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Background: Following a decade of the Roll Back Malaria Partnership and unprecedented investment in 
malaria control, we have examined for the first time, the change in malaria transmission intensity during the 
period 2000-2010 in Africa. 
Methods: We assembled a geocoded and age-corrected community Plasmodium falciparum parasite rate 
(PfPR2-10) database from across 49 endemic countries and territories in Africa from surveys undertaken since 
1980. The data were used within a Bayesian space-time geostatistical framework to predict PfPR2-10 in 2000 and 
2010 at a 1 × 1 km spatial resolution. Population distribution maps at the same spatial resolution were used to 
compute populations at risk by endemicity class and estimate population adjusted PfPR2-10 (PAPfPR2-10) for each 
of the 44 countries where predictions were possible for each year. 
Findings: Between 2000 and 2010 the population in hyperendemic (>50% to 75% PfPR2-10) or holoendemic 
(>75% PfPR2-10) areas had reduced from 218.6 million (35%) to 183.5 (23%) in 44 malaria endemic countries. 
280 million(34%) people lived in areas of mesoendemic transmission (>10% to 50% PfPR2-10) in 2010 
compared to 178.6 million (28%) in 2000. Population in areas of unstable or very low transmission (<5% PfPR2-

10) had increased from 131.7 million people in 2000 to 219 million in 2010. An estimated 217.6 million people, 
or 27% of the 2010 population, lived in areas where transmission had reduced by at least one PfPR2-10 
endemicity class. Forty countries showed a reduction in national mean PAPfPR2-10. Only ten countries 
contributed 87.1% of the population living in areas of hyperendemic or holoendemic transmission in 2010.  
Interpretation: Significant reductions in malaria transmission have been achieved in endemic countries in 
Africa over the period 2000-2010. However, more than two-thirds of the population in 2010 continue to live in 
areas where transmission remains moderate to intense and global support to sustain and accelerate the reduction 
of transmission must remain a priority.  
Funding: This work was funded by the Wellcome Trust. The funder played no role in design of the study or 
interpretation of the results. 
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W1 Defining the limits of Plasmodium falciparum transmission and population in 2000 
and 2010 
 
W1.1 Defining transmission stability  
 
The stability of malaria transmission is defined quantitatively by the average number of feeds that a mosquito 
takes on man during its life1. The stability index, however, demands detailed entomological data that are rarely 
available. Qualitatively, stable malaria refers to situations that are relatively insensitive to natural and man-made 
changes. Unstable malaria includes areas very sensitive to climatic aberrations and very amenable to 
elimination. Critical to the planning of elimination during the Global Malaria Eradication Programme, fifty 
years ago, was a quantitative description of risk for planning control and monitoring progress. During the 
preparatory phase, large-scale parasite prevalence surveys were undertaken to examine feasibility of 
elimination. It was suggested that when infection prevalence became very low, national programmes should 
invest in combinations of passive, active and mass-blood survey surveillance of new infections, expressed as an 
annual parasite incidence (API) per 1000 people resident in a reporting administrative area 2-4.  
 
These epidemiological definitions have recently been reviewed to identify transitional points from sustained 
malaria control or a pathway toward elimination5-7, and adapted here. We have used the reported absence of 
transmission or absence of clinical events to define areas free of P. falciparum risk in combination with a 
temperature mask to exclude the possibility of parasite transmission from vectors to man. We used case-
incidence data, where these exist, to define unstable malaria < 1 P. falciparum case per 10,000 population per 
annum and stable malaria ≥ 1 P. falciparum case per 10,000 population per annum. In addition, we have used a 
biological constraint on the ability to support stable transmission and classified all extremely arid areas as those 
more likely to support unstable transmission.  
 
W1.2 Medical intelligence to define the absence and stability of P. falciparum transmission 
 
An assembly of reports, case-incidence data and communications with national malaria control programme 
managers was undertaken to define the extent of active P. falciparum transmission8. Information has been 
digitized using administrative boundary units in ArcGIS (version 10.1, ESRI Inc. USA). 
 
W1.2.1 Countries deemed P. falciparum free 
Plasmodium falciparum transmission probably reached its natural extent in Africa around 19009 and how these 
historical limits of transmission have changed over the last 100 years is described in detail elsewhere8. The 
Kingdom of Lesotho; the Islands of the Seychelles archipelago (Tromelin, Cargados Carajos and Agalega); 
Rodrigues, Saint Brandon and Chagos in the Mascarene archipelago; and the island of Saint Helena, in the 
Atlantic Ocean, are African territories that have never supported malaria transmission10. The Western Sahara 
was reported in 1955 by the Spanish governing authorities to be completely free from malaria transmission11 
and the neighbouring Northern areas of Mauritania, Adrar, Inchiri, Dakhlet-Nouadhibou and Tiris Zemmour, 
north of 20°N are also regarded as malaria free12.  
 
By 2000, almost all of the North African territories were P. falciparum free. P. falciparum free status was 
achieved in Libya in 1973, the Kingdom of Morocco in 1974, Tunisia by 1979, and the extent of falciparum 
transmission dramatically reduced by 1978 in Algeria with the exception of small area on the border with Mali, 
where P. falciparum transmission remains uncertain by 201013. The last possible case from a residual focus of 
transmission in Fayoum Governorate in the United Arab Republic of Egypt was in 1998. We treat both Algeria 
and Egypt as P. falciparum free in 2000. 
 
In Reunion, the elimination strategy was launched in 194914 and eventually led to the elimination of both P. 
vivax and P. falciparum by 197315. Mauritius was a highly endemic island at the turn of the last century16,17, the 
first elimination campaign was launched in 1948. The WHO certified Mauritius malaria-free in 1973. P. 
falciparum transmission has yet to re-establish itself on the island despite a resurgence of P. vivax transmission 
in 1975.  
 
Between 1910 and 1973 transmission of malaria was essentially absent from the Republic of Djibouti, where 
after it is thought that both parasites and vectors arrived by train from neighbouring Ethiopia leading to several 
epidemics in the early 1980s and sustained stable transmission in populated areas until 2000. By 2010, however, 
case incidence had declined significantly and the majority of Djibouti is now best described as unstable18. 
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W1.2.2 The changing extent and stability of P. falciparum transmission across Africa's islands 
The Republic of Cape Verde launched a malaria elimination campaign in 1948, starting on the island of Sal and 
extended to other Islands throughout the 1950s. The campaign was successful and malaria was felt to have been 
eliminated in Sal (1950), Sao Vicente (1954), Boavista and Maio (1962) and Santiago (1968)19,20. With the 
exception of Santiago, no autochthonous cases were detected for many years on any of the islands since they 
were declared malaria free. However, malaria transmission was re-established on the island of Santiago in 1973. 
In 1979, a further national elimination programme was launched and the focus was on Santiago and the entire 
archipelago was returned to zero incidence between 1983 and 198621. In 1995–1996 an epidemic occurred in St. 
Catarina district on Santiago22. However, in 2000 and 2010 locally acquired case incidence was below 1 per 
10,000 people on Santiago (mainly Santa Catarina and Santa Cruz) and therefore regarded as unstable. On 
Boavista malaria had been absent since 1962, including 2000, however four possible autochthonous cases were 
detected in 2003, 10 cases in 2009 and three in 2010 rendering Boa Vista an area of unstable transmission in 
2010.  
 
In Mayotte (Mahore and Pamanzi islands), located within the Comorian Archipelago P. falciparum transmission 
has been intense and stable for many years23. Through integrated vector and disease control in the 1980s, 
parasite prevalence declined to less than 0.3% and only eight clinical cases were reported by 198824. However, 
resurgent waves of transmission continued through the early 1990s. By 2000 malaria transmission had returned 
to a stable state across the islands25. By 2010 case incidence had declined again and using detailed case data it is 
possible to delineate areas of unstable and stable case incidence across the islands of Mayotte26,27. 
 
The two volcanic islands that make up the Democratic Republic of São Tomé and Príncipe have never been free 
of malaria and have maintained stable transmission despite attempts at elimination28- 33. There were two 
concerted elimination efforts on the island of Zanzibar prior to the launch of RBM, both without success34,35. 
Despite a significant reduction in parasite transmission on the island since 2000, stable endemic transmission 
continues36. Its sister island of Pemba has always supported stable transmission. The three islands that form the 
Federal Islamic Republic of Comoros (Grand Comore, Anjouan, and Moheli) have had high P. falciprum 
disease rates since the 1920s37-39 and despite significant control efforts from 2007, prevalence and partial clinical 
data suggest that the three islands remain at stable, endemic transmission40.  
 
W1.2.3 The changing extent and stability of P. falciparum transmission in southern Africa 
A careful assembly of historical evidence of risk in South Africa pre-1940 suggests that malaria was absent from 
large parts of the western region and areas bordering the southern reaches of Namibia and Botswana41-43. 
Sustained efforts to eliminate malaria since the Second World War in the Transvaal and KwaZulu-Natal 
provinces rendered increasing areas unstable and reduced the spatial extent of risk43-46. Stable endemic risks in 
South Africa were constrained in 2000 to areas located along the Kruger national park, borders with Zimbabwe 
in the Limpopo, Mpumalanga provinces and the two northern districts of Ingwavuma and Ubombo in KwaZulu-
Natal province. By 2010, case incidence in South Africa had dropped dramatically and case incidence by district 
has been used to delineate unstable and stable areas risks in Limpopo and Mpumalanga and unstable risks in 
Ingwavuma, KwaZulu-Natal Province. 
 
In 1950, a national malaria reconnaissance was undertaken across Namibia; the most southerly areas from 
Grootfontein and Franzfontein to the Orange River were regarded as free of malaria transmission or very focal 
pockets of occasional transmission47. Similarly today the southern provinces of Karas and Hardap are regarded 
as malaria-free48,49. Districts located immediately north of Windhoek had some clinical cases between 2000 and 
2010 and these have been mapped by health administration unit to reflect areas where annual incidence was < 1 
per 10,000 population per annum50 and regarded as unstable transmission by the Ministry of Health and Social 
Services51. All other districts supported stable transmission in 2000 and 2010.    
 
Malaria risk in the Republic of Botswana is constrained by latitude and the Kalahari Desert (that makes up 70% 
of the country’s land mass). In 1958, 98% of all malaria cases were reported from two districts, Ngamiland and 
Chobe, in the North in areas surrounding the Okavango and Chobe swamps fed by the Zambezi River52. During 
a national parasitological survey in 1961–1962, no sampled infants were found to harbour infections in Tsha, 
Loda, Gaborone, Kanye, Moduchi, Tuli and Ghanzi areas53. Botswana reported no cases in South-East, North & 
South Kgalagadi, Southern, East & West Kweneng, Kgatleng, Good Hope, Lobatse and Gaborone health 
districts in 1999 and are treated as malaria free in 200042. Over the following years the health districts of Seleb 
Phikwe, Francistown, Serowe Palapye, Ghanzi, North East, Mahalapye and Tutume reported very few cases and 
classified as unstable in 201054. 
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In Zimbabwe, since the 1920s, autochthonous transmission of malaria in Harare and Bulawayo has not been 
reported55-57. The various efforts to control and eradicate malaria over the years probably led to constrained 
areas of unstable transmission since the 1950s; by 1979, the central districts were regarded as malaria free. 
However, malaria case incidence rose significantly across the country from the mid-1980s to a point in 2000 
when the country had returned to a stable endemic state. The investment in control since 2000 has rendered 12 
districts in central highlands malaria free (Goromonzi, Seke, Marondera, Hwedza, Chikomba, Chirumanzu, 
Gutu, Gweru, Shurugwi, ZviShavane, Chivi and Umguza) that now form part of a consolidation phase of 
elimination58.  
 
In the Kingdom of Swaziland, following the Second World War, successive efforts at malaria control led to an 
infant malaria parasite rate of 0% by 195659 and IRS was stopped in 1959.  By 1970, it is stated that the only 
cases were those imported from outside the country60 and malaria operations were drastically scaled down. 
During the early 1980s a resurgence of malaria risk was witnessed, briefly abated, and rising again through to a 
peak in the late 1990s. By 2000 the disease burden was constrained to Lubombo and Hhohho region60; the 
highveld has continued to be malaria free61. Following a renewed malaria control effort, malaria case incidence 
has begun to decline from 200062, and for the three consecutive years 2006–2008, incidence was below 1 per 
10,000 population to a point in 2010 where transmission is unstable risk across the regions of Lubombo and 
Hhohho, with one stable endemic district of Mhlangatane, and the remaining areas the Kingdom ostensibly 
malaria free.  
 
Figure W1.1a shows the limits of stable and unstable transmission based upon medical intelligence in 2000 
across 49 endemic countries and territories. 
 
W1.3 The transmission limiting effects of temperature and aridity 
 
W1.3.1 Temperature: Temperature plays a key role in determining the transmission of human malaria63. To 
provide a plausible mask to eliminate the possibility of transmission across Africa, we have used a recently 
developed temperature suitability index (TSI)64. The TSI model uses a biological framework based on the 
survival of vectors and the fluctuating monthly ambient temperature effects on the duration of sporogony that 
must be completed within the lifetime of a single generation of Anophelines. This was used to generate at each 1 
x 1 km pixel, periods of an average year when a vector’s lifespan would exceed the time required for sporogony, 
and hence when transmission was not precluded by temperature. If this time exceeded the maximum feasible 
vector lifespan, then the cohort was deemed unable to support transmission and the area classified as being at 
zero risk64. Applying this temperature mask highlights the highland areas and mountains of East Africa, the 
southern mountains of Tanzania, the mountains at the junction of Democratic Republic of Congo, Rwanda and 
Burundi, the highlands in Ethiopia, Mount Cameroun, the Shimbiris mountains in Somaliland, the Nyika Plateau 
in Malawi, Mount Nyangani in Eastern Zimbabwe, and the volcanic mountain of Karthala on Grand Comores 
(Figure W1.1 b). 
 
W1.3.2 Aridity: Arid conditions effect anopheline development and survival65. Limited surface water reduces 
the availability of sites suitable for oviposition and reduces the survival of vectors at all stages of their 
development through the process of desiccation66. We have defined extreme aridity using the enhanced 
vegetation index (EVI) derived from Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery67. 
Monthly EVI datasets archived over 11 years were averaged to a synoptic year and used to classify into areas 
likely to support transmission, defined by an EVI of greater than 0.1 for any two consecutive months and areas 
without two or more consecutive months of an EVI > 0.1 as unable to support transmission68, 69. This aridity 
mask identifies small foci of risk across the Sahara that are likely to support stable transmission because of their 
proximity to oases and seasonal rivers, while retaining a plausible mask of almost zero transmission across the 
Sahara, the arid, barren areas of Eritrea (including the Danakil depression), Djibouti and Somalia and the deserts 
in southern Africa including the Sossusvlei and Skeleton Coast. This mask we have used conservatively as 
representing unstable transmission, rather than malaria free, as transmission might be possible in the presence of 
man-made water bodies such as dams or underground water storage (Figure W1.1d). 
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Figure W1.1 a) the limits of stable and unstable transmission based upon medical intelligence in 2000 across 50 endemic countries; b) the combined effects of 
medical intelligence and temperature on the limits of stable and unstable transmission in 2000; c) the combined effects of medical intelligence, temperature and 
aridity on the limits of stable and unstable transmission in 2000; d) the combined effects of medical intelligence, temperature and aridity on the limits of stable and 
unstable transmission in 2010. Dark grey = malaria free; light grey = unstable transmission; white = stable transmission.  
 
a) b) 
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c) d) 
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W1.4 Population distribution 2000 and 2010 
 
Where disease risks are heterogeneous in space, population distributions and counts should be resolved to higher 
levels of spatial detail than large regional estimates. For many low income countries of the World, however, 
spatially detailed, contemporary census data do not exist. This is especially true for much of Africa, where currently 
available census data are often over a decade old, and at administrative boundary levels just below national-level. 
Modelling techniques for the spatial reallocation of populations within census units have been developed in an 
attempt to (a) disaggregate population count data to a finer spatial detail and (b) convert population count data from 
irregular administrative units to regular raster layers70-72. In brief, a dasymetric modelling technique73 was used to 
redistribute census population counts within administrative unit boundaries based on land cover data sets derived 
from satellite imagery to produce a gridded dataset of population distribution (counts) at 0.1 x 0.1 km resolutions. 
Human population census data, official population size estimates and corresponding administrative unit boundaries 
at the highest level available from the most recent available censuses were acquired for each African country. 
Typical regional per-land cover class population densities were estimated from African countries for which very fine 
resolution population data were available, following approaches outlined elsewhere71. These typical population 
densities were then applied as weightings to redistribute census counts according to the land cover and to map 
human population distributions at a finer spatial resolution. The population datasets were projected to 2000 and 2010 
using national rural and urban growth rates estimated by the UN Population Division74.  
 
The urban extents produced by the Global Rural-Urban Mapping Project (GRUMP)75 were used to distinguish 
between urban and rural areas. Finally, datasets were adjusted to ensure that national population totals matched 
those reported by the UN76. Population distribution was re-sampled to 5 x 5km grids. Figure S1.2 shows the spatial 
distribution of population across stable and unstable malaria endemic regions of sub-Saharan Africa in 2000. 
 
We have used actual census data from the islands of Cape Verde (2010), São Tomé and Príncipe (2012), Zanzibar 
(2002), Comoros (2003) and Mayotte (2007) projected using UN census growth rates to 2000 and 2010 on the 
islands and districts within the islands at malaria risk in each of these years.  
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Figure W1.2 Predicted population density distribution within margins of P. falciparum transmission in 2000 
based on medical intelligence (FigureW1.1a).     <1 person per km2;  < 10 people per km2;   10-49 
people per km2;   50 - 99people per km2;   100 – 499 people per km2;   500 - 1000 people per km2;  

 > 1000 people per km2 
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W2 Parasite prevalence data search, assembly, pre-processing and summaries 
 
W2.1 Background 
 
There are a variety of measures of the intensity of malaria transmission derived from field investigations of human 
populations or vectors. The most ubiquitous measure, used for over 100 years in Africa, is the parasite rate - the 
proportion of individuals on a single cross-sectional survey among an entire or sampled community who have 
evidence of a peripheral blood stage malaria infection. This data are often expressed as infection prevalence among 
children aged 2-10 years (PfPR2-10) and used since the 1950s to define categories of endemic risk designed to guide 
and monitor progress toward malaria elimination targets77-79.  
 
W2.2 Data search strategy 
 
W2.2.1 Electronic data searches: Online electronic databases were used as one means of identifying peer-reviewed, 
published data on malaria infection prevalence including: PubMed80; the Armed Forces Pest Management Board – 
Literature Retrieval System81; the World Health Organization Library Database82; and the Institute de Recherché 
pour le Development on-line digital library service83. Regional journals, most notably the large number of national 
medical, public health and parasitological journals, were not identified readily from the above sources but titles and 
abstracts were available on African Journals Online (AJOL)84. In all digital electronic database searches for 
published work, the free text keywords "malaria" and "country-name" were used. We avoided using specialised 
Medical Subject Headings (MeSH) terms in digital archive searches to ensure as wide as possible search inclusion. 
Database searches were undertaken at least once per year from 2005 and the last complete digital library search was 
undertaken in March 2013. Searches were supplemented through routine weekly notifications from Malaria World85, 
the Roll Back Malaria news alert service86, the Environmental Health at USAID malaria bulletin87 and Santé 
Tropicale for Francophone country national and regional journals including Medecine D'Afrique Noire88.  
 
Titles and abstracts were used to identify possible parasite cross-sectional survey data undertaken since January 
1980 in a variety of forms: either as community surveys, school surveys, other parasite screening methods or 
intervention trials. We also investigated studies of the prevalence of conditions associated with malaria when 
presented as part of investigations of anaemia, haemoglobinopathies, blood transfusion or nutritional status to 
identify coincidental reporting of malaria prevalence. In addition, it was common practice during early antimalarial 
drug sensitivity protocols to screen community members or school attendees to recruit infected individuals into post-
treatment follow-up surveys, often data from the survey sites selected present the numbers screened and positive. 
Surveys of febrile populations or those attending clinics were excluded.  
 
Publications with titles or abstracts suggestive of possible parasite data were either downloaded from journal 
archives where these have been made Open Access (OA) or sourced from HINARI89. If publications were not 
available OA from HINARI we visited UK library archives at the London School of Hygiene and Tropical 
Medicine, the Liverpool School of Tropical Medicine, the Bodleian library at the University of Oxford, Wellcome 
Trust and British library or the Library at the Institute Pasteur, Paris to obtain copies. References not found 
following these searches were requested using world catalogue searches through the Oxford libraries at a per-page 
cost. All publications from which data were extracted were cross-referenced using the bibliographies for additional 
sources that may have been missed or that may correspond to unpublished or ‘grey’ literature, not controlled by 
commercial publishers. 
 
W2.2.2 Unpublished archived survey reports: A wealth of unpublished research and survey reports are available at 
archives in various European Tropical Medicine Institutes. We undertook manual searches of archives at the 
Institute of Tropical Medicine, Antwerp; Institute Pasteur, Paris; Department of History of Medicine, Sapienza - 
Università di Roma, Rome; ArchivioItaliano Di Scienze Mediche Coloniali, Rome; Instituto Higiene Medicina 
Tropical, Lisbon; UK national archives and the World Health Organization (WHO) libraries in Geneva, Cairo and 
Brazzaville.  
 
We also visited national libraries of Ministries of Health at Nairobi, Kisumu, Eldoret, Mombasa and Meru (Kenya), 
Entebbe (Uganda), Sennar, Khartoum and Kassala (Sudan), Thies (Senegal), Amani (Tanzania), Tzaneen (South 
Africa) and the personal archives of the ex-director of Tzaneen Malaria Research centre (covering South Africa, 
Namibia and Botswana). At each European or African archive survey data were located and wherever possible, 



11 
 

electronic copies (Adobe PDF) were made of all original survey reports. Finally we used the digital archive of 
survey data developed under the Mapping Malaria Risk in Africa (MARA/ARMA) initiative, established by one of 
us (RWS) in collaboration with colleagues from South Africa and other regional centres in 199690,91.  
 
W2.2.3 Unpublished community survey data post-2005: As part of the Roll Back Malaria (RBM) monitoring and 
evaluation national, household surveys were resurrected as a means to monitor country-level progress92,93. These 
surveys were initially embedded in the Demographic and Health Surveys (DHS) as a malaria module and were 
largely focussed on intervention coverage measures until 2005 when it was agreed to include malaria infection 
prevalence into survey protocols. These two-stage random cluster selected national surveys included combinations 
of methods parasite detection in different age groups depending on the national survey. Where these surveys were 
co-managed by the US based MEASURE-ICF programme, data from these national surveys have been made 
available on-line94: Angola (2006 and 2011), Burkina Faso (2010), Cameroon (2011), Liberia (2009 and 2011), 
Madagascar (2011), Malawi (2012), Mali (2010), Nigeria (2010), Rwanda (2007 and 2010), Senegal (2008 and 
2010), Tanzania (2007-8 and 2011-12), Uganda (2009) and Zanzibar (2011-12). 
 
Adapted forms of these survey approaches have been used by national malaria control programmes (NMCPs) as 
standalone Malaria Indicator Surveys (MIS). Data from these national surveys have been generously provided by 
Ministries of Health and survey partners covering: Chad (2011), Democratic Republic of Congo (DRC) (2009), 
Djibouti (2009), Equatorial Guinea (2007 and 2010), Eritrea (2002), Ethiopia (2006, 2007 and 2011), The Gambia 
(2008 and 2010), Ghana (2011), Guinea Bissau (2008), Kenya (2007 and 2010; national malaria schools survey 
2009-2010), Malawi (2000 and 2009), Mozambique (2002 and 2007), Namibia (2009), Somalia (2005), South 
Sudan (2009), Republic of Sudan (2005 and 2009), Swaziland (2010), Zambia (2006, 2008, 2010 and 2012) and 
Zanzibar (2007 and 2010). 
 
For other possible unpublished, site-specific data on malaria prevalence we reviewed web-sites and contacted Non-
Governmental Organizations (NGO) working across Africa who may have undertaken health assessments that 
included parasitological investigations of communities where they worked. These included Médecins sans 
Frontières95, MERLIN96, MENTOR97, the Carter Center98, The Food Security and Nutrition Analysis Unit - Somalia 
(FSNAU)99, Shape Consulting100 and the Malaria Consortium101. Contacts through these agencies led to 
identification of data from sites in Guinea, Sierra Leone, Côte D'Ivoire, Tanzania, Liberia, Somalia, Kenya, Uganda, 
Nigeria, Ethiopia and South Sudan. Most notable has been the established collaboration with the FSNAU in Somalia 
and our Malaria Public Health Department in Kenya, where we have worked in partnership to include malaria 
parasitology into routine nutritional and food security surveys since 2007102. 
 
Tropical Medicine and malaria meeting abstract books were identified from as many sources as possible produced as 
part of national and international conferences and congresses. These were used to signal possible data that were 
followed up through correspondence with abstract authors. Our regional presence and connections to the wider 
African malaria research community has created an awareness of the purpose and ambition of malaria mapping 
research first started in 1996 under MARA90. This regional connectivity of research scientists was used to contact 
directly colleagues working on the epidemiology of malaria to seek disaggregated site-specific and often 
unpublished data. The willingness to share unpublished parasite survey data has been unprecedented, 651 individual 
scientists and public health specialists have contributed disaggregated information on published data, unpublished 
data or have assisted in the location of sampled communities across Africa, all are acknowledged at our webpage103. 
 
W2.2.4 Search completeness: Our data searches have not used systematic, traditional evidence review strategies. 
These would have missed many unpublished sources of information. Rather our strategy has used a cascaded, 
opportunistic approach. Authors of peer-reviewed papers were often asked about additional information within their 
paper and directions to other possible unpublished work in their geographic area or from their institution. Searches 
of European tropical Institute's libraries and archives focussed only on the major established tropical centres of those 
who had colonial ties to Africa. We have not visited every country in Africa to search for national Ministry of 
Health data nor had access to every national parasitology research conference proceedings, it is notable that our 
archived data is greatest for Kenya, Tanzania, Uganda, Senegal and Namibia where we have had access and 
searched archived national data.  
 
National sample surveys undertaken in recent years but not made available for inclusion before July 31st 2013 
include surveys in Benin (2011), Burundi (2012), Côte D'Ivoire (2012), Equatorial Guinea (2011), Guinea (2012), 
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Mali (2012),  Sierra Leone (2011) and Zimbabwe (2009 and 2012). None of these datasets have been released by the 
MEASURE-ICF program or national collaborating partners. Similarly we have not been able to access known 
national and sub-national surveys of nutritional status undertaken in Ghana (1999) and Kenya (2010) that included 
investigations of malaria infection prevalence. We have tried to identify as many post-graduate research theses as we 
could through on-line resources in the UK, however obtaining digital copies of older theses was not possible and 
thus remain a possible source of unpublished data not archived by us. More importantly are the many post-graduate 
theses undertaken by students of the faculties of parasitology, public health and medicine at the many universities 
across Africa that have not been adequately searched.  
 
W2.3 Data abstraction 
 
The minimum required data fields for each record were: description of the study area (name, administrative 
divisions and geographical coordinates, if available), the dates of start and end of the survey (month and year) and 
information about blood examination (number of individuals tested, number positive for Plasmodium infections by 
species), the methods used to detect infection (microscopy, Rapid Diagnostic Tests (RDTs), Polymerase Chain 
Reaction (PCR) or combinations) and the lowest and highest age in the surveyed population. Given its ubiquity as a 
means for malaria diagnosis, the preferred parasite detection method was microscopy. No differentiation was made 
between light and fluorescent microscopy. The quality of slide reading104,105, variations in sensitivity/specificity 
between RDTs106 or the ability of field teams to reliably read RDTs107,108and selection of primers for PCR109 all 
influence descriptions of prevalence and will have intrinsic variance between surveys included in the database. 
RDTs have been shown to yield higher false positive rates than microscopy106 but seem to stratify both the lowest 
(<1% parasite rate) and highest (> 50% parasite rate) more accurately compared to routine microscopy105. An 
analysis of a large collection of community parasite rate data have shown that there was minimal difference in 
estimates of overall mean P. falciparum prevalence in matched paired analysis of community survey data that used 
microscopy and RDT for parasite examination110.   
 
For data derived from randomized controlled intervention trials, data were only selected when described for 
baseline, pre-intervention and subsequent follow-up cross-sectional surveys among control populations. When 
cohorts of individuals were surveyed repeatedly in time we endeavoured to include only the first survey and 
subsequent surveys if these were separated by at least five months from the initial survey to avoid dependence 
between observations based on treatment of preceding infected individuals. If it was not possible to disaggregate 
repeat surveys these were finally excluded from the analysis. Where age was not specified in the report for each 
survey but stated that the entire village or primary school children examined we assumed age ranges to be 0-99 years 
or 5-14 years respectively. Occasionally, reports presented the total numbers of people examined across a number of 
villages and only the percentage positive per village; here we assumed the denominator per village to be equivalent 
to the total examined divided by the total number of villages. It was possible to establish the year of every survey; 
however, the month of survey was occasionally not possible to define from the survey report. Here we used 
descriptions of "wet" and "dry" season, first or second school term or other information to make an approximation of 
the month of survey and included a record of this assumption. Some survey results were reported as an aggregate in 
space (e.g. a single PfPR for a group of villages) or time (e.g. a mean PfPR estimated from four different surveys 
conducted over time). In such cases, we either sought additional reports of the same surveys with higher spatial or 
temporal resolution. Where this was not possible and where clusters of villages exceeded 5 km2 we excluded the 
record from the analysis (see below). Where additional information to provide unique time, village specific data was 
necessary we contacted authors to provide any missing information.  
 
W2.4 Data geo-coding 
 
Data geo-coding, defining a decimal longitude and latitude for each survey location, was a particularly demanding 
task. According to their spatial representation, data were classified as individual villages, communities or schools or 
a collection of communities within a definable area, corresponding to an area within a 5 km grid or approximately 
0.04 decimal degrees at the equator. Where possible we aimed to retain disaggregated village, "point" level data 
rather than data across a "wide-area". Where data were reported across communities that exceeded at 5 km grid we 
regarded these as too low a spatial resolution, with significant possible variation within the polygon of information 
to be excluded within the modeling phase. In practice this was a difficult criterion to audit as most survey reports did 
not provide enough detail on the size of the area surveyed. More recent use of Global Positioning Systems (GPS) 
during survey work does enable a re-aggregation of household survey data with greater precision and useful in 
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maintaining 5 km grid criteria while combining clusters of small sample sizes in space. To position each survey 
location where GPS coordinates were not available in space we used a variety of digital resources, amongst which 
the most useful were Microsoft Encarta Encyclopedia (Microsoft Inc., 2004) and Google Earth (Google Inc., 2009). 
Other sources of digital place name archives routinely used included GEOnet Names Server of the National 
Geospatial-Intelligence Agency, USA111; Falling Rain Genomics’ Global Gazetteer112; and Alexandria Digital 
Library prepared by University of California, USA113. Across Africa a number of national digital, GPS confirmed, 
place-name gazetteers exist for populated places, health facilities or schools. These are increasing in number, 
precision and coverage. These were obtained on request from national census bureau’s, ministries of education and 
health and NGO partners and proved to be valuable locating communities in Kenya, Uganda, Burkina Faso, The 
Gambia, Mauritania, Zambia, Mozambique, Madagascar, Somalia, Malawi, Ghana, Burkina Faso, Niger, Namibia, 
South Africa, Tanzania and Zanzibar. Although standard nomenclatures and unique naming strategies are attempted 
in digital gazetteers114, these are difficult to achieve at national levels where spellings change between authors, 
overtime and where the same place names are replicated across a country. As such, during the data extraction, each 
data point was recorded with as much geographic information from the source as possible and this was used during 
the geo-positioning, for example checking the geo-coding placed the survey location in the administrative units 
described in the report or corresponded to other details in the report on distance to rivers or towns when displayed 
on Google Earth. While in theory GPS coordinates should represent an unambiguous spatial location, these required 
careful re-checking to ensure that the survey location matched the GPS coordinates. As routine we therefore 
rechecked all GPS data from all sources using place names and/or Google Earth to ensure coordinates were located 
on communities.  
 
All coordinates were subject to a final check using second level administrative boundary Global Administrative 
Units Layers (GAUL) spatial database developed and revised in 2008 by Food and Agriculture Organization (FAO) 
of the United Nations115. The spatial selection tool in ArcGIS 10.1 (ESRI, USA) was used to verify points along the 
coastline were within land area as defined by GAUL 2008. The Global lakes and Wetlands (GLWD) database 
developed by the World Wildlife Fund116 was used to ensure inland points were within defined land area. Here we 
aimed to identify survey coordinates that fell slightly off the coastline, located on the river or in incorrect 
administrative units, every anomaly was re-checked and re-positioned using small shifts in combination with Google 
Earth. 
 
W2.5. Database fidelity checks and exclusions 
 
Data checks: The entire database was first checked with a series of simple range-check constraint queries to identify 
potential errors that could have occurred during data entry. These queries assessed all data fields relevant to 
modelling for missing or inconsistent information. The final objective was to check for any duplicates introduced 
during the iterative data assembly process. Pairs of survey sites found within 1 km or within five months at the same 
location were identified. These may have entered erroneously into the data assembly where multiple reports 
reviewed describing similar data. These were listed, checked and duplicates removed.  
 
Data exclusions: The search strategy identified 28,483 time-survey locations where malaria infection prevalence 
had been recorded between 1st January 1980 and 31st December 2012. This final data series was then subjected to 
various exclusion rules as defined below.  
 
Location details: Despite repeated efforts and multiple on-line digital gazetteers, national resources and personal 
communications we were unable to identify with sufficient precision the geo-coordinates for 540 (1.9%) survey data 
points at 500 unique locations.  
 
Polygon and multiple repeat surveys: We were unable to obtain higher spatial resolution data from 23 survey reports 
from 13 locations that described prevalence across areas exceeding 5 km2 in Sudan (13), Comoros (3), Tanzania (2), 
Bioko Island of Equatorial Guinea (1), Gabon (1), Ghana (1) and Zambia (1). Sixteen unique locations were 
surveyed more than once and it was not possible from the original survey reports or attempts to communicate with 
investigators to separate out the first from subsequent surveys in Mali (10), Senegal (2), Sudan (2), Côte d'Ivoire (1) 
and Cameroon (1).  
 
Ensuring sample precision: Sample size is inversely related to prevalence where, at low sample sizes, biases in 
prevalence estimates are introduced, dependent on the true prevalence of the population and translates into large 
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standard errors117. There is a critical threshold of between 10 and 20 individuals sampled below which the standard 
error increases exponentially in most surveys of parasitic infections and the curve starts to flatten at a sample size of 
about 50 and reaches an asymptote at about 100118. The sample size of individual survey samples is also important in 
the derivation of correlations with covariates of endemicity, in testing plausible associations between say rainfall 
and prevalence during covariate selection where small, imprecise samples can lead to over-fitting (Table W3.4). We 
aimed to combine communities in close proximity where any village had less than 15 people sampled and where 
communities were within 5 km of each other, sampled at exactly the same time by the same investigators. Using 
these criteria we were still unable to merge data from 1,191 (4.2%) time-space locations and these were excluded 
from the final analysis (see Table W2.1 for country distribution). 
 
Rational inclusion of repeat annual Mass Blood Surveys: Several data series were the result of annual Mass Blood 
Surveys undertaken over decades within sentinel villages of defined spatial areas of The Republic of Sudan and 
Namibia. To improve the processing efficiency in these spatial areas we have thinned the data to represent data in 
five year intervals. Specifically, since 1999 in The Republic of Sudan two intensive surveillance areas have been 
subject to annual investigations of infection prevalence: Geizera119 and the Gambiae Eradication project area in the 
north at Wadi Halfa120. Here we have reduced the data volume at each location to surveys undertaken nearest to the 
years 2000, 2001, 2005 and 2010 resulting in the exclusion of 903 survey points at Gezira and 344 survey points at 
Wadi Halfa. In Namibia, intensive indoor residual house spraying across the northern territories was accompanied 
by annual Mass Blood Surveys at sentinel villages between 1968 and 199249, here we retained data for periods that 
were 1980, 1985 and 1990 or the nearest year to these five-year intervals among villages sampled repeatedly across 
the interval, resulting in the exclusion of 662 survey data points.  
 
Coastal and lake islands or malaria free locations: Off of Africa’s coastline and the shores of its major inland lakes 
several small islands exist. These pose problems for approaches of matching environmental covariate grids 
(seeW3.3) as the sizes of the islands are often less than 5 km2 and not captured by existing climate and ecology 
datasets. We have identified all off-shore, small islands from within the data set and have excluded from the analysis 
304 (1%) data points where surveys were undertaken on these islands. These island exclusions included 137 survey 
data points from the islands of Bukooli, Bujumba, Bunya, Busiro, Buvuma, Kyamusua and Mukono parishes of 
Uganda located in Lake Victoria; 66 data points from Wasini, Lamu, Pate and Shella islands in the Indian Ocean and 
islands belonging to Suba District in Lake Victoria in Kenya; 34 survey data points from the Islands of Likoma in 
Lake Malawi; 26 survey points from the archipelago of Bolama/Bijagos islands in the Atlantic, off the coast of 
Guinea Bissau; seven survey data points on Lagos Island, Nigeria; five data points from Nosy Be island in the north 
of Madagascar; two survey data points from Lagunes area of Côte D’Ivoire; four data points located on islands in 
Lake Mweru, Zambia; one from the island of Fernan-vaz, Gabon; two from the island of Mafia, Tanzania; and one 
from Bol located in Lake Chad, Chad. In addition, 56 time-space survey locations were sampled in areas of South 
Africa (51), Harare, Zimbabwe (1), Kingdom of Swaziland (1) and Mauritania (3) that by 2000 were classified 
through medical intelligence (W1.2) as malaria free.  These were removed from the final analysis data set. 
 
W2.6 Data summaries 
 
The eight year data search identified 26,746 temporally unique data points at 21,341 survey locations undertaken 
since January 1980 using the inclusion criteria described above (see Table W2.1 for country distribution). Every 
endemic country in Africa provided some data across this time period. The final prevalence database comprised of 
information on temporally separate survey locations sourced from peer-reviewed journals (4761, 17.8%), other 
archived reports including those of Ministries of Health (8995, 33.6%), conference abstracts (515, 1.9%), post-
graduate theses (289, 1.1%), the MARA digital archive (79, 0.3%; unpublished data from Benin, Burkina Faso, 
Cameroun, Central African Republic, Chad, Congo, Côte D’Ivoire, Gabon, Mauritania and Togo between 1980 and 
2004); and other sources that required the provision of unpublished data (12186, 45.6%). The latter representing the 
most important source of empirical data provided by researchers, ministries of health or NGOs identified initially 
from other sources, including reports and peer-reviewed publications or only through personal communication. 
 
Survey data were located for time-space survey data points using GPS (11508, 43%), Encarta (2785, 10.4%), 
Google Earth (1596, 6%), GeoNames (689, 2.6%), other digital place names sources available at country-levels 
(4175, 15.6%) %), coordinates provided by individual scientists for which sources not certain (1156, 4.3%). Of the 
26,746 time-space survey location data 18,539 (69.3%) used microscopy alone, 720 (2.7%) RDTs with microscopic 
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confirmation, 6812 (25.5%) RDTs alone, 298 (1.1%) RDTs with PCR confirmation, 329 (1.2%) PCR alone; and 48 
(0.2%) microscopy with PCR confirmation.  
 
W2.7 Age standardization 
 
There was a large diversity in the age ranges of sampled populations between studies. To make any meaningful 
comparisons in time and space a single standardized age range is required. Correction to a standard age for 
Plasmodium falciparum is possible based on the observation and theory of infectious diseases where immunity is 
acquired following repeated exposure from birth. We have retained the classical age range of 2-10 years as this best 
describes the exposure to infection among semi-immune hosts at any given location and conforms to classifications 
established in the 1950s77. We have adapted catalytic conversion Muench models, first used in malaria by121, into 
static equations in R-script that uses the lower and upper range of the sample and the overall prevalence to transform 
into a predicted estimate in children aged 2-10 years, PfPR2-10

122.In brief, this algorithm computes the probability 
that an individual of a known age will be positive for P. falciparum infection as a function of the observed presence 
of infection, the age-dependent sensitivity of detecting infections and the age distribution of sampled populations122. 
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Table W2.1: Description of data assembly by country 1980-2012. Time/or space location survey data 
excluded because of a) inability to find longitude and latitude and b) sample surveyed at location less than 
15. 
 

Country Unable to locate Small sample size # 1980-2012 # 1980-2012 Spatially Unique 
Angola 3 25 281 276 
Benin 0 0 69 56 
Bioko & Annobon1 0 2 106 43 
Botswana 5 1 330 97 
Burkina Faso 31 38 509 425 
Burundi 1 1 190 149 
Cameroon 4 91 365 339 
Cape Verde 0 0 7 4 
Central African Republic 0 0 13 10 
Chad 0 6 244 242 
Comoros 1 0 59 39 
Congo 0 0 25 24 
Côte d'Ivoire 0 1 252 227 
Djibouti 0 0 140 138 
DRC + Angola (Cabinda)2 0 1 411 398 
Equatorial Guinea 0 10 49 30 
Eritrea 40 1 347 344 
Ethiopia 0 0 1380 1285 
Gabon 0 2 195 187 
Gambia 0 0 692 536 
Ghana 44 119 341 328 
Guinea 24 1 140 140 
Guinea Bissau 3 3 151 143 
Kenya 10 41 3794 2969 
Liberia 0 18 281 163 
Madagascar 6 11 842 654 
Malawi 0 83 921 895 
Mali 2 7 315 247 
Mauritania 0 0 33 23 
Mayotte3 0 0 141 58 
Mozambique 11 123 873 619 
Namibia 135 24 1320 833 
Niger 1 0 58 52 
Nigeria 12 29 653 613 
Rwanda 1 14 742 732 
São Tomé and Príncipe 0 0 71 35 
Senegal 21 63 541 508 
Sierra Leone 0 0 44 43 
Somalia 91 35 1877 1458 
South Africa 8 0 148 119 
South Sudan 7 8 145 142 
Sudan 10 52 1843 1055 
Swaziland 0 5 183 176 
Tanzania 26 289 2193 1447 
Togo 0 2 231 153 
Uganda 21 23 969 830 
Zambia 0 40 939 873 
Zanzibar & Pemba4 1 19 396 300 
Zimbabwe 27 3 897 884 
Totals 546 1191 26746 21341 

 
Footnotes: 
 
1. The islands of Bioko and Annobon form part of Equatorial Guinea but are 32 km from the coast and are analysed separately  
 
2. Four survey points from Angola (South Central tile) sampled in the separated Cabinda territory have been included in the Central African 
tile owing to their proximity to Congo and the Democratic Republic of Congo; 3 points surveyed in 1985/6, one point surveyed in 2006. 
Two survey locations in 2011 in Cabinda were of small samples sizes and excluded. 
 
3. Although Mayotte is an overseas department and region of France, under the UN regional grouping it is grouped with the Eastern African 
region with a Numerical Code of 175 (http://unstats.un.org/unsd/methods/m49/m49regin.htm) 
 
4. The Islands of Zanzibar and Pemba form part of the United Republic of Tanzania but are represented here separately  
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W3 Covariate processing/selection and model procedures 
 
W3.1 The problem of over-fitting in variable selection 
 
In statistical modelling, a set of independent covariates of the main outcome measure is often used to improve 
the model fit and increase the precision of predicted estimates 123-126. The inclusion of these covariates increase 
model complexity and, if not carefully selected, risk over-fitting (using up too many degrees of freedom), which 
occurs when more terms or covariates than is necessary are used in the model fitting process 123,125,126. Over-
fitting can lead to poor quality predictions because coefficients fitted to these covariates add random variations 
to subsequent predictions and make replication of findings difficult 123. Where too many covariates are used, the 
model tends to produce highly fluctuating regression coefficients increasing the chances of large covariate 
coefficients and an overly optimistic fit, especially with small sample sizes123. This problem can be particularly 
pronounced when data assembled are from observational studies based on different study designs, sampling 
considerations and sample sizes which are then combined to describe a random process125. The considerations 
and procedures for the selection of covariates have therefore been described as one of the most important stages 
of the statistical modelling process124,125,127. 
 
The choice of these covariates should be underpinned by the principle of parsimony (few strong and easily 
interpretable covariates) and plausibility (a clearly understood mechanism by which the covariate influences the 
outcome)123-125. In disease mapping there must be a pre-determined aetiological explanation of the relationship 
of the disease and the covariate under consideration. Including in the prediction process covariates whose 
relationship with the outcome cannot be explained apriori may still lead to a ‘good’ model fit but this may 
largely be an artefact. To model the risks of P. falciparum malaria transmission in time and space, we have 
implemented a process of assembling a minimum, important set of covariates that have a biologically plausible 
relationship with malaria transmission and subjected them to a stringent selection process for inclusion into 
subsequent predictive models. 
 
W3.2 Assembling plausible covariates of PfPR2-10 
 
The determinants of malaria transmission are climatic (rainfall and temperature), ecological (potential breeding 
sites and urbanisation) and control interventions (anti-vector and ant-parasitic measures)128,129. These factors 
affect the development and survival of the P. falciparum parasite and the malaria-transmitting Anopheles vector 
thereby reducing the risks of infection. These covariates must be spatially and temporally matched with the 
observed data on transmission to account for their effect in time and space. However, they are rarely available at 
time points that correspond with the date of surveys. This is mainly because most of the covariate information is 
derived from long-term processed remotely sensed satellite imagery, which have become available at 
sufficiently high resolution only in the last decade 130 or modelled climatic data generated as synoptic estimates 
that do not represent a specific year131. Even where available, the inclusion of time-varying covariates, while 
statistically attractive, increases the complexity of MBG methods substantially to the extent that computations 
may be intractable where large datasets are involved. Regarding malaria control interventions, in addition to 
poor availability of space-time matching data, their inclusion creates an intrinsic circularity when analysing the 
role of intervention coverage against changing transmission, an area we hope to address in the future. For these 
reasons, the assembled covariates were long-term annual average raster grid representations of the climatic and 
environmental determinants of transmission and described in more detail below. 
 
Temperature: Laboratory experiments have shown that high temperatures (>34 oC) lead to almost 100% larval 
mortality and at lower temperatures (<16oC) the larvae were unable to produce viable adults 132,133. The 
mortality of the anopheles mosquitoes also increase sharply at ambient temperatures approaching 40 oC134,135. 
Temperatures of between 25°C and 30°C are considered optimum for P. falciparum sporogony128.  
 
It is on the basis of these biological relationships that we have assembled two temperature metrics in order to 
test their statistical relationships with PfPR2-10. These were: annual mean temperatures; and a biologically 
modeled temperature suitability index (TSI). The annual mean temperature surface was developed from monthly 
average temperature raster surfaces at 1 × 1 km resolution which were downloaded from the WorldClim website 
136. These surfaces were produced from global weather station temperature records gathered from a variety of 
sources for the period 1950-2000 and interpolated using a thin-plate smoothing spline algorithm, with altitude as 
a covariate, to produce a continuous global surface 131 (Figure W3.1a). TSI, as explained in W1.3.2, was 
developed as a quantitative measure of optimal P. falciparum sporozoite development at 1 × 1 km spatial 
resolution 64. The TSI model uses a biological framework based on the survival of vectors and the fluctuating 



18 
 

monthly ambient temperature effects on the duration of sporogony that must be completed within the lifetime of 
a single generation of Anophelines. The TSI is constructed using long-term monthly temperature time series131 
and represented on a scale of increasing transmission suitability, from 0 (unsuitable) to 1 (most suitable) (Figure 
W3.1b).  
 
Proxies of suitable conditions for larval development (precipitation and vegetation): Rainfall, combined with 
suitable ambient temperatures, provides potential breeding environments for Anopheles vectors while humidity 
is associated with vector longevity 137,138. Normally, proxies of rainfall such as precipitation and vegetation are 
used in malaria risk predictions in Africa131,125,130,139. This is because actual rainfall data, typically collected from 
weather stations, are sparse throughout the continent9.  
 
Monthly mean precipitation raster surfaces at 1 × 1 km resolution were downloaded from the WorldClim 
website136 and used as a proxy for rainfall compiled from weather stations over a similar period as the mean 
temperature surfaces131. These monthly surfaces were summed to generate a synoptic annual mean precipitation 
surface (Figure W3.1c). For vegetation, Fourier–processed enhanced vegetation index (EVI), derived from the 
Moderate-resolution Imaging Spectroradiometer (MODIS) sensor imagery and available at approximately 1 × 1 
km spatial resolution130 was used to develop an annual mean EVI surface. EVI is an index of intensity of 
photosynthetic activity and ranges from 0 (no vegetation) to 1 (complete vegetation) (Figure W3.1d). EVI, 
compared to the more commonly used Normalised Difference Vegetation Index (NDVI), is developed from 
satellite imagery of higher spatial and spectral resolution and corrects for some distortions in the reflected light 
caused by the particles in the air as well as the ground cover below the vegetation 140. 
 
Urbanization: The availability of optimum environments for the development of the malaria transmitting 
anopheline populations become limited in urban areas resulting in reduced vector density, biting rates and 
transmission intensity141-143. Overall malaria infection rates are therefore lower in urban compared to rural areas 
of Africa144,145. 
 
Countries have different definitions of urbanisation that are rarely comparable across regions making their use in 
predictive modelling limited145,71. To develop a consistently defined surface of urbanisation, information from 
the Global Rural Urban Mapping Project (GRUMP)75 and the Afripop project72,71 was used. GRUMP urban 
extent grids distinguish urban and rural areas based on a combination of NOAA’s Night-time lights dataset147, 
settlements data and population counts. Population counts used were derived from GRUMP spatial population 
database based on areal weighted census input data 146 while settlements data sources include ESRI’s Digital 
Chart of the World’s Populated Places (DCW), Tactical Pilotage Charts (TPC) from Australian Defense 
Imagery and Geospatial Organization and some LandSAT-derived polygons 146,75. To define urban extents, a 
border was defined around each set of contiguous lighted pixels whose total population count was greater than 
5,000 persons. Because not all urban settlements are ‘well-light’ to be detected by satellite sensors, a buffer was 
drawn around settlement points to estimate spatial extents of the settlements. The GRUMP urban extent was 
further refined to produce a ‘peri-urban’ classification constrained by population density using the Afripop 
data72. Urban areas were defined as locations with a density of more than 1000 persons per km2 with the rest of 
the GRUMP urban extent defined as peri-urban (Figure W3.1e).  
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Figure W3.1 Raster grid surfaces at 5 × 5 km of: a) Annual mean temperature; b) Temperature 
suitability index (TSI) for malaria transmission; c) Annual mean precipitation; d) Annual mean enhanced 
vegetation index (EVI); e) Urbanisation in 2010. The urbanisation surface derived from the Africa 
population surface was used as a template grid on which all other environmental grid were spatially 
matched. The light grey areas are those that were malaria free and the dark grey those that supported 
unstable transmission in 2000. 
 
a)                                                                                                                     b) 

           
 
c)                                                                                                                   d) 
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e) 
 

 
 
 
W3.3 Statistical selection of covariates 
 
There are several approaches to selecting the best-fitting covariates in a statistical model 123,125,126, 148-150. For this 
study, we used a strict covariate selection approach in which a total-sets analysis based on a generalized linear 
regression model was implemented in bestglm package in R151-152.  Under this approach the best combination of 
covariates, which were those with the lowest value of the BIC statistic when regressed against PfPR2-10, were 
selected. The BIC penalty increases if the number of predictors is >7 so that compared to other information 
criterion, it selects the most parsimonious model153. 
 
To begin the selection process the values of the assembled covariates were extracted to each country-specific 
PfPR2-10survey location using ArcGIS 10 Spatial Analyst (ESRI Inc. NY, USA) tool. The data from the Islands 
were excluded in this analysis because several of the covariate surfaces did not have information for these 
islands (Cape Verde, São Tomé and Príncipe, Comoros and Mayotte) due to their small geographic size. For 
these islands, the data only was used to predict PfPR2-10. For each country, the total-set analysis was 
implemented on the full data from the period 1980-2012. The coefficients and 95% confidence intervals of the 
best-fit covariates from the total-set analysis are shown in Table W3.1. None of the selected covariates were 
selected in the best-fit model for Guinea Bissau, Eritrea and South Africa, Swaziland. 
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Table W3.1 The results of the total-set analysis by country showing the regression coefficients and the P-
values of the best-fit covariates. The associations of precipitation, temperature suitability index (TSI), 
enhanced vegetation index (EVI) and urbanisation with PfPR2-10 were tested. Blank coefficients and P-
values indicate that the covariate was not selected as part of the best-fit. 
 

 
Coefficient, P value 

COUNTRY TSI Evi Precipitation Urban  
Angola 

 
(0.799), (<0.001) 

  Benin (-1.879), (<0.001) (-0.681), (0.015) 
  Bioko & Annobon 

    Botswana (0.794), (<0.001) 
  

(-0.059), (<0.001) 
Burkina Faso (1.612), (<0.001) (1.902), (<0.001) (-0.011), (<0.001) (-0.099), (<0.001) 
Burundi 

  
(-0.005), (0.008) 

 Cameroon (0.297), (<0.001) (0.665), (<0.001) 
 

(-0.091), (0.0011) 
Cape Verde 

    Central African Republic (-1.019), (0.300) (-4.330), (0.009) (0.0173), (0.037) (-0.466), (0.002) 
Chad (2.190), (0.001) (1.321), (0.001) (0.003), (0.007) (-0.076), (0.006) 
Comoros 

    Congo (-3.277), (0.017) (0.894), (0.035) (-0.008), (0.006) 
 Côte d'Ivoire 

  
(0.004) , (<0.001) (-0.222), (<0.001) 

Djibouti 
   

(-0.036), (<0.001) 
DRC + Angola (Cabinda) (0.300), (<0.001) 

 
(0.002), (0.004) (-0.269), (<0.001) 

Equatorial Guinea 
  

(0.002643590), (0.0182) 
 Eritrea 0.0756 (0.0004) 

 
0.0006 (0.016) 

 Ethiopia (0.059 ), (<0.001) 
   Gabon 

  
(0.00157738), (<0.001) 

 Gambia (-0.310), (<0.001) (0.845), (<0.001) 
  Ghana (-0.209), (<0.001) 

  
(-1.772), (<0.001) 

Guinea (-1.395), (<0.001) 
 

(0.005), (<0.001) (-0.106), (0.0013) 
Guinea Bissau 

    Kenya (0.331), (<0.001) (-0.352), (<0.001) (0.003), (<0.001) (-0.095), (<0.001) 
Liberia (-1.116), (<0.001) 

  
(-0.096), (<0.001) 

Madagascar (0.164), (<0.001) 
 

(0.001), (<0.001) 
 Malawi 

   
(-0.18), (<0.001) 

Mali (2.043), (<0.001) 
  

(-0.227), (<0.001) 
Mauritania 

 
(0.336), (0.009) (0.008), (0.668) 

 Mayotte 
    Mozambique (0.582), (<0.001) 

 
(0.002), (<0.001) (-0.082), (<0.001) 

Namibia 
 

(0.500), (0.003) (0.002), (0.003) 
 Niger (2.681), (<0.001) 

  
(-0.236), (<0.001) 

Nigeria 
   

(-0.079), (0.001) 
Rwanda 

  
(-0.0006 ), (<0.001) 

 São Tomé and Príncipe 
    Senegal (-0.310), (<0.001) (0.845), (<0.001) 

  Sierra Leone (-2.510), (0.022) 
   Somalia (-0.116), (<0.001) 
 

(0.002), (<0.001) 
 South Africa 

    South Sudan 
 

(1.123), (<0.009)) (0.005), (<0.001)) 
 Sudan (0.116), (<0.001) 

 
(0.001), (<0.001) 

 Swaziland 
    Tanzania (0.547), (<0.001) (0.858), (<0.001) (-0.001), (<0.001) (-0.147), (<0.001) 

Togo 
   

(-0.140), (<0.001) 
Uganda (0.588),(<0.001) (-0.325), (0.001432) (0.002), (<0.001) (-0.224), (<0.001) 
Zambia (0.993), (<0.001) (0.531), (0.008) (0.005), (<0.001) (-0.088), (<0.001) 
Zanzibar 

    Zimbabwe (0.407), (<0.001)   (0.002), (<0.001)   

 
W3.4 Model-based geostatistics (MBG) 
 
The application of MBG methods in disease mapping is an established norm154. Where spatial and temporal data 
are available, MBG methods fit the data, in a way that the spatial (and temporal) covariance is used to generate 
samples of the predicted posterior distribution from which point estimates and the uncertainty around these 
estimates are computed simultaneously154-156. Normally, Bayesian inference is done using Markov Chain Monte 
Carlo (MCMC) algorithms157. MCMC approaches, although used widely, suffer from problems of convergence 
and dense covariance matrices which increase the computational time and cost significantly, especially where 
there are large data points spatially and temporally158. Recently, Integrated Nested Laplace Approximations 
(INLA) has been identified as an alternative algorithm for Bayesian inference158. The advantage of INLA-based 
approaches is mainly computational speed and can be undertaken in open source, easily adaptable R packages. 
Spatial and temporal analysis in INLA can be undertaken through the Stochastic Partial Differential Equations 
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(SPDE) approach159 and the covariance functions are represented as Gaussian Markov Random Field 
(GMRF)158,159.  
 
W3.5 Model specification  
 
A Bayesian hierarchical spatial-temporal model was implemented through SPDE approach using R-INLA 
library [R-INLA] to produce continuous maps of PfPR2-10 at 1 × 1 km spatial resolution using data ranging from 
1980-2012. The continuous indexed GF with covariance function was represented as a discretely indexed 
random process, that is, as a Gaussian Markov Random Field (GMRF)159-161.  This is where an explicit link 
between Gaussian Field (GF) and GMRF formulated as a basis function is provided through Stochastic Partial 
Differential Equations (SPDE) approach161-164. The solution for SPDE can be expressed as  
 

2 2( ) ( ( ) ( )k x u W uα τ−Δ = ,    
du∈ ° , 2v dα = + , 2 2 2 2 1(v) / ( ( )(4 ) )d vkσ α π τ −= Γ Γ  

0k > , 0v > ,                                                                                                          (EquationW3.1) 
 
whereW , is the spatial Gaussian white noise, Δ   is the Laplacian,α  controls the smoothness of the 

realization and τ  controls the variance. The link between Matérn smoothness v  and variance 
2σ  is 

2v dα = +  and 2 2 2 2 1(v)( ( )(4 ) )d vkσ α π τ −−Γ Γ , where d  is the spatial dimension 165. An 
approximation of this SPDE can be solved using a finite element method (FEM), which is a numerical technique 
for solving partial differential equations43. In this case, the spatio-temporal covariance function and dense 
covariance matrix of the GF are replaced by a neighbourhood structure and a sparse precision matrix 
respectively and together define a GMRF.  A GMRF can be described as a spatial process that models spatial 
dependence of data observed at a spatial unit like grid or geographical region and it can be expressed as 

1( , )nu u u ʹ′= K K with 1( , )u Qµ −∼ . This is an n-dimensional GMRF with mean µ and a symmetrical 

positive definite precision matrix Q  computed as the inverse of the covariance matrix 159. Thus the density of 
u  is given by  
 

1 22 '1(u) (2 ) exp( (u ) Q(u ))
2

n Qπ π µ µ−= − − −                                                    (EquationW3.2) 

 
The sparse precision matrix Q  offers computational advantage when making inference with GMRF. This is 
because the linear algebra operations can be performed using numerical methods for the sparse matrices which 
results in a considerable computational gain and this is further enhanced by using INLA algorithm for Bayesian 
inference159-160.  The infinite-dimensional GRF is replaced with a finite-dimensional basis function 
representation  
 

1
( ) ( )

n

i i
i

x u u wψ
=

=∑   ,                                                                                               (EquationW3.3) 

 
where iw  represents the weights and iΨ   are piece-wise linear basis functions defined on a triangulation of the 
domain with n  nodes which are defined as mesh in the code161. The basis functions are deterministic and are 
defined by each node in the triangulation while the stochastic property of the process is determined by the 
weights. The model used in this paper assumed non-stationary GRFs because environmental phenomena which 
are known to influence PfPR2-10 are non-stationary in nature and therefore the distribution of PfPR2-10 is non-
stationary166. This non-stationary model was made possible by the flexible nature of SPDE models which allows 
modification of the SPDE rather than the covariance function to obtain the GFRs with other dependence 
structures other than the stationary Matérn covariance. The stationary isotropic Matérn covariance function, 
between locations u  and v  in d°   is expressed as  
 

2

1( , ) ( ) ( )
2 ( )

v
vvC u v k v u K k v u

v
σ
−

= − −
Γ

 ,                                                          (EquationW3.4) 
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Where VK   is the modified Bessel function of the second kind,      ⋅  denotes the Euclidean distance and order

0v > . 0k >  is a scaling parameter and 
2σ  is the marginal variance.  For the stationary model, k  and v  are 

constant in space. The parameter k  is linked to the range p  by the empirically derived relationship

8p k= . k , here can be described as the range parameter presiding over the spatial dependence structure of 

the GRF 161. For the non-stationary, τ  and  k  space-dependent covariance parameters are introduced as 
functions of the spatial locationu ,u D∈ , where D  is the spatial domain. Therefore the modified SPDE 
becomes 
 

2( ( ) - )( ( ) ( )) ( )k u D u x u W uτ =  , 
2u∈ °  ,                                                          (EquationW3.5) 

 
where x  is a non-stationary GRF because τ  and k  vary by location and as the consequence the variance and 
correlation range vary by location. The non-stationary described above is defined on the mesh because it 
controls the local distance metric in the manifold. log ( )uτ  and log ( )k u  can be defined as linear 

combination of  basis function, where the basis functions { }( ) ( )i
⋅Β ⋅  are smooth over the domain of interest.  

 

0
1

log( ( )) (u) (u)
p

k k
k k

k
k u b b B

=

= +∑   and 0
1

log( (u)) (u) (u)
p

k k
k

b b Bτ ττ
=

= +∑ ,               (EquationW3.6) 

 

For space-time models, the basis function can be represented as 
1

( ) ( , )
n

i i
i

x u u t wψ
=

=∑  where each basis 

function is computed as a product of a spatial and a temporal basis function, (u, t) (u) (t)u t
i i jψ ψ ψ= , thus the 

space-time SPDE165,  
 

 2 /2(k(u) ) ( (u) x(u, t)) W(u, t)
t

αϑ
τ

ϑ
−Δ =  , (u, t)∈ ×Ω°                                (EquationW3.7) 

 
 
Using this SPDE approach, the overall hierarchical space-time binomial model of the prevalence to malaria 
parasite were used denoted by  
 
( , ) ( , ) ( , ) ( , )y s t z s t s t s tβ ξ ε= + + ,                                                                      (EquationW3.8) 

 
This model is characterised by a GF y(s, t) built from covariate information z(s, t), measurement error ε(s, t), and 
a second order autoregressive dynamic model for the latent process ξ(s, t) with spatially correlated innovations 
ω(s, t). The PfPR2-10 survey data were modelled as realizations of this spatial process (random field) changing in 
time. These realizations were used to make inference about the process and predict it at desired locations and at 
a specified time. This is where ( , )i jy s t  was the realization of a spatial-temporal process representing the 

PfPR2-10 at the community location is , where 1...i n= , and year jt  where 1...j m= , 

1( , ) ( ( , ) ( , ))i j i j p i jz s t z s t z s t= K
 

denotes the vector of p  covariates for cluster is  at time jt , 

1( , )pβ β β ʹ′= K  is the coefficient vector, 2( , ) (0, )i js t N εε σ:  is the measurement error defined by the 

Gaussian white noise process, and ( , )i jy s t is the predicted posterior mean  prevalence of the plasmodium 

parasite in cluster i  at time j . In the model formulation the large scale component that depends on the 

covariates is defined as ( , )i jZ s t β while the measurement error variance or the nugget effect is 2
eσ  . The 

realization of state process or the unobserved level of PfPR2-10 in this case is defined by ( , )i js tξ  as a spatial-
temporal GRF that changes in time as a second-order autoregressive function. Year instead of month was used 



24 
 

as the metric for time due to uncertainty around actual survey is several of the historical data and the added 
substantial complexity for the model. 
The prior for the SPDE model by default are Gaussian. These priors are chosen heuristically to match the spatial 
scale of the MESH domain. The user can override the defaults by supplying a "hyper" parameter 165. This is 
normally suitable when the dataset lacks enough information for the likelihood to fully identify the parameters 
for the prior distribution. In this paper the SPDE default priors were sufficient for the model.  
 
W3.5.1 Constructing a suitable MESH  
A finite element representation is used to outline the GRF as a linear combination of basis functions defined on 
a triangulation of the domain, sayD . This is achieved by subdividing D  into non-intersecting triangles 
meeting in at most common edge or corner, thus a mesh. The GRF in the triangulation is given by Equation (SI 
3.3), where n  is the total number of vertices, { , (u)}ψ are the basis functions and { }lω are normally 
distributed weights 161,159.   
 
The mesh function (inla.mesh.create) in INLA is used to create a Constrained Refined Delaunay Triangulation 
(CRDT). The overall effect of the triangulation construction is that, if desired, one can have smaller triangles, 
and hence higher accuracy of the field representation. However, this will have an effect on the computation of 
the model. There is therefore a need to balance the number of triangles and the computation time required. If the 
data points (cluster coordinates) are used to construct the mesh, a cut-off value is specified in the function 
represents which is the maximum distance in which data points are represented by a single vertex. If the 
boundary of the area domain is used to construct the mesh, (i.e using the function points.domain=border), then 
the mesh is constructed to cover the border of the domain using restrictions provided in other arguments. But if 
both data points and area domain (boundary) are used the restrictions are combined. In this model, the mesh was 
constructed using the boundary of the area domain. This method produces a mesh with regular size of triangles. 
A cut-off value was specified to avoid building many small triangles around PfPR2-10 input locations. A 
reasonable offset value was used to specify the size of the inner and outer extensions around the data locations. 
The maximum edge value was used to specify the maximum allowed triangle edge lengths in the inner domain 
and in the outer extension. The inner maximum edge value was made small enough to allow the triangulation to 
support representing functions with small enough features, and typically smaller than the spatial correlation 
range of the model. Therefore this value was adjusted to fit the range of the area domain in the model165.  
 
A matrix was then constructed to link the PfPR2-10 input locations to the triangles on the mesh defined by ŋ* as  
= 𝐴(𝑥 + 1) and in the inla code in the following inla.spde.make.A function.  This makes each row in the matrix 
to have three non-zero elements since every data point is inside a triangle and the corresponding columns are 
expected to have non-zero elements. In order to obtain a square matrix for the model, the response was linked to 
the index of the random field, where the length of the index vector was the same as the length of the projection 
matrix. In order to estimate the intercept, the stack function introduces a vector of ones in the matrix and this is 
later removed in the formula165. 
 
W3.5.2 Model outputs 
The continuous PfPR2-10 predictions are shown in Figure W3.2. Table W3.2 shows country estimation of 
population at risk by PfPR2-10endemicity class in 2000 and 2010. Countries are sorted by the baseline (2000) 
PAPfPR2-10. 
 
For  CAR, Congo, Mauritania available data were not sufficient to make reliable predictions in any of the two 
prediction years. For Burundi, Niger and Mayotte data were not sufficient to make predictions for 2010. These 
countries were excluded in the analysis of change between 2000 and 2010. In DRC and Chad data were not 
sufficient to make predictions in 2000 but we assumed that no major change in malaria risk would have 
occurred between the two time points due to the very low coverage of malaria interventions by 2010168 and have 
used the 2010 map to also represent transmission in 2000. 
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Figure W3.2 The predicted 1 × 1 spatial resolution maps of Africa of: a) continuous PfPR2-10 in 2000; b) continuous PfPR2-10 in 2010. The dark and light grey areas 
are the limits of malaria free and unstable transmission respectively for each year 
 
a)                            b) 
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Table W3.2 The population at risk (in millions) by endemicity class for all MECs in Africa and by country and territory for the years 2000 and 2010. Countries are 
sorted according to increasing PAPfPR2-10 in 2000.  
  

    Malaria free Unstable <1% PfPR2-10 
1% to <5% 

PfPR2-10 
 5% to <10% PfPR2-

10 
 >10% to 50% PfPR2-

10  
  >50% to 75% PfPR2-

10  
   >75% to 100% PfPR2-

10  
REGION COUNTRY 2000 2010 2000 2010 2000 2010 2000 2010 2000 2010 2000 2010 2000 2010 2000 2010 
Central Africa 3.27 4.31 0.48 0.71 1.11 2.37 2.71 9.25 3.74 5.44 35.28 40.87 36.52 47.25 5.78 11.54 

 
Angola 0.01 0.01 0.23 0.37 0 0.85 1.28 7.22 2.73 3.3 9.47 6.81 0 0.24 0 0 

 
Bioko & Annobon 0.02 0.03 0 0 0 0 0 0 0 0 0.07 0.13 0.03 0.01 0 0 

 
Cameroon 0.22 0.25 0 0 0 0 0 0.01 0.01 0.63 11.95 15.87 2.94 2.39 0.41 0.27 

 
CAR 

                
 

Chad 0 0 0.25 0.34 1.11 1.51 1.41 1.93 0.67 0.92 1.51 2.06 1.30 1.77 1.96 2.68 

 
Congo 

                
 

DRC 3.01 4.01 0 0 0 0 0 0 0 0 11.33 15.09 32.03 42.64 3.18 4.24 

 
Equatorial Guinea 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0.13 0.2 0.23 0.3 

 
Gabon 0 0 0 0 0 0 0.02 0.07 0.32 0.47 0.88 0.89 0.03 0 0 4.05 

 
São Tomé and Príncipe 0.01 0.01 0 0 0 0.01 0 0.02 0.01 0.12 0.06 0.01 0.06 0 0 0 

East Africa   26.14 33.47 10.47 13.13 47.99 81.33 39.46 62.46 19.26 17.58 39.38 35.49 7.77 11.02 18.17 15.51 

 
Burundi 

                
 

Comoros 0 0 0 0 0 0 0.01 0.01 0.01 0.02 0.02 0.01 0 0 0 0 

 
Djibouti 0 0 0.64 0.79 0.06 0.08 0 0 0 0 0 0 0 0 0 0 

 
Eritrea 0.01 0.02 0.88 1.26 1.59 3.46 0.81 0.49 0.16 0 0.19 0 0.01 0 0 0 

 
Ethiopia 17.35 22.13 0.67 0.84 36.45 45.45 8.63 11.62 1.54 2.22 0.81 0.55 0 0 0 0 

 
Kenya 3.7 4.71 0.26 0.33 3.49 10.05 3.5 10.16 3.51 3.56 16.05 10.96 0.59 0.55 0 0 

 
Mayotte 0 0.04 0 0.1 0.12 0.06 0.03 0.01 0 0 0 0 0 0 0 0 

 
Rwanda 2.89 3.72 0 0 2.3 4.22 2.87 2.54 0 0.08 0 0.03 0 0 0 0 

 
Somalia 0.03 0.03 0.42 0.52 0 0.09 0.38 6.89 5.81 1.77 0.75 0 0 0 0 0 

 
South Sudan 0 0.01 0 0 0.12 0.18 1.42 3.33 2.09 1.74 2 3.04 0.82 1.16 0.09 0.26 

 
Sudan 0 0 7.59 9.28 2.7 7.34 14.57 14.92 2.41 1.79 0.17 0.13 0 0 0 0 

 
Tanzania 1.24 1.57 0.01 0.01 1.11 9.47 4.22 8.85 3.65 5.79 18.94 16.71 2.55 0.28 1.26 0.12 

 
Uganda 0.92 1.24 0 0 0.01 0.46 2.64 3.32 0.03 0.47 0.1 3.74 3.68 9.03 16.82 15.13 

 
Zanzibar 0 0 0 0 0.04 0.47 0.38 0.32 0.05 0.14 0.35 0.32 0.12 0 0 0 

Southern Africa   46.08 54.91 1.66 4.6 15.4 19.63 10.46 11.24 5.27 5.95 25.38 31.26 10.73 11.67 1.66 0.56 

 
Botswana 0.9 1.03 0 0.72 0.13 0 0.62 0.14 0.1 0.11 0 0 0 0 0 0 

 
Madagascar 1.01 1.32 0.01 0.01 4.74 8.95 4.12 4.84 1.84 2.32 3.41 3.02 0.08 0.13 0.07 0 

 
Malawi 0.01 0.01 0 0 0.09 0 0.17 0.02 0.42 0.01 8.21 10.59 1.63 4.09 0.68 0.14 

 
Mozambique 0.01 0.01 0.05 0.07 0 0.65 0 0.8 0 0.94 8.16 13.5 8.98 7.05 0.91 0.26 

 
Namibia 0.22 0.28 0.34 0.46 0.26 0.47 0.96 1 0.09 0.06 0 0 0 0 0 0 

 
South Africa 41.67 47.01 1.25 2.98 1.57 0.04 0.11 0 0.04 0 0.03 0 0.01 0 0 0 

 
Swaziland 0.19 0.81 0 0.34 0.87 0.02 0 0 0 0 0 0 0 0 0 0 

 
Zambia 0 0 0.01 0.02 0.06 3.36 2.81 3.13 2.3 2.21 4.98 3.79 0.03 0.4 0 0.16 

 
Zimbabwe 2.07 4.44 0 0 7.68 6.14 1.67 1.31 0.48 0.3 0.59 0.36 0 0 0 0 

West Africa   0 5.97 0.68 1.07 0.39 5.41 0.9 7.8 2.97 5.47 78.58 172.54 124.37 76.08 13.55 9.85 
                  
 

Benin 0 0 0 0 0 0.1 0.16 0.45 0.57 0.99 2.33 3.27 0.57 0.76 2.89 3.25 

 
Burkina Faso 0 0 0.06 0.09 0 0 0 0 0 0 2.77 6.51 8.39 9.70 1.06 0.06 

 
Cape Verde 0 0.16 0 0.11 0.22 0 0 0 0 0 0.01 0 0.01 0 0 0 

 
Côte d'Ivoire 0 0 0 0 0 0 0 0 0 0 3.36 4.59 11.59 13.45 1.62 1.68 

 
Gambia 0 0 0 0 0 0.06 0 0.8 0.14 0.51 1.13 0.31 0 0.01 0 0 

 
Ghana 0 0 0 0 0 0 0 1.15 0.01 2.12 10.52 9.69 6.6 10.13 1.93 1.16 

 
Guinea 0 0 0 0 0 0 0 0 0 0 3.32 4.29 3.77 5.63 1.23 0 

 
Guinea Bissau 0 0 0 0 0.17 0.44 0.46 0.81 0.12 0.07 0.46 0.17 0.01 0.01 0 0 

 
Liberia 0 0 0 0 0 0 0 0 0 0 2.66 3.7 0.16 0.22 0 0 

 
Mali 0 0 0.43 0.57 0 0 0.06 0.14 0.05 0.35 5.54 7.94 5.2 5.56 0 0.79 

 
Mauritania 

                
 

Niger 
                

 
Nigeria 0 0 0.14 0.22 0 0 0 0 0 0.07 38.78 130.63 82.11 27.31 2.52 0 

 
Senegal 0 0 0.05 0.08 0 4.81 0.22 4.45 2.08 1.36 6.41 1.42 0.57 0.16 0.1 0.05 

 
Sierra Leone 0 5.81 0 0 0 0 0 0 0 0 1.29 0 0.7 -2.82 2.12 2.82 

 
Togo 0 0 0 0 0 0 0 0 0 0 0 0 4.69 5.96 0.08 0.04 

All MECS in Africa 75.49 98.66 13.29 19.51 64.89 108.74 53.53 90.75 31.24 34.44 178.62 280.14 179.39 146.02 39.16 37.46 
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W3.5.3 Model Validation  

As a first step to understanding the uncertainty around the predictions of PfPR2-10 using the Bayesian 

geostatistical model, the continuous mean map and the endemicity class map for each year were accompanied 

by estimates of the posterior standard deviation (Figure W3.3).The percentage of population by standard 

deviation to posterior mean PfPR2-10 is shown in Table W3.3. In addition, a spatially and temporally 

representative validation set of PfPR2-10 survey data were selected using a sampling algorithm 
167

 which 

declusters over space and time. This algorithm defined the Thiessen polygons around each survey location with 

each data point having a probability of selection proportional to the area of its Thiessen polygon and taking time 

factor into place.  This allowed for data located in densely surveyed regions to have a lower probability of 

selection than those in sparsely surveyed regions setting a high threshold for model performance. The annual 

predictions were then repeated in full using the remaining data points to predict PfPR2-10 at the validation 

locations. The ability of the model to predict point-values of PfPR2-10 at unsampled locations was quantified 

using four simple summary statistics: the correlation coefficient between the predicted and actual set; the mean 

prediction error (MPE);  the mean absolute prediction error (MAE); and the root mean square error (RMSE). 

The correlation coefficient provides a simple measure of linear association between the data and prediction sets, 

the ME provides a measure of the model bias, and the MAE and RMSE is a measure of the average accuracy of 

individual predictions. The results of the model validation by country are provided in Table W3.4. 

 

 

Figure W3.3 Maps of number of the standard deviations from the predicted mean PfPR2-10 in: a) 2000; 

and b) 2010. The dark and light grey areas are the limits of malaria free and unstable transmission 

respectively for each year. 
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Table W3.3 The percentage of population at risk by the standard deviation from the predicted mean 
PfPR2-10 in 2000 and 2010. 
 

                                      Proportion of population by standard deviation (SD) to the mean PfPR2-10 

 
2000 2010 

COUNTRY 
0 -1 
SD 

>1 - 2 
SD 

>2 - 3 
SD 

>3 - 4 
SD 

0 -1 
SD 

>1 - 2 
SD 

>2 - 3 
SD 

>3 - 4 
SD 

Angola 58.2 41.8 0.0 0.0 77.9 22.1 0.0 0.0 
Benin 62.9 35.4 1.5 0.3 69.7 28.8 1.3 0.2 
Bioko & Annobon 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Botswana 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Burkina Faso 96.0 4.0 0.0 0.0 99.9 0.1 0.0 0.0 
*Burundi 23.8 44.3 16.6 15.2 

    Cameroon 36.8 63.2 0.0 0.0 50.4 49.6 0.0 0.0 
Cape Verde 94.6 2.4 1.5 1.5         
*Central African Republic (CAR) 

        *Chad 96.1 3.9 0.0 0.0 96.1 3.9 0.0 0.0 
Comoros 99.6 0.4 0.0 0.0 99.6 0.4 0.0 0.0 
*Congo 

        Côte d'Ivoire 9.3 90.7 0.0 0.0 6.8 93.2 0.0 0.0 
Djibouti 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
*Democratic Republic of Congo 
(DRC) 87.4 12.6 0.0 0.0 87.4 12.6 0.0 0.0 
Equatorial Guinea 47.9 52.1 0.0 0.0 53.4 46.6 0.0 0.0 
Eritrea 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Ethiopia 96.7 3.2 0.1 0.0 97.7 2.3 0.0 0.0 
Gabon 51.9 48.1 0.0 0.0 51.8 48.2 0.0 0.0 
Gambia 99.9 0.1 0.0 0.0 100.0 0.0 0.0 0.0 
Ghana 81.5 18.5 0.0 0.0 98.0 2.0 0.0 0.0 
Guinea 99.1 0.9 0.0 0.0 99.2 0.8 0.0 0.0 
Guinea Bissau 90.0 10.0 0.0 0.0 95.2 4.8 0.0 0.0 
Kenya 65.3 19.4 15.4 0.0 99.4 0.6 0.0 0.0 
Liberia 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Madagascar 59.6 26.3 14.1 0.0 72.9 24.4 2.7 0.0 
Malawi 94.0 6.0 0.0 0.0 94.1 5.9 0.0 0.0 
Mali 81.4 18.6 0.0 0.0 6.9 93.1 0.0 0.0 
*Mauritania 

        Mayotte 99.8 0.2 0.0 0.0 100.0 0.0 0.0 0.0 
Mozambique 95.3 4.7 0.0 0.0 99.5 0.5 0.0 0.0 
Namibia 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
*Niger 26.1 56.2 17.8 0.0 

    Nigeria 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Rwanda 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
São Tomé and Príncipe 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Senegal 15.9 62.5 20.2 1.4 97.8 2.2 0.0 0.0 
Sierra Leone 44.7 55.3 0.0 0.0 100.0 0.0 0.0 0.0 
Somalia 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
South Africa 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
South Sudan 84.3 15.7 0.0 0.0 95.0 5.0 0.0 0.0 
Sudan 98.9 1.1 0.0 0.0 99.2 0.8 0.0 0.0 
Swaziland 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Tanzania 20.5 47.5 31.5 0.5 56.9 36.6 6.5 0.0 
Togo 80.3 19.7 0.0 0.0 73.8 26.2 0.0 0.0 
Uganda 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Zambia 68.9 31.1 0.0 0.0 95.0 5.0 0.0 0.0 
Zanzibar 76.0 24.0 0.0 0.0 52.1 47.9 0.0 0.0 
Zimbabwe 94.9 5.1 0.0 0.0 95.9 4.1 0.0 0.0 
Total 78.2 17.6 4.0 0.2 85.4 12.9 1.6 0.1 
*Data was sufficient to predict PfPR2-10 for 2000 only for Niger and Burundi; and 2010 for Chad and DRC. There was insufficient data to 
predict to either years in CAR, Congo and Mauritania. 
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Table W3.4 The PfPR2-10 full space-time model validation statistics by country based on the actual 
observation and predictions to a 10% holdout dataset per country. R= the linear correlation coefficient; 
MPE = the mean prediction error; and the MAPE=mean absolute prediction error. 
 

COUNTRY RMSE MPE MAPE R 
Angola 5.43 -1.52 3.42 0.98 
Benin 16.53 11.98 12.14 0.93 
Bioko & Annobon 1.31 -0.08 1.09 0.99 
Botswana 1.18 -0.12 0.81 0.99 
Burkina Faso 12.91 0.80 8.57 0.84 
Burundi 6.77 -2.46 4.71 0.62 
Cameroon 13.10 0.76 9.18 0.80 
Cape Verde 0.99 -0.79 0.88 0.67 
*Central African Republic 

    Chad 5.05 -0.46 3.49 0.89 
Comoros 1.03 -0.80 0.87 0.81 
*Congo 

    Côte d'Ivoire 8.26 0.24 5.83 0.94 
Djibouti 1.06 -0.35 0.56 0.70 
DRC + Cabinda (Angola) 17.79 -0.61 11.26 0.84 
Equatorial Guinea 1.33 0.55 1.05 0.99 
Eritrea 2.87 0.74 1.34 0.91 
Ethiopia 3.11 0.00 0.01 0.94 
Gabon 15.12 3.53 6.59 0.86 
Gambia 7.08 -0.06 4.47 0.82 
Ghana 7.40 0.99  4.72 0.97 
Guinea 15.95 -3.60 12.36 0.78 
Guinea Bissau 7.52 2.37 3.44 0.91 
Kenya 4.57 0.26 1.32 0.96 
Liberia 7.41 -1.26 5.44 0.93 
Madagascar 2.57 -0.04 1.35 0.89 
Malawi 11.90 -1.49 8.80 0.84 
Mali 7.70 1.04 4.78 0.98 
*Mauritania 

    Mayotte 2.74 1.05 1.57 0.86 
Mozambique 7.90 -0.45 5.29 0.92 
Namibia 7.34 -1.14 3.58 0.84 
Niger 4.48 -2.05 2.10 0.67 
Nigeria 14.76 -3.75 8.02 0.87 
Rwanda 2.22 0.16 1.16 0.76 
São Tomé and Príncipe 1.86 0.71 1.32 0.99 
Senegal 7.08 -0.06 4.47 0.82 
Sierra Leone 4.99 -0.90 3.26 0.97 
Somalia 9.83 0.12 4.86 0.72 
South Africa 0.88 0.18 0.40 0.78 
South Sudan 5.09 1.27 3.51 0.98 
Sudan 4.45 0.10 2.21 0.76 
Swaziland 0.08 0.01 0.02 0.99 
Tanzania 8.94 -0.18 5.39 0.94 
Togo 16.43 -6.33 11.43 0.71 
Uganda 11.78 -0.07 6.71 0.87 
Zambia 10.71 -0.20 5.69 0.88 
Zanzibar 4.19 1.16 2.36 0.99 
Zimbabwe 4.49 0.13 1.78 0.90 

*Data was sufficient to predict PfPR2-10 for 2000 only for Niger and Burundi; and 2010 for Chad and DRC. There was insufficient data to 
predict to either years in CAR, Congo and Mauritania. 
 
 
W3.6 Rationale for not selecting data from borders with neighbouring countries 
 
We paid a particular attention to the issue of borrowing border data. Conceptually it makes sense to borrow data 
from borders on the assumption that transmission on one side of the border is likely to be a function of 
transmission on the other side. However, what is clear from the published literature168,169 is the large disparity in 
the extent of malaria control and socio-economic progress and therefore the likely reductions in transmission, 
between neighbouring countries in Africa.   
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To reliably understand the effect of borrowing data from borders, the best test case is using border data to 
predict risk in a country where large reductions of malaria have been achieved and where evidence exists that 
transmission is extremely low, but borders a country of relatively high transmission and low levels of control. 
We used Mozambique (high transmission, low control) and Swaziland (very low transmission, high level of 
control) for this illustrative experiment. In Swaziland the MIS of 2010 showed that out 5567 people who were 
tested, only 1 was positive for malaria.  
 
When we made predictions without using border data the risk map largely corresponded with the reported data. 
When additional data from a 100 km buffer into Mozambique was used, the northeastern part of Swaziland 
showed highly elevated levels of risk (see images below), which is contrary to any available evidence from the 
country (Kunene et al 2011). Therefore, making predictions for a country using only data from that country was 
a more parsimonious approach that will prevent over or under estimation of risk along the borders of a country.  
 
 
Figure W 3.4 Continuous PfPR2-10 maps of Swaziland for 2010 produce: a) with data borrowed from the border 
with Mozambique and analysis done as part of a Southern Africa regional tile; b) without any border data 
included and using only data from Swaziland analysed separately 
 
a)	   	   	   	   	   b)	  
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