Quantification of High-Resolution <sup>1</sup>H-[<sup>13</sup>C] NMR Spectra from Rat Brain Extracts Robin A. de Graaf, Golam M. I. Chowdhury, Kevin L. Behar

## ABSTRACT

NMR spectroscopy in combination with <sup>13</sup>C-labeled substrate infusion is a unique technique to obtain information about dynamic metabolic fluxes non-invasively in vivo. In many cases the *in vivo* information content obtained during dynamic <sup>13</sup>C studies in rodents can be enhanced by high-resolution <sup>1</sup>H-[<sup>13</sup>C] NMR spectroscopy on brain extracts. Previously it has been shown that <sup>1</sup>H NMR spectra from rat brain extracts can be accurately quantified with a spectral fitting routine utilizing simulated basis sets using complete prior knowledge of chemical shifts and scalar couplings. The introduction of <sup>13</sup>C label into the various metabolites presents complications that demand modifications of the spectral fitting routine. As different multiplets within a given molecule accumulate various amounts of <sup>13</sup>C label, the fixed amplitude relationship between multiplets typical for <sup>1</sup>H NMR spectra must be abandoned. In addition, <sup>13</sup>C isotope effects lead to spectral multiplet patterns that become dependent on the amount of <sup>13</sup>C label accumulation, thereby preventing the use of a common basis set. Here a modified spectral fitting routine is presented that accommodates variable <sup>13</sup>C label accumulation and <sup>13</sup>C isotope effects. Spectral fitting results are quantitatively compared to manual integration on column-separated samples in which spectral overlap is minimized.

## TABLE OF CONTENTS

Figure S1. Metabolic model of glycolysis and the tricarboxylic acid (TCA) cycle.

Table S1. <sup>13</sup>C fractional enrichments obtained with integration and spectral fitting.



Figure S1. Metabolic model of glycolysis and the tricarboxylic acid (TCA) cycle. Small circles correspond to carbon atoms, whereby filled circles indicate <sup>13</sup>C labeled positions. When [1-<sup>13</sup>C]-glucose is used as the substrate, the <sup>13</sup>C label is transferred via the glycolytic pathway to [3-<sup>13</sup>C]-pyruvate. Pyruvate is in fast exchange with alanine and lactate, both of which are detectable by <sup>1</sup>H and <sup>1</sup>H-[<sup>13</sup>C] NMR spectroscopy. The <sup>13</sup>C label enters the TCA cycle when [2-<sup>13</sup>C] acetyl CoA condenses with oxaloacetate to form [2-<sup>13</sup>C]-citrate. After three additional TCA cycle steps the <sup>13</sup>C label arrives in 2-oxoglutarate (2OG) which is in fast exchange with the large, NMR detectable pool of glutamate. During the first turn of the TCA cycle [4-<sup>13</sup>C]-glutamate is formed. Subsequent turns lead to the formation of [2-<sup>13</sup>C] and [3-<sup>13</sup>C]-glutamate. In the brain the excitatory neurotransmitter glutamate can be converted to glutamine via the glutamate-glutamine neurotransmitter cycle or to the inhibitory neurotransmitter  $\gamma$ -amino butyric acid (GABA). The metabolic model shown is in essence a one-compartment model. In many applications related to cerebral metabolism the model is extended to four compartments encompassing blood, astroglia, glutamatergic neurons and GABAergic neurons.

| infusion time (min) 15 |                     | 15                  | 30                  | 60                  | 60                  |
|------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| multiplet              | integration/fitting | integration/fitting | integration/fitting | integration/fitting | integration/fitting |
| Asp-H3                 | 15.2 / 14.6         | 16.1 / 19.2         | 20.2 / 22.4         | 27.4 / 26.1         | 36.6 / 36.9         |
| Ala-H3                 | 26.9 / 28.2         | 30.8 / 30.4         | 30.9 / 32.2         | 37.9 / 36.6         | 32.1 / 33.6         |
| Lac-H3                 | 27.2 / 27.0         | 32.1 / 33.9         | 30.8 / 28.3         | 36.7 / 37.6         | 34.4 / 34.8         |
| Gln-H3                 | 5.4 / 5.4           | 5.1 / 5.4           | 8.7 / 10.5          | 19.5 / 20.1         | 17.5 / 18.2         |
| Gln-H4                 | 12.0 / 11.5         | 11.9 / 12.3         | 20.3 / 19.1         | 32.2 / 33.2         | 25.7 / 24.2         |
| Glu-H3                 | 8.6 / 8.9           | 8.7 / 8.9           | 16.8 / 16.5         | 27.2 / 27.0         | 29.6 / 27.0         |
| Glu-H4                 | 26.9 / 26.0         | 25.8 / 26.2         | 34.0 / 32.6         | 38.6 / 37.9         | 37.1 / 37.2         |
| GABA-H2                | 20.4 / 19.1         | 18.3 / 18.7         | 27.2 / 24.0         | 37.2 / 36.6         | 35.5 / 32.8         |
| GABA-H3                | 7.8 / 6.7           | 7.5/7.2             | 12.6 / 12.7         | 28.9 / 29.3         | 25.1 / 23.6         |

Table S1: Carbon-13 fractional enrichments as determined by spectral fitting of non-separated or by integration of column-separated brain extract samples<sup>1</sup>.

<sup>1</sup> Metabolite fractional enrichments are not corrected for <sup>13</sup>C blood glucose fractional enrichment.