# Online supplementary text of the methods

# 68 Ga-PRGD2 PET/CT scanning

The cyclic RGD peptide is modified by PEGylated dimerization to form PRGD2 and chelated with 1,4,7-triazacyclononane-1,4,7-triyltriacetic acid (NOTA).<sup>8-10</sup> <sup>68</sup>Ga-PRGD2 is synthesized on site (immediately before injection) with a radiochemical purity exceeding 97%. A Biograph 64 TruePoint TrueV PET/CT system (Siemens Medical Solutions, Erlangen, Germany) was used for scanning. For each patient, 1.85 MBq (0.05 mCi) of <sup>68</sup>Ga-PRGD2 per kilogram of body weight was injected intravenously.

# <sup>18</sup>F-FDG PET/CT scanning

Patients underwent <sup>18</sup>F-FDG PET/CT from the skull base to the planta within five days of the <sup>68</sup>Ga-PRGD2 PET/CT scan. <sup>18</sup>F-FDG was produced on site using Cyclotron RDS-111 (CTI, Knoxville, TN, USA). The same PET/CT system was used for scanning. Before the examinations, each patient was asked to fast for at least 4 h. The blood glucose level of the patient was within normal limits (lower than 6.4 mmol/L) before the <sup>18</sup>F-FDG was injected at a dosage of 5.55 MBq (0.15 mCi) per kilogram of body weight.

#### Semi-quantitative analysis

Two blinded independent nuclear medicine experts conducted the assessment of PET/CT images and reached a consensus when there was disagreement. The same nuclear medicine physicians examined all of the images using the same standard for the final analysis. A Siemens MMWP workstation was used for post-processing. For each patient, the volume of interest (VOI) was drawn over 10 large joints (bilateral shoulders, elbows, wrists, knees, and ankle) and the maximum standardized uptake values (SUV<sub>max</sub>) were recorded.

## Immunohistochemical analysis

To confirm synovial angiogenesis and  $\alpha_V \beta_3$ -integrin expression, we conducted an

immunohistochemical analysis of the synovia of two patients with active RA to corroborate their PET/CT findings. Cryosections (4- $\mu$ m thick) were obtained and subsequently incubated at room temperature with one of the following monoclonal antibodies: integrin  $\alpha_V\beta_3$  (clone BV3, Abcam, USA); CD34 (clone QBEnd/10, Leica Biosystems, Germany); Ki-67 (clone EP5, Epitomics, USA) and vascular endothelial growth factor (VEGF; clone EP1176Y, Biocare, USA). The samples were incubated with homologous secondary antibodies conjugated with horseradish peroxidase (HRP) and then diaminobenzidine (DAB) (K4065, DAKO, USA).

## Statistical analysis

The Kolmogorov-Smirnov test was conducted to evaluate the normality of continuous data. A Pearson's correlation coefficient was calculated to assess the correlation between the SUV<sub>max</sub> of <sup>68</sup>Ga-PRGD2 and <sup>18</sup>F-FDG in the joints. The paired-sample *t* test was used to compare SUV<sub>max</sub> before and after treatment. Finally, the correlations between changes in SUV<sub>max</sub> and changes in clinical parameters were calculated using Spearman's rho test. All of the statistical analyses were performed using SPSS (version 21.0, SPSS Inc., Chicago, IL, USA), and p<0.05 was considered to be statistically significant.

Table S1. Demographic characteristics of the enrolled patients with RA

| No. | Gender | Age<br>(years)                           | Disease<br>duration | Medication     | PET/CT<br>follow-up |
|-----|--------|------------------------------------------|---------------------|----------------|---------------------|
|     |        | () • • • • • • • • • • • • • • • • • • • | (months)            |                | . с с с.р           |
| 1   | Female | 48                                       | 116                 | MTX, LEF, PRED | Yes                 |
| 2   | Female | 26                                       | 46                  | MTX, LEF, PRED | Yes                 |
| 3   | Male   | 57                                       | 5                   | MTX, NSAIDS    | Yes                 |
| 4   | Female | 49                                       | 28                  | MTX, NSAIDS    | Yes                 |
| 5   | Female | 35                                       | 11                  | MTX, HCQ, PRED | Yes                 |
| 6   | Female | 39                                       | 12                  | MTX            | Yes                 |
| 7   | Female | 54                                       | 27                  | MTX            | Yes                 |
| 8   | Female | 57                                       | 10                  | MTX, NSAIDS    | Yes                 |
| 9   | Female | 50                                       | 126                 | MTX            | Yes                 |
| 10  | Female | 53                                       | 16                  | MTX, NSAIDS    | Yes                 |
| 11  | Female | 27                                       | 29                  | MTX, PRED      | Yes                 |
| 12  | Female | 38                                       | 8                   | ETN            | Yes                 |
| 13  | Female | 54                                       | 27                  | MTX, NSAIDS    | No                  |
| 14  | Female | 43                                       | 23                  | MTX, NSAIDS    | No                  |
| 15  | Female | 65                                       | 60                  | MTX, NSAID     | No                  |
| 16  | Female | 57                                       | 6                   | MTX, LEF, PRED | No                  |
| 17  | Male   | 58                                       | 34                  | MTX, PRED      | No                  |
| 18  | Female | 42                                       | 120                 | MTX            | No                  |
| 19  | Female | 66                                       | 1                   | MTX, PRED      | No                  |
| 20  | Female | 70                                       | 24                  | MTX            | No                  |

RA, rheumatic arthritis; MTX, methotrexate; LEF, leflunomide; PRED, prednisone; NSAIDS, nonsteroidal anti-

inflammatory drugs; HCQ, hydroxychloroquine; ETN, etanercept.

**Table S2.** Comparison of the accumulation of <sup>68</sup>Ga-PRGD2 and the uptake of <sup>18</sup>F-FDG in the responders and poor-responders among the patients with RA

|                                                 | Pre-<br>treatment | Post-<br>treatment | р      |
|-------------------------------------------------|-------------------|--------------------|--------|
| Responders (number of joints assessed: 90)      |                   |                    |        |
| SUV <sub>max</sub> of <sup>68</sup> Ga-PRGD2    | 2.23 ±1.31        | 1.32 ± 0.83        | <0.001 |
| SUV <sub>max</sub> of <sup>18</sup> F-FDG       | $2.48 \pm 1.48$   | $1.69 \pm 0.64$    | <0.001 |
| Poor-responders (number of joints assessed: 30) |                   |                    |        |
| SUV <sub>max</sub> of <sup>68</sup> Ga-PRGD2    | $1.42 \pm 0.83$   | $1.97 \pm 0.97$    | 0.002  |
| SUV <sub>max</sub> of <sup>18</sup> F-FDG       | 1.92 ± 1.10       | 2.89 ± 1.18        | 0.001  |

Data are depicted as the mean ± standard deviation. The RA patients who achieved 50% or greater improvement in cDAI or cDAI≤2.8 after treatment were defined as responders; the others were classified as poor-responders.



**Figure S1.** <sup>68</sup>Ga-PRGD2 PET/CT images and immunohistochemical stains of the knee synovium of a patient (F, 54 y) with active rheumatoid arthritis. **A and B:** The sagittal and transaxial views using PET/CT demonstrate broad intense <sup>68</sup>Ga-PRGD2 accumulation in the synovium of the inflammatory knee joint. **C:** High levels of expression of the  $\alpha_V \beta_3$ -integrin were observed in the vascular endothelial cells (the inset figure demonstrates the magnified view of a blood vessel). **D and E:** The vascular endothelial growth factor (VEGF) and CD34 stains indicate an extensive vascular network in the inflammatory synovium. **F:** Positive nuclear expression of Ki-67 indicates active proliferation. (Magnification 200x)