictimgoerature of densified samples are plotted as
a function of quenching pressure in Fig. S4. Ebans in Fig. S4 are from four parallel samples,
which are smaller than the symbol size for densliye fictive temperature was measured,
according to Toole and Eichlin’s approégcét the intersection of the slopes of the liquatesand

the glassy state in the enthalpy versus temperatuwe during the pressure quenching process in



Fig. S3(b). Density and fictive temperature sholm@ar increase with quenching pressure in the
pressure range of 0~8 GPa, but become nonlineanie}0 GPa. The saturation density in the
high pressure region can be regarded as the maxidamsification attainable with the cooling
rate of 10 K/ps, analogous to the maximum permaxenisification observed in static cold
compression experiments at room temperatiteung’s modulus and Poisson’s ratio as a function
of density are shown in Fig. S5(a) and (b), angséesnatic increasing trend is observed for both
elastic properties, consistent with experimentsiilte®. It should be pointed out the Poisson’s ratio
is substantially over-estimated, especially for gia® with low densities (see Fig. S5(b)), and the
amount of increase with increasing density is miesk in our simulations than in experiménts

This might be due to the deficiency of the BKS ptitd, as pointed out by Tangly

3500 . .

n +£3.0

3000

|

2500

2000 . °

Fictive Temperature (K)
I
(etua/ﬁ) Aisuag

1500 L L 22
0 5 10 15

Quenching Pressure (GPa)

Fig. S4.Density and fictive temperature as a function aérgehing pressure.
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Fig. S5.Young’s modulus (a) and Poisson’s ratio (b) as rection of density from pressure

quenching in our simulations and from cold comgoes Rouxel's experimerits

To further test the reliability of the modified w&n of the BKS potenti&f in describing the
deformation of silica under pressure, we carriedoold compression of the 0 GPa sample at 300
K. The average coordination number of Si as a fanaf pressure from our MD simulations is
shown in Fig. S6(a), which is in good agreementwisults from Benmoré®sand Sato’¥
experiments and from Wuab initio MD simulation$!. Therefore, we can rule out the possibility
that the coordination defects in pressure-quenshetples are due to the artifacts of the force field
used in this study. The reason that higher cootdinastates of Si have not been observed in
retrieveda-silica after static cold compressién* may be due to the experimental procedures,
such as slow decompression rate, or different ceagown mechanisms in the cold state than in
the liquid state as indicated from the shock cosgion ofa-silica®®. Fig. S6(b) shows that
densifieda-silica from cold compression contains substantialinaller amount of 5-fold Si,
compared with the one from pressure quenchingmexperienced the same maximum pressure.
It is reasonable to expect that the amount of 8-8lquenchable in cold compression experiments

would be even smaller, given the relaxation oretkgerimental time scale during decompression.



Such a small amount of 5-fold coordination defésteecovereda-silica after cold compression

may not be discernable in spectroscopic studies.
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Fig. S6.(a) Average coordination number of Si as a functibpressure during cold compression
from our MD simulations. Results from Benmofedsmd Sato’¥ experiments and from Wuab
initio MD simulationd! are also shown for comparison. (b) Fraction oblg-fSi in retrievech-
silica as a function of the maximum pressure experd in cold compression at 300 K compared
with that in pressure-quenched silica glass asetion of the maximum pressure applied during

the pressure quenching process.



b) Mechanical Tests

1) Uniaxial Tension Test

Uniaxial tension tests were carried out by strajrsamples along theaxis with a constant
strain rate of 2.48x20s. The effect of strain rate was systematicallgigd in our previous wotR
As seen in Fig. S7, this strain rate is slow enaduagreproduce the clean brittle fracture in the 0
GPa sample (i.e., no pressure applied during quegchs seen in Fig. 2(a). Table. S2 shows that
for each sample, the length along the tensile imetas been chosen to be larger than the critical
length needed to avoid the artificial ductility thg uniaxial tension te¥t We doubled the
thickness in the direction for the 0 GPa sample, as seen in Figtt&e is no obvious change in
the fracture mechanism based on the stress-suarex The 0 GPa sample (pristine silica glass)
of either thickness fractures in a clean brittlenmex, same as in experiments. So we believe the
thickness of 2.8 nm in the direction we used in our work is sufficient to meguce the bulk
behavior of silica glass. The lateral axgsdz axis) were relaxed to keep zero stress while the
tensile axis was elongated. Damping parameterthéthermostat (1.0) and barostat (10.0) were
also carefully chosen to ensure that they haveigibl effects on the dynamics of the system

(Fig. S9).
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Fig. S7.Effect of strain rate on the uniaxial tension tessilica glass.
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Table. S2. Young’'s modulus, bulk modulus, fracturesurface energy, elastic strain energy,

sample dimensions of pressure-quenched samples ahe critical length to avoid the

artificial ductility during uniaxial tension test.

Quenchin¢ | Young's Bulk Fractue Elastic Lx, Ly Critical
Pressure | Modulus Modulus Surface Strain (nm) Length
(GPa) (GPa) (GPa) Energy Energy (nm)

(J/n) (I/nP)
0 841 53.: 3.8¢ 0.€1 14.17 129
2 1003 65.C 4.42 0.7z 13.7¢ 12.2
4 1146 765 4.3¢ 0.€3 13.5¢ 10.5
6 1185 827 5.14 0.8¢ 13.3¢ 12.C
8 123.] 85.1 5.C1 0.87 13.1¢ 11.3
10 126.C 83.¢ 5.42 0.€1 13.0] 11.€
12 1419 92.0 5.51 1.0Z 12.87 108
15 1424 92.4 4.9z 1.C3 12.8¢ 0.€

10



2) V-Crack Tension Test

5
=
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Fig. S10.Sample geometry for the V-crack tension test in 8fidulationsy is the loading
direction, blue arrows indicate the extension dicgcof the V-crack to have an ideal cleavage

surface perpendicular to the loading direction.

As-quenched samples were duplicated intledy axis for four times to be used for V-
crack tension tests. A central V-shaped crack waated by removing atoms in the crack region
for each sample (Fig. S10). Crack dimensions atbag andy axis are 2 and 2, respectively,
L/2a=4, 8 and 16a/h=12, whereL is the sample dimension along ther y axis. Relaxation up to
1 ns after the crack creation was carried out &émhesample, and then a similar uniaxial tension
test along thg-axis was performed as shown above.

Crack size-dependent stress-strain curves for OdBH&l5 GPa quenched silica glass under
V-crack tension tests are shown in Fig. S11. FerGlGPa sample, no crack size-dependency of

the fracture mode is observed. In other wordsways fractures in a brittle manner even there is

11



no pre-existing crack, although the fracture stdmareases with increasing crack size. In contrast,
the 15 GPa sample shows a crossover from ductiteitite fracture with increasing crack size
(smallerL/2a ratio in Fig. S11). Therefore, the characterisfienching pressure for densified
silica glass to exhibit the brittle to ductile tetion changes with the crack size used in thedk-ra
tension tests. In the rest of the study, the taiwveen the sample dimensid) &nd the crack size
(2a) and is set to be 4. Without any pre-existing kyacclear brittle to ductile transition can be
found in samples quenched under pressures of &ad(seen in Fig. 2(a). A higher characteristic
guenching pressure would be expected for densdiiéch glass to show the brittle to ductile

transition (seen in Fig. 3(a) with2a=4).
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Fig. S11.Crack size-dependent stress-strain curves in \kdeatsion tests for (a) 0 GPa and (b)
15 GPa sample. Note: legends indicatelLifza ratios.

Atomic configuration of the 0, 8 and 15 GPa samjgat after fracture during V-crack
tension test are shown in Fig. S12, which showdrdneture surfaces become rougher with the
increase of quenching pressure, a signature ofneeldaductility in densified samples. We
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computed the fracture surface roughness in refereman ideal cleavage surface shown in Fig.
S10 (indicated by blue arrows). The surface ofpfeeexisting crack was excluded, i.e., only the
area covered by blue arrows in Fig. S10 was coreidéor calculating the fracture surface
roughness. The specific procedure for fractureeserfoughness calculation is as follows: 1) select
the ideal cleavage surface as a reference plapemaicular to the axis and intersects with it at
the crack center; 2) partition all atoms right eftacture into 5 A bins along theandz axis; 3)
find the outmost atoms in each bin to the fractsueace and choose the atoms that satisfy
ly(atom)y(outmost atom)|<=2 A as the surface layer; 4) tractéire surface roughness is
calculated from the root-mean-squared average tbeedistance from atoms in the surface layer
to the reference plane. The fracture surface roeggis 7.6, 20.2 and 33.3 A for the 0, 8 and 15
GPa sample, respectively, implying a increasinglyhér resistance to crack propagation in
densified silica glass quenched under higher presEhree movies of V-crack tension tests for O,

8, 15 GPa samples are attached, which are colaecadcording to the local shear strain.

20 nm

Fig. S12.Atomic configuration of the O (left), 8 (middle) &ri5 GPa (right) sample right after

fracture during the V-crack tension test.
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To further quantify the ductility in V-crack tensidest, we defined the strain at fracture or
fracture strain as the strain at the stress equbhblf of the ultimate strength prior to the final
fracture. The fracture strain increases steadith \guenching pressure in Fig. S13, indicating a

steady increase of ductility in densified silicags.
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Fig. S13.Fracture strain versus quenching pressure in Vkaeatsion tests.

3) Nanoindentation Test

For nanoindentation tests, the as-quenched 0 GRglsavas duplicated in theandy axis for
four times, the 15 GPa sample was duplicated inxtlaedy axis for four and three times,
respectively. For each sample, a free surface weeted by releasing the periodic boundary
condition along thg-axis and the bottom 1 nm layer was fixed to mithie bulk properties (Fig.
S14). A V-shaped nanoindenter with a round tip evaated and implemented in LAMMPSThe

interaction between the nanoindenter and atomiisnstudy is purely repulsive and the force is

14



perpendicular to surface of the nanoindenter ancbesexpressed af;, (r) = K xr, whereK is

the force constant of 1000 eV/Anandr is the penetration depth of each atom into theritet
surface along the plane normal direction. The gépmef the indenter is defined by two
parameters: one is the intersecting angle betweeiwio rectangular side planes, the other is the
tip radius (1 nm in this study). In Fig. S15, caguiiations of the 15 GPa sample under a
nanoindenter with 60° and 90° angle are comparésioOsly, a sharper indenter (i.e., smaller
intersecting angle) induces more pile-up, constsiéth Gross!® and Yoshida™® experimental
observations. For the rest of this study, we clibeantersecting angle to be 60° to facilitate the
possible shear flow and pile-up during nanoindématThe nanoindenter was lowered into the
sample with a nominal speed of 12.5 m/s, whichusmsmaller than the sound velocityansilica
(~km/s). The whole system is fixed in a NVT (c@mtnumber of atoms, constant volume and
constant temperature) ensemble except the fixetbrbotayer. This is to mimic the real
experimental process where the generated heatecdis¢ipated fast into the surrounding without
causing a substantial local heating underneathntienter. Samples are indented to different
depths (e.g., 14.6 nm, 22.4 nm and 28.4 nm folOtk&Pa sample and 14.6 nm for the 15 GPa
sample), followed by an equilibration and a subsetunloading process using the same speed

of 12.5 m/s. The load-displacement curves for tead 15 GPa sample are shown in Fig. S16.

15
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Fig. S14.Nanoindentation geometry in MD simulations: peroodbundary condition (PBC) is
applied inx-y andy-z planes. Topx-z plane is a free surface. The lowest portion oktdraple (i.e.,

near the bottorm-z plane) is fixed to mimic the bulk properties.

Fig. S15.Configuration of the 15 GPa sample after unloadiiom an indention depth of 14.6 nm

using a nanoindenter with 60° (left) and 90° (ngimgle.
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Fig. S16.Load-displacement curves of nanoindentation testi® 0 GPa and 15 GPa sample.

(a) Local shear strain (b) Local density

|

0 GPa 15 GPa

Fig. S17.Local shear strain (a) and local density map (bjHe 0 GPa and 15 GPa sample at the

indentation depth of 5.4, 10.0, 14.6 nm and aftéoading using a 60° nanoindenter.
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Local shear strain and local density map for ti@R& and 15 GPa sample at the indentation
depth of 5.4, 10, 14.6 nm and after unloading usif° nanoindenter are shown in Fig. S17. It
can be seen that densification is the dominantrdeftton mode in the pristireesilica, while shear
flow becomes more prominent in the densified sanmptav does the local shear flow lead to the
pile-up during nanoindentation is shown in two ettd movies for 0 and 15 GPa samples, which
are color-coded according to the local shear strain

It should be pointed out that the amount of piledgpends not only on the sharpness of the
indenter, but also on the indentation depth. As sedig. S18, at a larger indentation depth (e.qg.,
28.4 nm), an obvious pile-up can be seen in thé>@ &mple. This agrees with Nomura et al.’s
MD simulation of nanoindentation ia-silica?®. However, the 0 GPa sample does not exhibit
purely elastic recovery during the unloading predesour MD simulation, while the density of
a-silica under indenter goes back to the bulk dgrfgi2 g/cnd) after unloading in Nomura et al.’s
MD simulatior?®. Our results agree with Gro¥%'and Yoshida™® experimental observations. Our
MD simulations show that, in absence of water nooést-silica can undergo both densification
and shear flow under sharp contact loading witlawatking, in good agreement with Vickers

indentation experiments by Gross and TomoZawa

18
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Atomic configuration

Local shear strain

Local density

Local density change

Fig. S18.Atomic configuration (first row), local shear singsecond row), local density (third row)
and local density change map under indenter (faut¥) for the 0 GPa sample after unloading
from 14.6, 22.4 and 28.4 nm indentation depth uais@° nanoindenter. Note: in the fourth row,

only density change below the original sample tagflese is shown.

c) Calculation of Fracture Surface Energy and Shear Bading energy

1) Fracture Surface Energy

In order to measure the fracture surface energyieeed to create the fracture surface manually.
First, we cut the as-quenched sample into two Balsecond, we relaxed the two separated halves
under NVE ensemble (constant number of atoms, anhsblume and constant energy). Finally,
we obtained the potential energy differena€ § between the final state of the two halves and the
original state before cutting and normalized ovwer total fracture surface area (2A) to calculate

the fracture surface energy,, =AE/(2A) . The separation mtistdbetween the two halves

19



should be large enough to avoid any interactiomween them and for the current study we set it

to be 20 nm.

2) Shear Banding Energy

Pure shear simulations (stress state shown indig§(a)) in as-quenched samples were used
to calculate the shearing banding energy. Thess®ain curves are plotted in Fig. S19(b). The
overshooting of shear stress in samples quencheer ower pressures (e.g., 0, 2, 4,6, 8 GPa)
disappears in those quenched under high pressugesistent with the reported trend from the
cold compression d-silica’. The stress softening in the former can be atitbto dissipative
local structural rearrangemefft$3 In addition, the densification achieved by thegsure
guenching process substantially decreases the maxishear stress, which is indicative of easy
shear deformation in densified samples. In ordestonate the activation energy for shear banding,
we subtract the elastic energy from the total paakanergy to obtain the plastic energy and use
the plastic energy stored up to the maximum shieessas the final shear banding energy. The
reach of maximum shear stress would ensure a canttnshear deformation without the need of
increasing the shear stress furthermore and themysan shear in a sustainable manner. The last
step is to normalize the stored plastic energyheytotal shear area to obtain the shear banding
energyysbe IN our study the total shear area is the argaexty plane, by assuming shear bands

are uniformly distributed over the whole area.
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test for pressure-quenchassilica samples.

d) Structure Difference between Pristine and Densified-silica

1) Short Range Order

To characterize the short range order, we comptitedatom-based bond angle deviation
distribution, following the procedures used by Demlcz and Argof* in amorphous silicon. For
each Si atom in the silica glass network, therenauttiple <O-Si-O> angles centered on it. The
average <O-Si-O> bond angle and the <O-Si-O> bowgtealeviation were calculated for all <O-
Si-O> angles centered on this Si atom. Histograrmuech atom-based average bond angle and
bond angle deviation were accumulated and plotielig. S20, which show that in the 0 GPa
sample, the <O-Si-O> bond angle and the <O-Si-Oxdlangle deviation are centered around
109° and 6°, respectively. With the increase ohghig pressure, another peak in the range of
105 to 108° in the <O-Si-O> bond angle distributaomd one around 25° in the <O-Si-O> bond

angle deviation emerge and increase in intensitiheaexpense of those peaks in the pristine
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silica. We calculated the coordination number assed with every Si atom in the system and
showed that central Si atoms having the <O-Si-Oxdkangle deviation larger than 20° (indicated
by the vertical line in Fig. S20(b)) are 5-fold cdimated with O atoms, while those having the
deviation smaller than 20° have four O neighborg. $20(b) shows that in the pristiaesilica
(the 0 GPa sample), all Si atoms are 4-folded doated, characteristic of a perfect tetrahedral
network. In densified samples, more and more Snatbecome 5-fold coordinated when the
guenching pressure is increased. This indicates ttiea network topology changes with the
increase of densification due to the appearané&efold Si coordination defects. Fig. S20 shows
that there are two different Si local environmergsociated with 4- and 5-fold coordination states
in densified samples. The 5-fold coordination skate a broader <O-Si-O> bond angle distribution

and a larger <O-Si-O> bond angle deviation, indigpa less rigid local environment.
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Fig. S20.Atom-based <O-Si-O> bond angle distribution (a) & Si-O> bond angle deviation

distribution (b).

In order to understand the role of five-fold Siratoin the plastic deformation of densified

silica glass, we tracked the Si coordination chatgarious strains during the uniaxial tensilé tes
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with respect to the stress-free state and corcelaith the local shear strain centered on Si atoms.
In densified silica glass, the major coordinati@fetts are five-fold Si atoms, and thus there are
four possible states during the uniaxial tensicst,teamely a four-fold Si remains four-fold
(Sis->Si), a five-fold Si remains five-fold (§&>Sis), a four-fold Si changes to five-fold (StSis),

a five-fold Si changes to four-fold €5#Sis). As seen in Fig. S21, at 2% and 6.2% uniaxiaite
strain, Si atoms going through the-S5is and Si4->Sj conversions show larger local shear strain
than those that keep their original coordinati@testThis is consistent with the observation in Fig
S20 that five-fold coordination state has a legglriocal environment, more amenable to local

shear deformation as compared with the four-folokrdmation state.
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Fig. S21.Probability of Si->Si, Sk->Sis, Sk->Sis and $§->Sis state versus the local shear strain
centered on Si atoms at (a) 2% and (b) 6.2% sthaiimg the uniaxial tensile test of the 8 GPa
sample. Note: The probability distribution is nofioed by all possible conversion events within

each category.
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2) Intermediate Range Order

To understand the packing of tetrahedral network, tracked where the fifth nearest Si
neighbor of a Si atom33 as shown in Fig. S22(a). Theg(ny (i.e., histogram of the fifth nearest
Si-Si pair) of the 0 and 15 GPa sample are shoviAignS22(b). As expected, for a homogeneous
system like the 0 GPa sample, there is only oneirtm peak in gr), while for the 15 GPa
sample, ¢(r) splits into two peaks, corresponding to twdetént packing states in densifiad

silica.
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Fig. S22.(a) Schematic of tetrahedral networkaegilica (the central tetrahedron is 0 and nearest
neighboring tetrahedra in the first shell (the g@llcircle) are 1, 2, 3 and 4 and the second shell i
indicated by the red circle); (b) Distribution bietfifth Si—Si neighbor«gr) in the 0 GPa and 15

GPa sample.
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e) Energy Dissipation in Pristine and Densifieca-silica

To better understand the energy dissipation meshamnin pristine and densifiedsilica, we
carried out a hydrostatic stretching test for tren@ 15 GPa sample. Fig. S23 shows that the 15
GPa sample cavitates at a lower pressure andaagjer volumetric strain than the 0 GPa sample.
Upon stretching, the pristine silica network expaisdtropically, indicated by the shift of thery
peak to larger Si-Si distance in Fig. S24(a). Gndther hand, for the 15 GPa sample, the inner
peak g(r) diminishes in intensity with the increase oé tvolume expansion (Fig. S24(b)). This
indicates that upon expansion, the dense packétg athieved by the pressure quenching process
gradually converts back to the normal (loose) pagldtate as in the pristirgesilica. For the 0
GPa sample, the initial volume expansion is susthiny stretching the Si-O bond, while the
fraction of 4-fold Si remains constant (Fig. S2h(&or the 15 GPa sample, the Si-O bond is
stretched to a much less extent upon initial exipan®-ig. S25(b)), most of the deformation is up-
taken by the conversion of the dense packing stedehe loose one, indicated by thg€rpin Fig.
S24(b) and the fraction of 4-fold Si in Fig. S25(bhis kind of conversion provides additional

mechanism for energy dissipation in densitkesilica.
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Fig. S23.Pressure versus volumetric strain during hydrasstetching test for the 0 GPa and

15 GPa sample.
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Fig. S24 Distribution of the fifth Si—Si neighbos(r) at different volume strain during hydrostatic

stretching test for the (a) 0 GPa and (b) 15 Girgpka
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stretching test for the (a) 0 GPa and (b) 15 Glhgpta

References:
1. Huang, L. & Kieffer, J. Anomalous thermomechahjroperties and laser-induced

densification of vitreous silicappl. Phys. Lett. 89,141915 (2006).

2. Trave, A., Tangney, P., Scandolo, S., Pasquamll& Car, R. Pressure-induced structural
changes in liquid Si©&from ab initio simulationsPhys. Rev. Lett. 89, 245504 (2002).

3. Vollmayr, K., Kob, W. & Binder, K. Cooling-rateffects in amorphous silica: A computer-
simulation studyPhys. Rev. B 54, 15808-15827 (1996).

4. Tool, A. Q. & Eicitlin, C. G. Variations causedthe heating curves of glass by heat
treatmentJ. Am. Ceram. Soc. 14, 276-308 (1931).

5. Rouxel, T., Ji, H., Hammouda, T. & Moréac, Aid3on’s ratio and the densification of glass
under high pressur@hys. Rev. Lett. 100,225501 (2008).

6. Rouxel, T., Ji, H., Guin, J., Augereau, F. & fRyfB. Indentation deformation mechanism in

glass: Densification versus shear flalwAppl. Phys. 107,094903 (2010).

27



10.

11.

12.

13.

14.

15.

16.

17.

18.

Mantisi, B., Tanguy, A., Kermouche, G. & BarthEl Atomistic response of a model silica
glass under shear and presstx@. Phys. J. B 85,304 (2012).

Roder, A., Kob, W. & Binder, K. Structure andhdynics of amorphous silica surfacés.
Chem. Phys. 114,7602—7614 (2001).

Benmore, C. & al. Structural and topological changes in silica gitgsressurePhys. Rev.
B 81,054105 (2010).

Sato, T. & Funamori, N. High-pressure strudttremsformation of Si@glass up to 100
GPa.Phys. Rev. B 82,184102 (2010).

Wu, M., Liang, Y., Jiang, J.-Z. & Tse, J. S.uSture and properties of dense silica gl&ss.
Rep. 2, 398 (2012).

Grimsditch, M. Polymorphism in amorphous Sikhys. Rev. Lett. 52,2379-2381 (1984).
Hemley, R., Mao, H., Bell, P. & Mysen, B. Rarspectroscopy of Sigglass at high-
pressurePhys. Rev. Lett. 57, 747—-750 (1986).

Stolper, E. & Ahrens, T. On the nature of puessnduced coordination changes in silicate
melts and glasse&eophys. Res. Lett. 14,1231-1233 (1987).

Tschauner, Gt al. Shock-synthesized glassy and solid silica: Inteliates between four-
and six-fold coordinatiorHigh Press. Res. 24,471-479 (2004).

Yuan, F. & Huang, L. Molecular dynamics simidatof amorphous silica under uniaxial
tension: From bulk to nanowird. Non-Cryst. Solids 358,3481-3487 (2012).

Plimpton, S. Fast parallel algorithms for shrarige molecular-dynamic3. Comput. Phys.
117,1-19 (1995).

Gross, T. M. Deformation and cracking behawioglasses indented with diamond tips of

various sharpnesd. Non-Cryst. Solids 358,3445-3452 (2012).

28



19.

20.

21.

22.

23.

24.

25.

Yoshida, S., Sawasato, H., Sugawara, T., MMr& Matsuoka, J. Effects of indenter
geometry on indentation-induced densification afsstme glassJ. Mater. Res. 25, 2203-
2211 (2010).

Nomura, K., Chen, Y.-C., Kalia, R. K., Nakaro,& Vashishta, P. Defect migration and
recombination in nanoindentation of silica gla&gpl. Phys. Lett. 99,111906 (2011).

Gross, T. M. & Tomozawa, M. Crack-free highdd4ckers indentation of silica glass.
Non-Cryst. Solids 354,5567-5569 (2008).

Albano, F. & Falk, M. L. Shear softening andisture in a simulated three-dimensional
binary glassJ. Chem. Phys. 122,154508 (2005).

Rodney, D., Tanguy, A. & Vandembroucq, D. Madgkhe mechanics of amorphous solids
at different length scale and time scéllmdel. Smul. Mater. Sci. Eng. 19, 083001 (2011).
Demkowicz, M. J. & Argon, A. S. High-densitgliidlike component faciliates plastic flow
in a model amorphous silicon systeys. Rev. Lett. 93,025505 (2004).

Saika-Voivod, 1., Sciortino, F. & Poole, P. §ita-to-strong crossover and polyamorphism in

liquid silica: changes in liquid structur@hilos. Mag. 84, 1437-1445 (2004).

29



