Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu_{2/3}) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence.

Raveendra-Panickar Dhanya^{†,1}, Douglas J. Sheffler^{†,1}, Russell Dahl¹, Melinda Davis¹, Pooi San Lee¹, Li Yang¹, Hilary Highfield Nickols^{3,4}, Hyekyung P. Cho^{2,4}, Layton H. Smith, Manoranjan S. D'Souza⁵, P. Jeffrey Conn^{2,4}, Andre Der-Avakian⁵, Athina Markou⁵, Nicholas D. P. Cosford^{*,1}

¹Cell Death and Survival Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037. Departments of ²Pharmacology, ³Pathology, and ⁴Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232. ⁵ Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093.

Supporting Information

Plasma-Protein Binding

Pipeline Pilot was used to determine an estimate of plasma-protein binding for selected analogues. The details of the QSAR model used for prediction are as follows:

The model was trained on a data set of 260 compounds as described in Dixon and Merz, *J. Med. Chem.*, **44**, 2001, pp. 3795-3809, and an additional 594 compounds from Votano et. al, *J. Med. Chem.*, **49**, 2006, pp. 7169-7181. However, the modeling methodology described in the Dixon et. al. paper was not used; instead, modified Bayesian learning (described in Xia, Maliski, Gallant, and Rogers, *J. Med. Chem.*, **47**, 2004, pp. 4463-4470) was performed.

This component contains a model useful for predicting Plasma-Protein binding, that is, whether

or not a compound is likely to be highly bound ($\geq 90\%$ bound) to carrier proteins in the blood. The model outputs the value *ADMET_EXT_PPB#Prediction*. If true, the compound is predicted to be a binder ($\geq 90\%$). Otherwise, it is predicted to be a weak or non-binder (< 90%).

The outputs in Table S1 defined as follows:

- § NormalizedProbability (PPB): The standard Laplacian-modified Bayesian score.
- § Enrichment (PPB#Enrichment): An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the "good" category.
- § EstPGood (PPB#EstPGood): The estimated probability that the sample is in the "good" category, based on an assumed normal distribution of scores within the good and non-good categories.
- § Prediction: A True/False prediction using the best cutoff value estimated from leave-one-out cross-validation. The cutoff is chosen to minimize the average of the false positive rate and false negative rate.

Compound	PPB	PPB#Enrichment	PPB#EstPGood	PPB#Prediction
20	3.830	1.540	0.593	True (≥90%)
36	6.190	1.611	0.621	True (≥ 90%)
44	4.720	1.568	0.604	True (≥90%)
50	4.374	1.557	0.600	True (≥90%)
60	5.996	1.605	0.618	True (≥90%)
65	5.531	1.592	0.613	True (≥90%)
68	4.294	1.554	0.599	True (≥90%)
72	4.219	1.552	0.598	True (≥90%)
73	4.565	1.563	0.602	True (≥90%)
74	4.183	1.551	0.598	True (≥90%)
75	6.292	1.613	0.622	True (≥ 90%)

Table S1: Predicted plasma protein binding for selected compounds.

Receptor/Target	Species	Cpd 72 % inhibition ^b
Adrenergic α_{1A}	Human	-10.5
Adrenergic α_{1B}	Human	-17.1
Adrenergic α_{1D}	Human	-3.6
Adrenergic α_{2A}	Human	-7.7
Adrenergic α_{2B}	Human	11.5
Adrenergic α_{2C}	Human	0.6
Adrenergic β_1	Human	-7.3
Adrenergic β_2	Human	0.7
Adrenergic β_3	Human	24.8
Benzodiazepine (brain, [³ H]Flunitrazepam)	Rat	-11.2
Dopamine D ₁	Human	1.9
Dopamine D ₂	Human	1.0
Dopamine D ₃	Human	-28.2
Dopamine D_4	Human	-2.9
Dopamine D ₅	Human	-0.9
GABA _A (brain, [³ H]Muscimol)	Rat	11.0
Histamine H ₁	Human	0.2
Histamine H ₂	Human	(> 10 µM)
Histamine H ₃	Guinea pig	-5.2
Histamine H ₄	Human	(> 10 µM)
Muscarinic M ₁	Human	-6.6
Muscarinic M ₂	Human	-1.0
Muscarinic M ₃	Human	8.3
Muscarinic M ₄	Human	-0.9
Muscarinic M ₅	Human	-3.8
Opiate δ (OP1, DOP)	Human	13.7
Opiate κ (OP2, KOP)	Human	31.2
Opiate µ (OP3, MOP)	Human	11.1
Peripheral benzodiazepine receptor ([³ H]PK11195)	Rat	1.0
Serotonin (5-Hydroxytryptamine) 5-HT _{1A}	Human	-10.2
Serotonin (5-Hydroxytryptamine) 5-HT _{1B}	Human	16.2
Serotonin (5-Hydroxytryptamine) 5-HT _{1D}	Human	60.7 (> 10 µM)
Serotonin (5-Hydroxytryptamine) 5-HT _{1E}	Human	-5.2
Serotonin (5-Hydroxytryptamine) 5-HT _{2A}	Human	-0.6
Serotonin (5-Hydroxytryptamine) 5-HT _{2B}	Human	7.9
Serotonin (5-Hydroxytryptamine) 5-HT _{2C}	Human	20.2
Serotonin (5-Hydroxytryptamine) 5-HT ₃	Human	-15.3
Serotonin (5-Hydroxytryptamine) 5-HT _{5A}	Human	4.5
Serotonin (5-Hydroxytryptamine) 5-HT ₆	Human	-1.1
Serotonin (5-Hydroxytryptamine) 5-HT ₇	Human	1.8
Sigma σ_1	Rat	-11.3
Sigma σ_2	Rat	6.6
Transporter, Dopamine (DAT)	Human	-7.7
Transporter, Norepinephrine (NET)	Human	-4.8
Transporter, Serotonin (5-Hydroxytryptamine) (SERT)	Human	0.3

Table S2. Off-target profiling data for compound 72.^a

^aCompound **72** was tested for displacement of radioligand binding activity at 10 μ M. Assays were performed by the NIMH Psychoactive Drug Screening Program (UNC Chapel Hill) unless otherwise noted. ^bInhibition at 10 μ M as a percentage of displacement of the respective radioligand at each target. IC₅₀ values where applicable are shown in parentheses.