Nitric Oxide (NO) Generation from Heme/Copper Assembly Mediated Nitrite Reductase Activity

Shabnam Hematian, Maxime A. Siegler and Kenneth D. Karlin*

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United

States

ELECTRONIC SUPPLEMENTARY MATERIAL

Contents:

- **Fig. S1.** UV-vis spectra of $[(AN)Cu^{II}(CI)](CF_3SO_3)$ and $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ in acetone
- **Fig. S2.** UV-vis spectra of $[(AN)Cu^{II}(CI)](CF_3SO_3)$ and $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ in MeOH
- **Fig. S3.** EPR spectrum of [(AN)Cu^{II}(Cl)](CF₃SO₃) in acetone
- **Fig. S4.** EPR spectrum of $[(AN)Cu^{II}(CI)](CF_3SO_3)$ in THF:MeCN (4:1)
- **Fig. S5.** EPR spectrum of $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ in acetone
- **Fig. S6.** IR spectra (solid) of $[(AN)Cu^{II}(Cl)](CF_3SO_3)$ and $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$
- **Fig. S7.** UV-vis spectra of $(TMPP)Fe^{II}$ in acetone and THF
- Fig. S8. UV-vis spectra of (TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C₆F₅)₄] in acetone and MeCN
- **Fig. S9.** ESI-MS of $(TMPP)Fe^{III}$ -O-Cu^{II}(tmpa)][B(C₆F₅)₄] in acetone
- Fig. S10. UV-vis spectra of generation of (TMPP)Fe^{II}(NO) in acetone
- **Fig. S11.** UV-vis spectra of generation of (TMPP)Fe^{II}(NO) in MeCN
- **Fig. S12.** UV-vis spectra of reaction of $[(AN)Cu^{I}][B(C_{6}F_{5})_{4}]$ with nitrite in acetone
- Fig. S13. UV-vis spectra of reaction of (TMPP)Fe^{II} with nitrite in acetone

Fig. S14. UV-vis spectra of [(TMPP)Fe^{III}]₂O in acetone and [(TMPP)Fe^{III}(OH)] in MeCN

Fig. S1. UV-vis spectra of $[(AN)Cu^{II}(Cl)](CF_3SO_3)$ (blue, $\lambda_{max} = 720$ and 1025 nm) and $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ (red, $\lambda_{max} = 702$ nm) 2mM in acetone.

Fig. S2. UV-vis spectra of $[(AN)Cu^{II}(Cl)](CF_3SO_3)$ (blue, $\lambda_{max} = 722$ and 1000 nm) and $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ (red, $\lambda_{max} = 702$ nm) 2mM in MeOH.

Fig. S3. EPR spectrum of [(AN)Cu^{II}(Cl)](CF₃SO₃) (2mM) in acetone at 22 K.

Fig. S4. EPR spectrum of [(AN)Cu^{II}(Cl)](CF₃SO₃) (2mM) in THF:MeCN (4:1) at 15 K.

Fig. S5. EPR spectrum of $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ (2mM) in acetone at 22 K.

Fig. S6. IR spectra (solid) comparison between the two cupric complexes: $[(AN)Cu^{II}(CI)](CF_3SO_3)$ (red) $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ (blue);): $v_{as}(NO_2)$ 1370 cm⁻¹, $v_s(NO_2)$ 1110 cm⁻¹, and $\delta(NO_2)$ 835 cm⁻¹.

Fig. S7. UV-vis spectra of (TMPP)Fe^{II} (10 μ M) in acetone (blue, $\lambda_{max} = 429$ and 540 nm) and THF (red, $\lambda_{max} = 430$ and 542 nm).

Fig. S8. UV-vis spectra of (TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C₆F₅)₄] in acetone (7 μ M) (red, λ_{max} = 443, 564 and 605 nm) and MeCN (10 μ M) (black, λ_{max} = 441, 561 and 603 nm).

Fig. S9. ESI-MS of $(TMPP)Fe^{III}$ -O-Cu^{II}(tmpa)][B(C₆F₅)₄] in acetone: 1157.3 (TMPP)Fe-O-Cu(tmpa); 788.2 (TMPP)Fe; 1593.4 [(TMPP)Fe]₂O.

Fig. S10. UV-vis spectra of (TMPP)Fe^{II} in acetone (14 μ M) (blue, $\lambda_{max} = 429$ and 540 nm) and after bubbling excess NO_(g) through the solution to form (TMPP)Fe^{II}(NO) (red, $\lambda_{max} = 410, 539$ and 614 nm).

Fig. S11. UV-vis spectra of (TMPP)Fe^{II} in MeCN (10 μ M) (purple, $\lambda_{max} = 430$ and 533 nm) and after bubbling excess NO_(g) through the solution to form (TMPP)Fe^{II}(NO) (red, $\lambda_{max} = 410$ and 535nm).

Fig. S12. UV-vis spectra of $[(AN)Cu^{I}][B(C_{6}F_{5})_{4}]$ in acetone (10µM) (red), after addition of 1 equiv of $(Bu)_{4}N(NO_{2})$ (blue) and after stirring overnight (gray).

Fig. S13. UV-vis spectra of (TMPP)Fe^{II} in acetone (14 μ M) (green, $\lambda_{max} = 429$ and 540 nm), after addition of 1 equiv of (Bu)₄N(NO₂) (blue) and after stirring for 5 h (red).

Fig. S14. UV-vis spectra of $[(TMPP)Fe^{III}]_2O$ in acetone (15µM) (black, $\lambda_{max} = 412$, 572 and 614 nm) and $[(TMPP)Fe^{III}(OH)]$ in MeCN (10 µM) (red, $\lambda_{max} = 434$, 594 and 640 nm). NOTE: To obtain the spectrum of (TMPP)Fe^{III}(OH), we first synthesized $[(TMPP)Fe^{III}(THF)_2](SbF_6)$ via AgSbF₆ addition to (TMPP)Fe^{III}(Cl) in THF solvent, for which full experimental details will be presented elsewhere. Then, to a MeCN solution of $[(TMPP)Fe^{III}(THF)_2](SbF_6)$ was added a small excess of tetraethylammonium hydroxide.