SUPPORTING INFORMATION

SUPPLEMENTAL MATERIALS AND METHODS

Strain and DNA Constructions (detailed description)

The $ume6\Delta/+$ strain (DT208) was constructed as follows: approximately 500 bp of 5' and 3' flanking sequences were generated using primer pairs 1/2 and 3/4 (see Table S1 for a complete listing of primers used in this study), respectively. The 5' flank is located immediately upstream of the region -19.3 kb from the UME6 start codon and the 3' flank is immediately downstream of the UME6 coding sequence. The 5' and 3' flanks were next digested with BamHI-HindIII and NotI-ApaI, respectively, and cloned into plasmid pSN52 [1]. The *ume6* Δ ::*HIS1* construct was generated by PCR from the resulting plasmid using primer pair 5/6 and transformed into strain SN152 to generate $ume6\Delta/+$ (DT208). $ume6\Delta/+$ was next used as a parent strain to generate UME6 upstream intergenic region deletion strains DT297, DT290, DT281, DT315, DT299 and DT341 using the SAT1 flipper technique [2]. Briefly, a 5' flanking sequence immediately adjacent to the UME6 -19.3 kb region was generated using primer pair 7/8, digested with KpnI and XhoI, and cloned into pSFS2 to generate plasmid 5' $ume6\Delta/+$ pSFS2. 3' flanking sequences adjacent to the UME6 -9.1 kb, -8.0 kb, -7.0 kb, -6.0 kb, -5.0 kb and -4.2 kb regions were generated using primers 9-20, digested with NotI and SacII, and cloned into 5' $ume6\Delta/+$ pSFS2. The resulting constructs were digested with KpnI and SacII to release each respective SATImarked deletion construct, which, in turn, was used to transform the $ume6\Delta/+$ strain. The SAT1 marker was then looped out of each resulting UME6 upstream intergenic region deletion strain as described previously [2]. To generate the UME6-6kb UR-lacZ strain, UME6 upstream intergenic regions from -1801 to -6011 and -1 to -2541 were amplified using primer pairs 21/22 and 23/24, respectively. The resulting PCR products were digested with PstI-HindIII and HindIII-PstI, respectively, and cloned separately into plasmid pBS [3]. The UME6 -1 to -2077 bp fragment was released from pBS by digesting with SphI and HindIII and the UME6 \sim -2077 bp to -6011 bp fragment was released from pBS by digesting with HindIII and PstI. A 3-piece ligation was used to clone both fragments into plasmid placbasal digested with PstI and SphI, generating plasmid pUME6-6kb uR-lac. placbasal was also digested with XhoI and Sall, filled-in using Klenow DNA polymerase, and religated to generate plasmid plac. Both plasmids pUME6-6 kb UR-lac and plac were linearized with StuI at *RPS1* and transformed into CAI4 to generate the final UME6-6 kb UR-lacZ and lacZ strains, respectively. The UME6 5' utr Δ/Δ strain was generated using the SAT1 flipper method [2]. Briefly, 5' and allele-specific 3' flanks immediately adjacent to the UME6 5' UTR were amplified using primer pairs 25/26, 27 /28 and 27 /29, respectively. The 5' flank was digested with KpnI and XhoI and each 3' flank was digested with NotI and SacII. The digested flanks were cloned into pSFS2 and the resulting plasmids were digested with KpnI and SacII to release the *UME6 5' utrA*::*SAT1* fragments, which were sequentially used to transform wild-type strain DK318. Following deletion of each UME6 5' UTR allele, the SAT1 marker was looped out, ultimately generating the final UME6 5' utr Δ/Δ strain. To construct the 5' utr Δ -UME6-MYC strain (DT640), UME6-MYC (HLY4078) was transformed with the UME6 5' utrA::SAT1 fragment described above to delete the 5' UTR of the Myc-tagged UME6 allele. The SAT1 marker was then looped out to generate the final 5' utr*A*-UME6-MYC strain. To construct tetO-5'UTR-UME6 strain (DT553), 5' and 3' flanking sequences adjacent to the UME6 5' UTR were amplified using primer pairs 30/31 and 32/33, respectively. The 5' flank spans -3134 bp to -3696 bp and the 3' flank spans -2514 bp to -3072 bp relative to the UME6 start codon (+1). The 5' flank was digested with KpnI and XhoI and the 3' flank was digested with SpeI and SacII. Both flanks were cloned into p97CAU1 to generate plasmid p97CAU1-5'UTR-UME6-OEx. This plasmid was digested with KpnI and SacII to release a fragment containing the URA3 marker, tetO operator and UME6 5' UTR flanks, which was used to transform strain THE1, ultimately generating the tetO-5'UTR-UME6 strain (DT553). To construct the ACT1pr- GFP plasmid, RPS1 was amplified from

genomic DNA using primer pair 34/35, digested with SacI and SpeI, and cloned into plasmid pFA GFPy URA3 [4]. The resulting plasmid was digested with PstI and SpeI to release a fragment containing GFPy, URA3 and RPS1, which, in turn was cloned into pBS [3] to generate pBS-GFP. The ACT1 promoter was next amplified from plasmid CIp-LexA [5] using primer pair 36/37, digested with KpnI and XhoI and cloned into pBS-GFP. To generate plasmid ACT1pr-UME6-5'UTR-GFP, the UME6 5' UTR plus UME6 start codon was amplified from genomic DNA using primer pair 38/39, digested with XhoI and PstI, and cloned into ACT1pr- GFP cut with the same restriction enzymes. To generate plasmid ACT1_{pr}-UME6-5'UTR uorf1 Δ uorf2 Δ -GFP, PCR site-directed mutagenesis was performed on the ACT1_{pr}-UME6-5'UTR-GFP plasmid to first delete uORF1. Briefly, complementary primers (52/53), were designed incorporating flanking regions for uORF1 and the resulting PCR product was digested with DpnI and transformed into E. coli Z-DH5a. The recovered plasmid was then sequenced to confirm the deletion. Next, a similar strategy was used on this plasmid in order to delete uORF2 with primer pairs 54/55 and 56/57. ACT1pr- GFP, ACT1pr-UME6-5'UTR-GFP and ACT1pr-UME6-5'UTR uorf1∆ uorf2∆ -GFP plasmids were linearized at RPS1 by digestion with StuI and transformed into strain CAI4 to generate the $ACT1_{pr}$ - GFP, $ACT1_{pr}$ -UME6-5'UTR-GFP and $ACT1_{pr}$ -UME6-5'UTR uorf1 Δ uorf2 Δ -GFP final strains. All integration events were confirmed by whole cell PCR using primers flanking the integration sites.

References

- 1. Noble SM, Johnson AD (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen *Candida albicans*. Eukaryot Cell 4: 298-309.
- 2. Reuss O, Vik A, Kolter R, Morschhauser J (2004) The *SAT1* flipper, an optimized tool for gene disruption in *Candida albicans*. Gene 341: 119-127.
- 3. Short JM, Fernandez JM, Sorge JA, Huse WD (1988) Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res 16: 7583-7600.
 - 3

- 4. Zhang C, Konopka JB (2010) A photostable green fluorescent protein variant for analysis of protein localization in *Candida albicans*. Eukaryot Cell 9: 224-226.
- 5. Russell CL, Brown AJ (2005) Expression of one-hybrid fusions with *Staphylococcus aureus* lexA in *Candida albicans* confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 42: 676-683.

Table S1

Strains used in this study

Strain	Genotype	Source
SC5314 (WT)	Prototroph	(1)
CAF2-1 (WT)	$ura3\Delta::imm^{434}/URA3$ $iro1\Delta::imm^{434}/IRO1$	(2)
DK318 (WT)	$arg4\Delta$:: $ARG4 / arg4\Delta$ his 1Δ :: $HIS1 / his1\Delta$ ura 3Δ :: $imm^{434} / URA3$ iro 1Δ :: $imm^{434} / IRO1$	(3)
CAI4	$ura3\Delta::imm^{434}/ura3\Delta::imm^{434}$ $iro1\Delta::imm^{434}/iro1\Delta::imm^{434}$	(2)
DK312 (<i>ume6</i> Δ/Δ)	ume6 <i>A</i> ::C.m.LEU2/ume6 <i>A</i> ::C.d.HIS1 arg4 <i>A</i> ::ARG4/arg4 <i>A</i> leu2 <i>A</i> /leu2 <i>A</i> his1 <i>A</i> /his1 <i>A</i> ura3 <i>A</i> ::imm ⁴³⁴ /URA3 iro1 <i>A</i> ::imm ⁴³⁴ /IRO1	(3)
DT553 (<i>UME6 5' utrΔ/Δ</i>)	arg4 <i>A</i> ::ARG4 /arg4 <i>A</i> his1 <i>A</i> ::HIS1/his1 <i>A</i> UME6 5' utr <i>A</i> ::frt/UME6 5' utr <i>A</i> ::frt ura3 <i>A</i> ::imm ⁴³⁴ /URA3 iro1 <i>A</i> ::imm ⁴³⁴ /IRO1	This study
MBY38 (<i>tetO-UME6</i>)	ade2::hisG/ade2::hisG ura3::imm ⁴³⁴ /ura3::imm ⁴³⁴ ENO1/eno1::ENO1-tetR-ScHAP4AD-3×HA-ADE2 tetO-UME6::URA3/UME6	(4)
DT515 (<i>tetO-5</i> ' <i>UTR-UME6</i>)	ade2::hisG/ade2::hisG ura3::imm ⁴³⁴ /ura3::imm ⁴³⁴ ENO1/eno1::ENO1-tetR-ScHAP4AD-3×HA-ADE2 tetO-5' UTR-UME6::URA3/UME6	This study
SN152	arg4∆/arg4∆ leu2∆/leu2∆ his1∆/his1∆ ura3∆∷imm ⁴³⁴ /URA3 iro1∆∷imm ⁴³⁴ /IRO1	(5)
DT208 (<i>ume6</i> //+)	ume6 _{-19.3 kb through ORF} A::C.m.HIS1/UME6 leu2A/leu2A arg4A/arg4A ura3A::imm ⁴³⁴ /URA3 iro1A::imm ⁴³⁴ /IRO1	This study

DT297 (<i>ume6</i> -9.1 kb to -19.3 kbД/Д)	$ume6_{-19.3 \ kb \ through \ ORF}\Delta::C.m.HIS1/ume6_{-9.1kb \ to -19.3kb}\Delta::frt$ $leu2\Delta/leu2\Delta \ arg4\Delta / arg4\Delta \ ura3\Delta::imm^{434}/URA3$ $iro1\Delta::imm^{434}/IRO1$	This study
DT290 (<i>ume6</i> - <i>8.0 kb to -19.3 kb</i> Д/Д)	$ume6_{-19.3 \ kb \ through \ ORF}\Delta$:: $C.m.HIS1/ume6_{-8.0 \ kb \ to \ -19.3 \ kb}\Delta$:: frt $leu2\Delta/leu2\Delta \ arg4\Delta/arg4\Delta$ $ura3\Delta$:: $imm^{434}/URA3 \ iro1\Delta$:: $imm^{434}/IRO1$	This study
DT281 (<i>ume6</i> -7.0 kb to -19.3 kbД/Д)	$ume6_{-19.3 \ kb \ through \ ORF}\Delta::C.m.HIS1/ume6_{-7.0 \ kb \ to \ -19.3 \ kb}\Delta::frt$ $leu2\Delta/leu2\Delta \ arg4\Delta/arg4\Delta$ $ura3\Delta::imm^{434}/URA3 \ iro1\Delta::imm^{434}/IRO1$	This study
DT315 (<i>ume6-6.0 kb to -19.3 kb</i> Д/Д)	$ume6_{-19.3 \ kb \ through \ ORF}\Delta::C.m.HIS1/ume6_{-6.0 \ kb \ to \ -19.3 \ kb}\Delta::frt$ $leu2\Delta/leu2\Delta \ arg4\Delta / arg4\Delta$ $ura3\Delta::imm^{434}/URA3 \ iro1\Delta::imm^{434}/IRO1$	This study
DT299 (<i>ume6-5.0 kb to -19.3 kb</i> Д/Д)	$ume6_{-19.3 \ kb \ through \ ORF}\Delta::C.m.HIS1/ume6_{-5.0 \ kb \ to \ -19.3 \ kb}\Delta::frt$ $leu2\Delta/leu2\Delta \ arg4\Delta / arg4\Delta$ $ura3\Delta::imm^{434}/URA3 \ iro1\Delta::imm^{434}/IRO1$	This study
DT341 (<i>ume6</i> -4.2 kb to -19.3 kbД/Д)	$ume6_{-19.3 \ kb \ through \ ORF}\Delta::C.m.HIS1/ume6_{-4.2 \ kb \ to -19.3 \ kb}\Delta::frt$ $leu2\Delta/leu2\Delta \ arg4\Delta/arg4\Delta$ $ura3\Delta::imm^{434}/URA3 \ iro1\Delta::imm^{434}/IRO1$	This study
DT133 (<i>lacZ</i>)	ura3 <i>∆::imm⁴³⁴/ ura3∆::imm⁴³⁴ iro1∆::imm⁴³⁴/IRO1</i> rps1::S.t. lacZ - URA3/RPS1	This study
DT389 (UME6-6 kb UR - lacZ)	ura3 <i>A</i> ::imm ⁴³⁴ /ura3 <i>A</i> ::imm ⁴³⁴ iro1 <i>A</i> ::imm ⁴³⁴ /IRO1 rps1:: UME6 _{-6 kb ur} - S.t. lacZ - URA3/RPS1	This study

DT590 (ACT1 _{pr} -GFP)	ura3 <i>A</i> ::imm ⁴³⁴ /ura3 <i>A</i> ::imm ⁴³⁴ iro1 <i>A</i> ::imm ⁴³⁴ /IRO1 rps1::ACT1 _{pr} -GFP-URA3/RPS1	This study
DT585 (ACT1 _{pr} -UME6 5' UTR-GFP)	ura3Δ::imm ⁴³⁴ /ura3Δ::imm ⁴³⁴ iro1Δ::imm ⁴³⁴ /IRO1 rps1::ACT1 _{pr} -UME6-5 'UTR-GFP-URA3/RPS1	This study
DT625 ($ACT1_{pr}$ -UME6-5'UTR uorf1 Δ uorf2 Δ -GFP)	ura3Δ::imm ⁴³⁴ /ura3Δ::imm ⁴³⁴ iro1Δ::imm ⁴³⁴ /IRO1 rps1:: ACT1 _{pr} -UME6-5'UTR uorf1Δ uorf2Δ -GFP-URA3/RPS1	This study
HLY4078 (<i>UME6-MYC</i>)	ura3::1 imm434/ura3::1 imm434 UME6/UME6-13MYC-URA3	(6)
DT640 (5' <i>utr</i> Δ- <i>UME6-MYC</i>)	ura3::1 imm434/ura3::1 imm434 UME6/5' utr∆::frt-UME6-13MYC-URA3	This study

C.d. = Candida dubliniensis C.m. = Candida maltosa S.t. = Streptococcus thermophilus

References

- 1. Gillum, A. M., E. Y. Tsay, and D. R. Kirsch. (1984) Isolation of the *Candida albicans* gene for orotidine-5'-phosphate decarboxylase by complementation of *S. cerevisiae ura3* and *E. coli pyrF* mutations. *Mol Gen Genet* 198:179-182.
- 2. Fonzi WA & Irwin MY (1993) Isogenic strain construction and gene mapping in *Candida albicans*. *Genetics* 134(3):717-728.
- 3. Banerjee M, *et al.* (2008) *UME6*, a novel filament-specific regulator of *Candida albicans* hyphal extension and virulence *Mol Biol Cell* 19(4):1354-1365.
- 4. Carlisle PL, *et al.* (2009) Expression levels of a filament-specific transcriptional regulator are sufficient to determine *Candida albicans* morphology and virulence. *Proc Natl Acad Sci U S A* 106:599-604.
- 5. Noble SM & Johnson AD (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen *Candida albicans*. *Eukaryot Cell* 4(2):298-309.
- 6. Lu Y, Su C, & Liu H (2012) A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. *PLoS Pathog* 8(4):e1002663.

Table S2

#	Primer Name	Sequence	Description
1	DTO202	agtactgaaggatccCTGTGTGTGTGTGGGGTGG	5' <i>UME6</i> -19.3 kb flank
			upstream primer for
2	DT0202		cloning into pSN52
2	D10203	agtactgaaaagcttCAGCAACAGCAACAGIGCC	3 [°] UME6 -19.3 kb flank
			aloning into nSN52
3	DTO204	antactagageggeeggeCAGGTTGACGGTTGACGGTG	5' <i>UME6</i> 10.3 kb flank
5	D10204	G	downstream primer for
		0	cloning into pSN52
4	DTO205	agtactgaagggcccGGGAATGAGTTACAGTTTATC	3' <i>UME6</i> -19.3 kb flank
		GGG	downstream primer for
			cloning into pSN52
5	DTO186	CTGTGTGTGTGTGGGGTGG	5' primer to generate
			ume64::HIS1
6	DTO189	GGGAATGAGTTACAGTTTATCGGG	3' primer to generate
_			ume6 <i>A</i> ::HIS1
7	DTO193	agtactgaaggtaccCTGTGTGTGTGTGTGGGGTGG	5' <i>UME6</i> -19.3 kb flank
			upstream primer for
0	DTO104	a staat saa staa se A COTTO A COTTO A COUTCO	cloning into pSFS2
0	D10194	aglacigaacicgagCAGGTTGACGGTTGACGGTGG	3 UMEO - 19.5 KO Halik
			cloning into pSES2
9	DTO226	agtactgaagcggccgcGATGTAGTTTCCACAGCACG	5' <i>UME6</i> -9 1 kb flank
,	010220		downstream primer for
			cloning into pSFS2
10	DTO227	agtactgaaccgcggCTTGACTCTGTTTGAAGGG	3' <i>UME6</i> -9.1 kb flank
			downstream primer for
			cloning into pSFS2
11	DTO224	agtactgaagcggccgcGTATTCTATCTGGAAGTGG	5' <i>UME6</i> -8.0 kb flank
			downstream primer for
10	DT0225		cloning into pSFS2
12	D10225	agtactgaaccgcggG1G1GA1GGAG1GA1GGC	3 UMEO -8.0 KD Hank
			cloping into pSES2
13	DTO222	agtactgaagcggccgcGAGGCAAATGGCAAGCACC	5' <i>UME6</i> -7 0 kb flank
10	D10222		downstream primer for
			cloning into pSFS2
14	DTO223	agtactgaaccgcggGTTGATGGTTATGCACCC	3' <i>UME6</i> -7.0 kb flank
			downstream primer for
			cloning into pSFS2
15	DTO220	agtactgaagcggccgcCTAGACCTAAACTACTACG	5' <i>UME6</i> -6.0 kb flank
			downstream primer for
16	DTO221	agtactgaacegeggCAACATTATCACCTAGACCC	Cioning into por 52 3' <i>LIME6</i> -6 0 kh flank
10	D10221	aguarigaarigeggenACATTATEACETAUACCE	downstream nrimer for
			cloning into pSFS2
17	DTO218	agtactgaagcggccgcGCAAATTACTTGCTGCATGT	5' <i>UME6</i> -5.0 kb flank
	-	CGG	downstream primer for
			cloning into pSFS2

18	DTO219	agtactgaaccgcggGTAGCCTCAATTAATCTTGACC	3' <i>UME6</i> -5.0 kb flank downstream primer for
19	DTO239	agtactgaagcggccgcCCATTCATTCAGTCATTCG	5' <i>UME6</i> -4.2 kb flank downstream primer for cloning into pSFS2
20	DTO240	agtactgaaccgcggCTTGATCTAGTTGTGGATGTGG	3' <i>UME6</i> -4.2 kb flank downstream primer for cloning into pSFS2
21	DTO243	agtactgaactgcagGTCGACCTAGACCTAAACTACT ACG	5' <i>UME6_{-6 kb} UR</i> upstream primer for cloning into placbasal
22	DTO90	CTGTTAAGTTGTTGTGGTAGG	3' <i>UME6</i> _{-6 kb UR} primer downstream of native HindIII site for cloning into placbasal
23	DTO89	GGTCCAGTCGACCAAGAACAATCCATTCTCG	5' <i>UME6_{-6 kb UR}</i> primer upstream of native HindIII site for cloning into placbasal
24	DTO250	agtactgaactgcaggcatgcTTATACAGTGGATTAAAA AATAAAACTAATTGGAAGTAAATTGAGG	3' <i>UME6</i> _{-6 kb} UR downstream primer for cloning into plachasal
25	DTO262	agtactgaaggtaccCTACAACCACATCCACATCC	5' <i>UME6</i> 5' UTR upstream primer for cloning into pSFS2
26	DTO263	agtactgaactcgagCCTAAATGTCACCTCAAATACC C	3' <i>UME6</i> 5' UTR upstream primer for cloning into pSFS2
27	PCO32	gatcataccgaacagagcggccgcCCTCAATTTACTTCCA ATTAG	5' <i>UME6</i> 5' UTR downstream primer for cloning into pSFS2
28	DTO272	agtactgaaccgcggGCATGATCATGACCATGACC	3' <i>UME6</i> 5' UTR orf19.1822 downstream primer for cloning into pSFS2
29	DTO271	agtactgaaccgcggCATCATCATGATCATGACC	3' <i>UME6</i> 5' UTR orf19.9381 downstream primer for cloning into pSFS2
30	DTO264	agtactgaaggtaccGTCGTAGCTGCAACAACTAGTT ACC	5' <i>UME6</i> 5' UTR upstream primer for cloning into p97CAU1
31	DTO265	agtactgaactcgagCTTCTTTCGTGAGGAGGG	3' <i>UME6</i> 5' UTR upstream primer for cloning into p97CAU1
32	DTO266	agtactgaaactagtGGAACATCAATTTACATTTCC	5' <i>UME6</i> 5' UTR downstream primer for cloning into p97CAU1
33	DTO267	agtactgaaccgcggTGTAATAAACGAGAATGG	3' <i>UME6</i> 5' UTR downstream primer for

34	DTO293	agtactgaagagctcATGGCTGTCGGTAAAAACAAG	cloning into p97CAU1 5' <i>RPS1</i> primer for cloning into pFA-GEPy-URA3
35	DTO294	agtactgaaactagtTTAAACAGATTCTAAAACAACA TC	3' <i>RPS1</i> primer for cloning into pFA-GFPγ-URA3
36	DTO298	agtactgaaggtaccCTATTAAGATCACCAGCC	5' <i>ACT1</i> promoter primer for cloning into pBS
37	DTO299	agtactgaactcgagTTTAAGCTTTTTGAATGA	3' <i>ACT1</i> promoter primer for cloning into pBS
38	DTO300	agtactgaactcgagGGAACATCAATTTACATTTCC	5' <i>UME6 5</i> ' UTR primer for cloning into pBS
39	DTO289	agtactgaactgcagCATTTATACAGTGGATTAAAAA ATAAAACTAATTGGAAGTAAATTGAGG	3' <i>UME6</i> 5' UTR primer for cloning into pBS
40	DTO169	CGTCTTTGCAGATCGTACCC	5' <i>lacZ</i> primer for qRT- PCR
41	DTO170	CTGGGAATGTTGCTTCTTCG	3' <i>lacZ</i> primer for qRT- PCR
42	DTO85	TTGCTCCAGAAGAACATCCAG	5' <i>ACT1</i> primer for qRT- PCR
43	DTO86	AGTAACACCATCACCAGAATCC	3' <i>ACT1</i> primer for qRT- PCR
44	DTO167	GAACAATGGTGGTGGTAGTGG	5' <i>UME6</i> primer for qRT- PCR
45	DTO168	AATTCGACAAATCCAACATCC	3' <i>UME6</i> primer for qRT- PCR
46	DTO314	CTCCAATTGGTGATGGTCC	5' <i>GFP</i> primer for qRT- PCR
47	DTO316	GTAACAAATTCTAACAAGACC	3' <i>GFP</i> primer for qRT- PCR
48	DK239	GTTGGGACTAGGATTGGTAAAGC	5' <i>UME6</i> primer for Northern probe
49	DK240	GATGTGGAGTAGACTTGGATAATGG	3' <i>UME6</i> primer for Northern probe
50	DK523	GTTGACCGAAGCTCCAATGAATCC	5' <i>ACT1</i> primer for Northern probe
51	DK526	CAGCAATACCTGGGAACATGG	3' <i>ACT1</i> primer for Northern probe
52	DTO312	GAGAAATCTTTTTTTTTTTTTTTTTTTTTTCGTTGC CCCACTTTTTTTTTCTTAC	5' primer for <i>UME6</i> 5' UTR uORF1 deletion
53	DTO313	GTAAGAAAAAAGTGGGGGCAACGATAAAAAA AAAAAAAAAA	3' primer for <i>UME6</i> 5' UTR uORF1 deletion
54	DTO324	GGTTTTTTCTATTGTTTAATAAGAAGGTTCTA TTTGGGGAGTTGCTTATTATTGATATTAATAA TTC	5' primer for <i>UME6</i> 5' UTR uORF2 _{1-46 bp} deletion
55	DTO323	GAATTATTAATATCAATAATAAGCAACTCCC CAAATAGAACCTTCTTATTAAACAATAGAAA AAACC	3' primer for <i>UME6</i> 5' UTR uORF2 _{1-46 bp} deletion

56	DTO325	GGTTTTTTCTATTGTTTAATAAGAAGGTTCTA	5' primer for UME6 5'
		TTTGAGGGAAAAAAGAATTCTTCG	UTR uORF2 _{47-102 bp}
			deletion
57	DTO326	CGAAGAATTCTTTTTTCCCTCAAATAGAACCT	3' primer for UME6 5'
		TCTTATTAAACAATAGAAAAAACC	UTR uORF2 _{47-102 bp}
			deletion
58	DTO332	TTTTTGCGCAAGTTAAAATCC	5' UME6 5' UTR primer
			for qRT-PCR
59	DTO333	CGAGATTTTCTGATTGATTTATGC	3' UME6 5' UTR primer
			for qRT-PCR
60	DTO76	CICIIGGIAICICIIIACCC	3' <i>UME6</i> 5' UTR 5' RACE
			primer (for-3041 transcript
			start site identification)
61	DTO258	CAACGATACTAACGACGAGGG	3' <i>UME6</i> 5' UTR 5' RACE
			primer (for -1923 transcript
()	DT0250		start site identification)
62	D10259	CIGGAGAIAAIGAAIAGIGGG	3' UME6 5' UTR 5' RACE
			primer (for -2126 transcript
(2)	DTO202		start site identification)
63	D10302	IGUAAAGUUAATTUUUGAAG	5 Solaris spike-in primer
64	DTO202		10f qK1-PCK
04	010303	CLATIOTAUIGAACAUIAGGAC	5 Solaris spike-in primer
			101 YKI-PCK

Note: Lowercase bases indicate flanking sequences within primers that contain restriction sites for cloning.

SUPPLEMENTAL FIGURES

Figure S1. 5' RACE analysis of the *UME6* **transcript.** Total RNA and cDNA were prepared from cells of a wild-type (SC5314) strain following induction in YEPD + 10% serum at 37°C. (A) 5' RACE analysis was performed using the indicated primers (reverse arrows) within the *UME6* 5' UTR to yield the indicated PCR products (red bars). +1 indicates the *UME6* translation start site. (B and C) The 5' RACE PCR products described in (A) were run on 0.8% agarose gels to determine their size. A DNA ladder is shown at left (sizes in kb). "-" indicates minus reverse transcriptase (RT) control. The precise size and identity of these PCR products was also determined more accurately by sequencing.

Figure S2. *UME6* transcript is expressed at equivalent levels in wild-type and *UME6 5' utr* Δ/Δ strains upon induction in Spider medium at 37°C. The indicated strains were grown overnight in YEPD at 30°C, washed, diluted into pre-warmed YEPD at 30°C or Spider medium at 37°C, grown for 36 hours and harvested for total RNA preparation and cDNA synthesis. *UME6* transcript levels were determined by qRT-PCR analysis and normalized to those of an *ACT1* internal control. Fold induction for each strain was determined by dividing normalized *UME6* expression values at the 36-hr. time point by those at the 0 hr. time point. Data shown represents the average of three biological replicates run in technical duplicate (mean \pm SEM).

Figure S3. The *UME6* 5' UTR inhibits *UME6*-driven hyphal growth under non-filament-inducing conditions in an overnight culture. The indicated strains were grown as described in Figure 4A. Cell aliquots were harvested at the 24 hr. time point, fixed with 4.5% formaldehyde, washed twice with 1X PBS and visualized by DIC microscopy. Bar = $10 \mu m$.

Figure S4. *ACT1* **transcript abundance in polysome fractions.** Using primers specific to the *ACT1* transcript, qRT-PCR analysis was performed with RNA from the samples grown in YEPD + 10% serum at 37°C (no EDTA treatment) described in Figure 5. Data shown represents normalized mean *ACT1* transcript levels based on two independent experiments (\pm SEM).

Figure S5. UME6 transcript levels under a variety of filament-inducing conditions are not significantly affected by deletion of the 5' UTR. Aliquots of cells grown for the Western analysis described in Figure 6 were used to prepare total RNA. Northern analysis was performed using 5 μ g of RNA from each sample and the indicated probes. *ACT1* is included as a loading control. Please note that for the 5' utr Δ -UME6-MYC strain, the upper band corresponds to the wild-type UME6 allele and the lower band corresponds to the MYC-tagged UME6 5' utr Δ allele.

Figure S6. The *UME6* 5' UTR is sufficient to inhibit protein expression by a heterologous *GFP* reporter, as determined by microscopy. The indicated strains were grown overnight in YNB minimal medium at 30°C, diluted to $OD_{600} \sim 1.0$ in YNB minimal medium at 30°C and grown for 3 hours. Cells were visualized by DIC (left panels) and fluorescence (right panels) microscopy. Bar =10 µm.

Figure S7. *GFP* transcript levels are not significantly affected by addition of the *UME6* 5' UTR. Northern analysis was performed using 3 μ g of RNA samples described in Figure 7 and the indicated probes. *ACT1* is included as a loading control.

С

tetO-5'UTR-UME6

tetO-UME6

Α

В

WT

ACT1_{pr}-UME6 5' UTR-GFP

ACT1_{pr}-UME6 5' UTR uorf1Δ uorf2Δ-GFP

Figure S7

ACT1

GFP

ACT1_{pr}-GFP

ACT1_{pr}-UME6 5' UTR-GFP

ACT1_{pr}-UME6 5' UTR uorf1**A orf2A**-GFP