Table S4. Genes related to reductive stress during growth of Mycobacterium tuberculosis in fatty acids ## (A) Number of genes related to reductive stress with significant expression during growth in different carbon sources. | Relation to reductive stress | Number of genes with significant decreased expression (%) | | Number of genes with significant increased expression (%) | | |--|---|-----------|---|-----------| | | FE | FS | FE | FS | | Known generators of reductive equivalents | 1 (0.9) | 5 (3.13) | 1 (0.86) | 3 (2.9) | | Known generators of reductive sinks | 4 (3.6) | 1 (0.63) | 8 (6.9) | 6 (5.77) | | [reductive sinks lipid metabolism-related] | [4] | [1] | [6] | [4] | | Other reductive stress-related genes | 1 (0.9) | 5 (3.13) | 5 (4.3) | 4 (3.8) | | Heme-related genes | 2 (1.8) | 1 (0.63) | 7 (6.03) | 5 (4.8) | | Total reductive stress-related genes | 8 (7.2) | 12 (7.5) | 21 (18.1) | 18 (17.3) | | TOTAL genes compared | 111 (100) | 160 (100) | 116 (100) | 104 (100) | Genes with significant increased or decreased expression during growth in fatty acids (FE, FS) (see Supplementary Table S2 E & F) were checked against 371 genes related with reductive stress (www.tuberculist.epfl.ch). The list of genes related with reductive stress included those within the functional category of "lipid metabolism" as well as genes participating in the Heme-group synthesis and stabilization. Growth phase: FE, Dubos LC-FA exponential; FS, Dubos LC-FA stationary. ## (B) Genes related to the Heme-prosthetic group with significant increase expression during growth in long-chain fatty acids. | Gene tag | Gene
name | Growth phase | Functional category | Function | Relationships
to the Heme-group | Fisher exact test | |----------|--------------|--------------|---|---|------------------------------------|-------------------| | Rv0508 | | FE | unknown | putative thioredoxin | Fe-S cluster stabilization | n 8.02 E-07 | | Rv0509 | hemA | FE | intermediary metabolism and respiration | Heme biosynthesis | | 6.16 E-12 | | Rv0510 | hemC | FS | intermediary metabolism and respiration | Heme biosynthesis | | 3.43 E-06 | | Rv0512 | hemB | FE | intermediary metabolism and respiration | Heme biosynthesis | | 0.021 | | Rv1324 | | FS | intermediary metabolism and respiration | Thiorredoxin | Fe-S cluster stabilization | n 4.27 E-4 | | Rv1462 | <i>suf</i> D | FE | unknown | UNK, putative FeS cluster formation | Fe-S cluster assembly | 0.034 | | Rv1465 | | FS | intermediary metabolism and respiration | Probable Nitrogen fixation / Suf system | Fe-S cluster assembly | 0.002 | | Rv1466 | | FS | unknown | UNK, domain of unknown function | | 0.37 E-4 | | Rv1932 | tpx | FE | virulence, detoxification, adaptation | Thiol peroxidase | Fe-S cluster stabilization | n 0.012 | | Rv2007c* | fdxA | FS | intermediary metabolism and respiration | Ferredoxin | Fe-S cluster stabilization | n 1.09 E-12 | | Rv2391 | nirA | FE | intermediary metabolism and respiration | Ferredoxin-dependent nitrite reductase | Fe-S cluster stabilization | n 2.64 E-06 | | Rv3673c | | FE | intermediary metabolism and respiration | Possible thioredoxin | Fe-S cluster stabilization | n 0.028 | Asterisks in gene tags indicate those genes members of the DosR regulon. Growth phase: FE, Dubos LC-FA exponential; FS, Dubos LC-FA stationary.