Preclinical Evaluation of a Novel Monoclonal Antibody H6-11 for Prostate Cancer Imaging

Hongjun Jin,^a Mai Xu,^a Prashanth K. Padakanti,^a Yongjian Liu,^a Suzanne Lapi,^a and Zhude

 Tu^{*a}

^a Department of Radiology, Washington University School of Medicine, 510 S. Kinghighway

Blvd, St. Louis, MO 63110

*Corresponding Author: Zhude Tu, Department of Radiology, Washington University School of

Medicine, 510 S. Kingshighway blvd, St. Louis, MO, 63110, USA. E-mail: tuz@mir.wustl.edu;

Tel.: +1-314-362-8487; Fax: +1-314-262-8555

Table of contents

Table S1. Immunostaining of tissue array of prostate tumor with H6-11	
Table S2. Summary of monoclonal antibody H6-11 reactivity with human prostate tumo	r tissues S5
Figure S1. SDS-PAGE and autoradiography of ¹²⁵ I-H6-11	S6
Figure S2. In vitro autoradiography of ¹²⁵ I-H6-11 with tumor tissue	S7
Figure S3. Identification of H6-11antigen epitopes via radioactivity binding measureme human prostate cancer cell line PC-3	nts with
Figure S4. TLC of Zr-89-H6-11 and SDS-PAGE autoradiography	S9
Figure S5. Immunoreactivity of unmodified and p-SCN-Bz-DFO modified H6-11 Bookmark not defined.	SError!
Figure S6. Amino acid sequence for the CDRs region of H6-11 hybridoma cell line	S11

No	Sex	Age	Organ	Pathology diagnosis	Grade	Stage	ТММ	Туре	Staining Scores
1	м	72	Prostate	Adenocarcinoma	1	II	T2N0M 0	Malignant	+
2	М	64	Prostate	Adenocarcinoma	1	Ι	T1N0M 0	Malignant	+++
3	М	60	Prostate	Adenocarcinoma	1	IV	T4N1M 1c	Malignant	++
4	М	66	Prostate	Adenocarcinoma	1	IV	T3N1M 1c	Malignant	++
5	М	65	Prostate	Adenocarcinoma	1	II	T2N0M 0	Malignant	++
6	М	75	Prostate	Adenocarcinoma	1	IV	T2N1M 1c	Malignant	++
7	М	71	Prostate	Adenocarcinoma	2-3	II	T2N0M 0	Malignant	+++
8	М	78	Prostate	Adenocarcinoma	2	IV	T3N2M 1	Malignant	+++
9	М	74	Prostate	Adenocarcinoma	2	IV	T4N1M 1c	Malignant	+
10	М	69	Prostate	Adenocarcinoma 2 III T3N0M Maligna		Malignant	++		
11	М	75	Prostate	Adenocarcinoma	2	IV	T4N1M 1	Malignant	++
12	М	69	Prostate	Adenocarcinoma	2	II	T2N0M 0	Malignant	+++
13	М	73	Prostate	Adenocarcinoma	Adenocarcinoma 2 IV T3N1M 1c		Malignant	+++	
14	М	56	Prostate	Adenocarcinoma	2-3	II	T2N0M 0	Malignant	+++
15	М	73	Prostate	Adenocarcinoma	2	II	T2N0M 0	Malignant	+++
16	М	70	Prostate	Adenocarcinoma	2	III	T3N0M 0	Malignant	++
17	М	20	Prostate	Adenocarcinoma	1-2	III	T3N0M 0	Malignant	++
18	М	61	Prostate	Adenocarcinoma	1-2	III	T3N1M 0	Malignant	++
19	М	73	Prostate	Adenocarcinoma	2	III	T3N0M	Malignant	+++

Table S1. Immunostaining of tissue array of prostate tumor with H6-11

								r	
							0		
20	М	82	Prostate	Adenocarcinoma	2	II	T2N0M 0	Malignant	++
21	М	75	Prostate	Adenocarcinoma	3	IV	T4N1M 1	Malignant	+
22	М	78	Prostate	Adenocarcinoma	3	IV	T4N1M 1b	Malignant	+-
23	М	60	Prostate	Adenocarcinoma	2	IV	T3N1M 1b	Malignant	+
24	М	73	Prostate	Adenocarcinoma	2	IV	T3N1M 1b	Malignant	+++
25	М	62	Prostate	Adenocarcinoma	2	IV	T3N1M 1b	Malignant	+
26	М	51	Prostate	Adenocarcinoma	2	II	T2N0M 0	Malignant	++
27	М	62	Prostate	Adenocarcinoma	3	II	T2N0M 0	Malignant	+++
28	М	60	Prostate	Adenocarcinoma	2	IV	T3N1M 0	Malignant	+++
29	Μ	68	Prostate	Adenocarcinoma	2	II	T2N0M 0	Malignant	++
30	М	64	Prostate	Adenocarcinoma	3	IV	T3N0M 1b	Malignant	+
31	М	66	Prostate	Adenocarcinoma	3	II	T2N0M 0	Malignant	++
32	М	87	Prostate	Adenocarcinoma	3	II	T2N0M 0	Malignant	+
33	М	81	Prostate	Adenocarcinoma	3	III	T3aN0 M0	Malignant	+++
34	М	80	Prostate	Adenocarcinoma	3	IV	T4N1M 1c	Malignant	++
35	М	76	Prostate	Adenocarcinoma	3	IV	T3N1M 1b	Malignant	+-
36	М	73	Prostate	Adenocarcinoma	3	IV	T4N1M 1c	Malignant	+
37	М	63	Prostate	Adenocarcinoma	3	IV	T2N1M 1b	Malignant	++
38	М	67	Prostate	Adenocarcinoma	3	II	T2N0M 0	Malignant	++
39	М	65	Prostate	Adenocarcinoma	3	IV	T2N1M 1	Malignant	++
40	М	64	Prostate	Adenocarcinoma	3	II	T2N0M 0	Malignant	++
41	М	35	Prostate	Normal prostate tissue	-	_	-	Normal*	+-
42	М	43	Prostate	Normal prostate tissue	_	-	-	Normal*	+-

43	М	19	Prostate	Normal prostate tissue	-	-	-	Normal*	+-
44	М	46	Prostate	Normal prostate tissue	-	-	-	Normal*	+-
45	М	40	Prostate	Normal prostate tissue	-	-	-	Normal*	+-
46	М	28	Prostate	Normal prostate tissue	-	-	-	Normal*	+-
47	М	33	Prostate	Normal prostate tissue	-	-	-	Normal*	+-
48	М	37	Prostate	Normal prostate tissue	-	-	-	Normal*	+-
-	F	55	liver	Hepatocellular liver cancer (tissue marker)	3		T3N0M 0	Malignant	+++

*Epithelia from normal prostate glands are weak positive staining with mAb H6-11, but not from fibromuscular stroma.

Scoring grade	-	±	+	++	+++	Total
Prostate tumor	0	2	8	18	12	40
Case (%)	(0%)	(5%)	(20%)	(45%)	(30%)	(100%)
				20 (050/)		
				38 (95%)		

Table S2. Summary of monoclonal antibody H6-11reactivity with human prostate tumor tissues

Figure S1. SDS-PAGE (left) and autoradiography (right) of ¹²⁵I-H6-11.

Lane1: standard protein marker; Lane 2: unlabeled IgG; Lanes 3-5: ¹²⁵I labeled H6-11 sample1 elution 1-3; Lane 6-8: ¹²⁵I labeled H6-11 sample2 elution 1-3. Autoradiography from ¹²⁵I labeled H6-11, two samples, both showed full length IgG (150 KDa), and heavy chain (50 KDa) and light chain (25 KDa) bands indicating successful iodination.

Figure S2. *In vitro* autoradiography of ¹²⁵I--H6-11 with tumor tissue.

1 μ Ci/mL ¹²⁵I labeled mouse IgG, H6-11 and anti-Globo-H antibodies were incubated with tissue slides collected from PC-3 implanted tumor (T) or muscle (M). After incubation and washing the slides three times with PBS-TW-20, the slides were directly placed in the FLA-7000 imager to process for autoradiography. ¹²⁵I-mIgG has no any detectable interaction with either tumor or muscle tissues. ¹²⁵I-Globo-H reacted with both the tumor and muscle tissues evenly. ¹²⁵I-H6-11 reacted strongly to tumor collected from PC-3 xenograft mouse.

Figure S3. Identification of H6-11antigen epitopes via radioactivity binding measurements with human cancer cells.

Panel A: For PC-3 cells, increasing the concentration of trypsin decreased the ¹²⁵I-H6-11 binding. **Panel B:** For PC-3 cells, increasing the concentration of periodate increased the ¹²⁵I-H6-11 binding. **Panel C:** For MCF-7, increasing the concentration of trypsin barely changed the ¹²⁵I-anti-Globo-H binding. **Panel D**: For MCF-7, increasing the concentration of periodate increased the ¹²⁵I-anti-Globo-H binding.

Figure S4. TLC of ⁸⁹Zr-H6-11 and SDS-PAGE autoradiography.

The ⁸⁹Zr labeled H6-11 after purification on the Pierce Zeba desalting column was quantified by TLC. The major peak (96.86%) was ⁸⁹Zr-H6-11 at position 50 mm (baseline), while the free ⁸⁹Zr peak (3.14%) is at 100 mm position. The inserted image is from the SDS-PAGE and autoradiography of the major peak. Both the heavy and light chains are radiolabeled.

Figure S5. Immunofluorescence of unmodified H6-11 and p-SCN-Bz-DFO modified H6-11.

PC-3 cell was immunofluorescence stained with 5 μ g/mL H6-11 (left) and *p*-SCN-Bz-DFO modified H6-11 (abridge: DFO-H6-11) (right). No significant immunoreactivity changes were observed between *p*-SCN-Bz-DFO modified H6-11 and unmodified H6-11.

Heavy chain: Amino acids sequence (135 AA)

Leader sequence-FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 MAWVWTLLFLMAAAQSIQAQIQLVQSGPELKKPGETVKISCKASGYTF TDYSMHWVKQAPGKGLKWMGWINTETGEPTYADDFKGRFAFSLETSA STAYLQINNLKNEDTATYFCARSRRYDDYWGQGTTLTVSS

Light chain: Amino acids sequence (133 AA)

Leader sequence-FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 MDSQAQVLMLLLLWVSGTCGDIVMSQSPSSLAVSVGEKVTMSCKSSQSL LYSSNQKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTL TISSVKAEDLAVYYCQQYYSYPYTFGGGTKLEIK

Figure S6. Amino acid sequence for the CDRs region of H6-11 hybridoma cell line.

The amino acid sequences are translated from cDNA sequencings. The predicted binding sites (including heavy chain and light chain) from CDRs were blue coded.