Supplemental material

Funk et al., http://www.jcb.org/cgi/content/full/jcb.201310018/DC1

Figure S1. **Calibration curves for hydrodynamic protein analyses.** (A) Calibration curve of the Superose 6 10/300 column used to determine the Stokes radius of Stu1 (Fig. 1 A). Kav is the gel-phase distribution coefficient, V_E is the elution volume, V_C is the column volume, and V_O is the void volume. The data shown are from a single representative experiment out of two analyses. AU, arbitrary unit. (B) Sucrose gradient calibration curve used to determine the sedimentation coefficient of Stu1 (Fig. 1). The data shown are from a single representative experiment out of two analyses.

Loops			T1	T2	Т3	Τ4	Т5
			_		_		_
XMAP215 family		SC_Stu2	YKL <mark>W<i>KAR</i></mark>	TDSNV	KGLTSS <mark>R</mark> A	FFE <mark>KK</mark> LP	LAGHGDR <i>N<mark>VR</mark></i>
	\vdash	SP_ALP14	RIVHKVW <i>KVR</i>	VLT <mark>DSN</mark> V	KCLTSP <mark>R</mark> A	PSLSA <mark>R</mark> SPK	LFGHADK <i>N<mark>V</mark>R</i>
	00_	HS_CKAP5	CEHKLW <i>KAR</i>	RFVT<mark>ESN</mark>A	KVFNQP <mark>K</mark> A	GLDNKNPK	LFESREK <i>AVR</i>
		XL_XMAP215	CEHKVW <i>KAR</i>	FVT<mark>ESN</mark>A	KVFNQP <mark>K</mark> A	KGLDNKNP	LFESREK <i>AIR</i>
		DM_MSPS	RCVHKLW <i>KAR</i>	KMVV<mark>DSN</mark>A	KCIAAP <mark>K</mark> T	KGMEAKNP	LMS <mark>D</mark> RDK <i>T<mark>VR</mark></i>
		SC_Stu2	ITSSKW <i>KDR</i>	IQK <mark>D</mark> ANI	RTKEK <mark>K</mark> P	MKH <mark>K</mark> TPQ	IVNDTQPAIR
		SP_ALP14	ETLMASSKW <i>KDR</i>	KSVSK <mark>DAN</mark> I	RSKEK <mark>K</mark>	FAGN <mark>KNP</mark> Q	GVSDTFE <i>PVR</i>
)G2	HS_CKAP5	KIEAKKW <i>QE<mark>R</mark></i>	VVGK <mark>DTN</mark> V	KFKEK <mark>K</mark> P	VMDNKNPTI	HINDSAP <i>EVR</i>
	T	XL_XMAP215	KIEAKKW <i>QER</i>	VVGKDTNV	KFKEK <mark>K</mark> P	VMDNKNPAI	QINDSAP <i>EVR</i>
		DM_MSPS	DKLEEKKWT <i>LR</i>	VITK <mark>DSN</mark> V	KFKEK <mark>K</mark> P	SLSNKNPS	KTLNEPDP <i>TVR</i>
		HS_CKAP5	LLDSSNW <i>KER</i>	KKPGWK <mark>ETN</mark> F	KIGDV <mark>K</mark> CG	MAFSQ <mark>KNP</mark>	ALAATNP <i>A<mark>VR</mark></i>
	EDC	XL_XMAP215	QLDSSNW <i>KER</i>	KKPGFK <mark>ETN</mark> F	KVGDV <mark>K</mark> CG	LAFAQ <mark>KNP</mark>	TALAATNP <i>A<mark>IR</mark></i>
	T(DM_MSPS	GLVDSNW <i>KNR</i>	RKPGLK <mark>EMN</mark> F	EKLADA <mark>K</mark> NG	FAFEQ <mark>K</mark> SPKVQ	GVQSTNP <i>T<mark>V</mark>R</i>
		SC_Stu1	QSVKETEQNWKLR	SSLRT	LSST <mark>KK</mark> I	NE <mark>KT</mark> VTPR	KGISDSQT <i>TVR</i>
	2	SP_Cls1	EGRETEQNW <i>SVR</i>	LLSLRTT	VCSVT <mark>KK</mark> L	LAAHDTNAQL	RGLADSNSQVR
	JD (HS_CLASP1	LSDDKHDW <i>EQ</i> R	SAKDLRS	LIPNSAKI	NCTS <mark>KS</mark> V	KGIHDADS EAR
CLASP family	10	DM_MAST	VIISDKNADWEKR	LKE <mark>ELRS</mark> Q	LIQN <mark>SAK</mark> V	TLNQS <mark>KS</mark> K	KSIGDADC <i>DAR</i>
		XL_CLASP1	EILSDDKHDW <i>EQR</i>	SAKDLRS	LVPNSAKI	NCTS <mark>KS</mark> VAV	KGIHDADS <i>EAK</i>
	T0GL1	SC_Stu1	FKDESVPI <i>EEK</i>	SGHYAY <mark>RS</mark> Y	ELPNEKKF	RPSENQ <mark>N</mark> GDYL	NNNLNEHA <i>NDD</i>
		SP_Cls1	LKSNAST <i>DE<mark>K</mark></i>	ALTTVN	IDHIASRDL	LSTTS <mark>KS</mark> A	NLENANP <i>SVR</i>
		HS_CLASP1	VLQK <mark>D</mark> VGKR <i>LQVG</i>	ATSWVNS <mark>SN</mark> Y	RLGDA <mark>KD</mark>	GGFKH <mark>KN</mark> FR	LLGDPNS <i>QVR</i>
		DM_MAST	QMPKADM _R VK	WLTGSHF	RLGDSRD	SCFKH <mark>KN</mark> A	LLGDPTV <i>NVR</i>
		XL_CLASP1	IQQKDV <i>GK</i> R	SWVNS <mark>SN</mark> Y	RLGDA <mark>KD</mark>	SGFKH <mark>KN</mark> FR	LLGDPNS <i>QVR</i>

Red: Strong conservation within TOGs of XMAPs and TOGLs of CLASPs

Green: Strong conservation within TOGs of XMAPs and TOGL2 (but not with TOGL1) of CLASPs

Orange: Strong conservation within TOGs of XMAPs; no or sporadic conservation with TOGLs of CLASPs

Purple: Conservation within TOGL2 of XMAPs and TOGLs of CLASPs

Blue: Conservation within TOGL1 and/or TOGL2 of CLASPs

Italics: Predicted to be part of the helix flanking the loop

Shaded: Residues that are important for tubulin binding (Al-Bassam et al., 2010; Al-Bassam et al., 2007; Ayaz et al., 2012).

Figure S2. Sequence alignment of the intra-HEAT repeat loops of the XMAP215 and CLASP family TOG domains. The intra-HEAT repeat loops were identified using crystal structure information (Ayaz et al., 2012; De la Mora-Rey et al., 2013; Leano et al., 2013) or via secondary structure prediction (Predict-Protein) and aligned manually.

Figure S3. Spindle phenotypes of Stu1 mutants. Cells were treated as described in Fig. 6 (A–E). Spindle length and spindle phenotypes were quantified as in Fig. 6 F but 2.5 h after the G1 release.

Figure S4. Deletion of TOGL1 compromises specifically kMTs. (A and B) The tension at metaphase KTs is increased in $stu 1\Delta TOGL1$ cells. (A) The chromatin in the vicinity of CEN5 is on average more stretched in $stu 1\Delta TOGL1$ cells. Cells were arrested in metaphase by Cdc20 depletion for 5 h. Stretched chromatin in the vicinity of CEN5, labeled by a tetO array, and visualized by tetR-GFP was quantified as indicated. n > 130. Bar, 2 µm. (B) $stu 1\Delta TOGL1$ cells are more sensitive to reduced amounts of cohesion. Dilution series of STU1 and $stu 1\Delta TOGL1$ cells with SCC1 expressed under the control of the pGAL promoter. (C) Deletion of TOGL1 has, if anything, a stabilizing effect on non-kMTs in G1. Cells were synchronized in G1 by the addition of α factor. DIC, differential interference contrast. Bars, 2 µm.

Figure S5. **Stul constructs used for in vitro MT binding experiments and MT sedimentation assay.** (A) Indicated Stul constructs were purified from yeast as described in the Materials and methods section. The asterisk shows IgG (mass spectrometry). (B) MT sedimentation assays. Stul constructs (100 nM) were incubated with and without taxol-stabilized MTs (310 nM polymerized tubulin) and centrifuged through a 40% glycerol cushion. 50% of the supernatant (supe) or resuspended pellet was analyzed. Ø indicates that no Stul construct was added. (C) Quantification of the MT pelleting assay. The intensity of the Stul bands was measured in each lane. The percentage of the Stul constructs present in the pellet of the control (no MTs) was subtracted from the percentage of Stul in the pellet containing MTs. Error bars represent the SDs of two experiments.

Table S1. Yeast strains used in this study

Strain name	Relevant genotype	Experiment/figure
YPH499	MATa ade2-101ochre trp1- <u>4</u> 63 leu2- <u>4</u> 1 ura3-52 his3- <u>4</u> 200 lys2-801ambre	
YMS231	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre	
YCF2177	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 SUP11 CYH2S] lys2-801ambre::pSTU1-FLAG-STU1-NLS-GFP::LYS2 Δstu1::HIS3MX6	T1
YSK633	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre cyh2R [CF: CEN6 URA3 SUP11 CYH2S] Δmad2::klTRP1	T1
YCF2174	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 CYH2S SUP11] lys2-801ambre::pSTU1-FLAG-stu1Δ(aa1–260)-NLS::LYS2 Δstu1::HIS3MX6	Τl
YVS1772	MATa Δsst1 ade2-101ochre trp1-063 lev2-01 vra3-52 his3-0200 stv10(aa301–569) -EGFP::kITRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1 + pCF1137	T1
YVS2222	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 CYH2S SUP11] lys2-801ambre::pSTU1-FLAG-stu1Δ(aa570–716)-NLS-GFP:: LYS2 Δstu1::HIS3MX6	TI
YVS2220	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 CYH2S SUP11] lys2-801ambre::pSTU1-FLAG-stu1Δ(aa717–996)-NLS-GFP:: LYS2 Δstu1::HIS3MX6	TI
YVS2201	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 CYH2S SUP11] lys2-801ambre::pSTU1-FLAG-stu1Δ(aa995–1,180)-NLS-GFP::LYS2 stu1Δ::HIS3MX6	TI
YCF2175	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 CYH2S SUP11] lys2-801ambre::pSTU1-FLAG-stu1Δ(aa1,182–1,513)-NLS-GFP::LYS2 Δstu1:: HIS3MX6	TI
YCF2176	MATα ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 cyh2R [CF: CEN6 URA3 CYH2S SUP11] lys2-801ambre::pSTU1-FLAG-stu1Δ(aa1,182–1,513)-Zipper-NLS-GFP:: LYS2 Δstu1::HIS3MX6	TI
YMK1905	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre:: pGAL1-FLAG-STU1::LYS2	1 (B and C) and S1 (A and B)
YCF1964	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Stu1-6Ha::kITRP1 lys2-801ambre::Stu1 promotor-FLAG-stu1(aa1–762)-NLS-GFP::LYS2	1 E
YCF1965	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Stu1-6Ha::klTRP1 lys2-801ambre::Stu1 promotor-FLAG-stu1(aa717–1,513)-NLS-GFP::LYS2	1 E
YCF2178	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Stu1-6Ha::kITRP1 lys2::Stu1 promotor-stu1(aa717–996)-NLS-GFP::LYS2	1 E
YCF2179	MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre Stu1-6Ha::klTRP1 lys2::Stu1 promotor-stu1∆(aa717–994)-NLS-GFP::Lys2	1 E
YCF2182	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Stu1-6Ha::kITRP1, lys2::Stu1 promotor-stu1(aa996-1,181)-NLS-GFP::LYS2	1 E
YCF2237	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Stu1-6Ha::kITRP1 lys2::Stu1 promotor-stu1Δ(aa995–1,180)-NLS-GFP::LYS2	1 E
YCF2180	MATa	1 E
YCF2181	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Stu1-6Ha::kITRP1 lys2::Stu1 promotor-stu1Δ(aa1,182–1,513)-NLS-GFP::LYS2	1 E
YVS1718	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 ura3-52::CFP-TUB1::URA3 AME1-mCherry::hphNT1 lys2-801ambre::pGAL-STU1-NLS-GFP::LYS2	2 (A, B, and D), 6 H, 7 (B and C), and S5
YJO1164	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre STU1-ProA-7HIS::HIS3MX6	2 C
YCF1970	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 STU1-ProA-7HIS:: HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1Δ(aa1–260)-NLS-GFP::LYS2	2 C
YCF1969	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 STU1-ProA-7HIS:: HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1(aa1–260)-NLS-GFP::LYS2	2 C
YVS1972	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 STU1-ProA-7HIS:: HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1Δ(aa301–560)-NLS-GFP::LYS2	2 C
YVS1971	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 STU1-ProA-7HIS:: HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1(aa261–569)-NLS-GFP::LYS2	2 C
YVS1919	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 STU1-ProA-7HIS:: HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1(W339A, R342A, K428A, K429A) -NLS-GFP::LYS2	2 D
YVS1408	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3 STU1-NLS-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1	2 (E and F), 3 A, 6 (A and F), 8 (A and D), and S3

S6 JCB

Table S1. Yeast strains used in this study (Continued)

Strain name	Relevant genotype	Experiment/figure
YVS1820	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3 stu1Δ(aa1–260)-EGFP:: kITRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1	2 (E and F), 6 (B and F), S3, and S4 C
YVS2232	MATa Δsst1 ade2-101ochre trp1- <u>1</u> 63 leu2- <u>1</u> 1 his3- <u>1</u> 200 ura3-52::CFP-TUB1:: URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-UbiR-STU1 lys2-801ambre::pSTU1-FLAG- stu1 <u>1</u> (aa301–569)-NLS-GFP::LYS2	2 (E and F) and S3
YVS2230	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:: CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL-UbiR-STU1	2 (E and F) and S3
YVS2231	MATa Δsst1 ade2-101ochre trp1- <u>Δ</u> 63 leu2- <u>Δ</u> 1 his3- <u>Δ</u> 200 ura3-52::CFP-TUB1:: URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL-UbiR-STU1 lys2-801ambre:: pSTU1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS-GFP::LYS2	2 (E and F) and S3
YCF2272	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3 Δstu1::HIS3MX6 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1 lys2-801ambre::pSTU1- stu1Δ(aa1,182–1,513)-NLS-GFP::LYS2	3 B, 6 (D and F), 8 (B and D), and S3
YCF2274	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 ura3-52::CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL-UbiR-STU1 lys2-801ambre::pSTU1-FLAG- stu1(aa1,181–1,513)-NLS-GFP::LYS2	3 B
YCF2273	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3 Δstu1::HIS3MX6 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1 lys2-801ambre::pSTU1- stu1Δ(aa1,182–1,513)-Zipper-NLS-GFP::LYS2	3 B, 6 (E and F), 8 (C and D), and S3
YVS2028	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre STU1-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3	3 C and 5 C
YCF2069	MATa Δsst1 ade2-101ochre trp1- <u>1</u> 63 leu2- <u>1</u> 1 ura3-52 his3- <u>1</u> 200 lys2-801ambre stu1 <u>1</u> (aa1–260)-NLS-CFP::KANMX6 ade2::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 Spc72-mCherry::hphNT	3 C and 5 C
YCF2165	MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre ∆stu1:: stu1∆(aa1–260, aa995–1,180)-GFP::TRP1 ade1::pURA3-TetR-3×CFP-HPH1 CEN5-tetO2 × 112::URA3 SPC72-3mCherry::natNT2	3 C
YCF2167	MATa Δsst1 trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre Δstu1:: stu1Δ(aa1–260, aa570–716)-CFP::KANMX6 Spc72-3mCherry::hphNT1 ade2-101ochre::tetR-GFP:: ADE2 CEN5-tetO2 × 112::URA3	3 C
YVS2029	MATa Δsst1 trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre stu1 Δ(aa995-1,180)-CFP::KANMX6 Spc72-3mCherry::hphNT1 ade2-101ochre:: tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3	3 (C and D) and 5 C
YVS2152	MATa Δsst1 ade2-101ochre trp1- <u>1</u> 63 leu2- <u>1</u> 1 ura3-52 his3- <u>1</u> 200 lys2-801ambre stu1Δ(aa995–1,180)-EGFP::klTRP1 ade1::pURA3-TetR-3×CFP::hphNT1 SPC72-mCherry:: natNT2 CEN5-tetO2 × 112::URA3	3 (C and D)
YVS2154	MATa Δsst1 ade2-101ochre trp1- <u>4</u> 63 leu2- <u>4</u> 1 ura3-52 his3- <u>4</u> 200 lys2-801ambre stu1 <u>4</u> (aa570–716, aa995–1,180)-EGFP::klTRP1 ade1::pURA3-TetR-3×CFP::hphNT1 SPC72-mCherry::natNT2 CEN5-tetO2 × 112::URA3	3 (C and D)
YCF2271	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:: CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL-UbiR-STU1 pSTU1-FLAG-stu1(aa1–260, aa1,181–1,513)-NLS-GFP::LYS2	3 E
YCF2270	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:: CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL-UbiR-STU1 pSTU1-FLAG-stu1(aa1–260)-Zipper-NLS-GFP::LYS2	3 E
YCF1690	Mat a Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre STU1-CFP::KANMX6 SPC72-mCherry::hphNT1 ade2-101ochre::tetR-GFP::ADE2 ChrV-tetO2 × 112-URA3-ChrV spc105::TRP1-pGal-UbiR-SPC105	3 F
YCF2226	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 Δstu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-STU1-NLS-GFP::LYS2 cdc20::LEU2-pMET25-CDC20	4 (A–C)
YCF2228	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 Δstu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1Δ(aa1–260)-NLS-GFP::LYS2 cdc20::LEU2-pMET25-CDC20	4 (A and B)
YVS2266	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 Δstu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1Δ(aa570–716)-NLS-GFP::LYS2 cdc20:: LEU2-pMET25-CDC20	4 (A and B)
YVS2236	MATa Δsst1 ade2-101ochre trp1- <u>Δ</u> 63 leu2- <u>Δ</u> 1 ura3-52 his3- <u>Δ</u> 200 Δstu1:: HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1 <u>Δ</u> (aa995–1,180)-NLS-GFP::LYS2 cdc20::LEU2-pMET25-CDC20	4 (A and B)
YCF2227	MATa Δsst1 ade2-101ochre trp1- <u>Δ</u> 63 leu2- <u>Δ</u> 1 ura3-52 his3- <u>Δ</u> 200 Δstu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1Δ(aa1,182–1,513)-NLS-GFP::LYS2 cdc20::LEU2-pMET25- CDC20	4 (A and B)

Table S1. Yeast strains used in this study (Continued)

Strain name	Relevant genotype	Experiment/figure
YCF2229	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 Δstu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1Δ(aa1,182–1,513)-Zipper-NLS-GFP::LYS2 cdc20::LEU2- pMET25-CDC20	4 (A and B)
YJO2349	, Mata ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre sst1::loxP cdc15-1 STU1-yEGFP::hphNT1	4 C
YCF2170	MATa Δsst1 ade2-101ochre trp1-Δ63 lev2-Δ1 vra3-52 his3-Δ200 lys2-801ambre STU1-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 cdc20::HIS3MX6-pMET25-CDC20	5 (A, D, F, and G), 6 G, and S4 A
YCF2172	MATa Δsst1 ade2-101ochre trp1-Δ63 lev2-Δ1 vra3-52 his3-Δ200 lys2-801ambre stv1Δ(aa1– 260)-NLS-CFP::KANMX6 ade2::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 SPC72-mCherry:: hphNT1 cdc20::HIS3MX6-pMET25-CDC20	5 (A, D, F, and G), 6 G, and S4 A
YVS2104	MATa Δsst1 trp1-Δ63 leu2- <u>0</u> 1 ura3-52 his3-Δ200 lys2-801ambre stu1Δ(aa995–1,180) -CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 cdc20::LEU2-pMET25-CDC20	5 (A, F, and G) and 6 G
YCF2284	MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre ∆stu1::stu1∆(aa1–260, aa995–1,180)-GFP::TRP1 ade1::pURA3-TetR-3×CFP-HPH1 CEN5-tetO2 × 112::HIS3MX6 SPC72-3mCherry::natNT2 cdc20::LEU2-pMET25-CDC20	5 (A and G)
YJO1334	MATa Δsst1 trp1-Δ63 leu2-Δ1::LEU2 ura3-52 his3-Δ200 lys2-801ambre ade2-101ochre:: tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 SPC72-3mCherry::hphNT1 kITRP1:: pGAL-UbiR-STU1-CFP::KANMX4	5 C
YVS2078	MATa Asst1 ade2-101ochre leu2-A1 ura3-52 his3-A200 lys2-801ambre ade1:: pURA3-TetR-3×CFP-hphNT1 CEN5-tetO2 × 112::URA3 SPC72-mCherry::natNT2 tro1-A63::GFP-TUB1::TRP1 KANMX6-pGAL-UbR-STU1	5 C
YCF2314	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre stu1Δ(aa1-260)-NLS-CFP::kanMX6 ade2::tetR-GFP:ADE2 1.4kb left of CEN5-tetO2 × 112::URA3 Spc72-mCherry::hphNT cdc20::HIS3MX6-pMET25-CDC20 mtw1::MTW1-stu1Δ(aa1-260)-natNT2	5 D
YCF2315	MATa Δsst1 ade2-101 ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801 ambre stu1Δ(aa1–260)-NLS-CFP::KANMX6 ade2-101 ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 SPC72-mCherry::hphNT cdc20::HIS3MX6-pMET25-CDC20 LYS2::pSTU1-stu1Δ(aa1–260)-NLS	5 D
YBK2242	MATa Δsst1 trp1-Δ63 lev2-Δ1 ura3-52 his3-Δ200 lys2-801ambre STU1-CFP:: KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 cdc20::HIS3MX6-pMET25-CDC20 Δcin8::natNT2	5 (E and H)
YBK2241	MATa Δsst1 trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre stu1Δ(aa995–1,180)-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre:: tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 cdc20::HIS3MX6-pMET25-CDC20 Δcin8::natNT2	5 (E and H)
YBK2243	MATa Δsst1 trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre stu1Δ(aa1–260) -CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 cdc20::HIS3MX6-pMET25-CDC20 Δcin8::natNT2	5 (E and H)
YVS2001	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3 stu1Δ(aa570–716)- EGFP::kITRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1	6 (C and F) and S3
YCF2285	MATa Δsst1 ade2-101ochre trp1- <u>Δ</u> 63 leu2- <u>Δ</u> 1 his3- <u>Δ</u> 200 ura3-52::CFP-TUB1:: URA3 AME1-3mCherry::hphNT1 lys2-801ambre::pSTU1-stu1Δ(aa1,182–1,513)- NLS-GFP::LYS2	6 F, 8 E, and S3
YVS1651	MATa Δsst1 ade2-101ochre trp1- <u>4</u> 63 leu2- <u>4</u> 1 ura3-52 his3 stu1 <u>4</u> (aa995–1,180)- EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-mCherry::hphNT1	6 F and S3
YVS2209	MATa Δsst1 ade2-101ochre trp1- <u>Δ</u> 63 leu2- <u>Δ</u> 1 ura3-52 hi-Δ200 lys2-801ambre stu1Δ(aa570–716)-EGFP::kITRP1 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-mCherry:: natNT2 CEN5-tetO2 × 112::URA3 cdc20::LEU2-pMET25-CDC20	6 G
YCF2283	MATa Δsst1 ade2-101ochre trp1- <u>Δ</u> 63 leu2- <u>Δ</u> 1 ura <u>3</u> -52 his <u>3-</u> Δ200 Δstu1::HIS3MX6 ade1::pURA3-TetR-3×CFP::hphNT1 CEN5-tetO2 × 112:URA3 SPC72-mCherry::natNT2 lys2-801ambre::pSTU1-stu1Δ(aa1,182–1,513)-NLS-GFP::LYS2 cdc20::LEU2-pMET25-CDC20	6 G
YCF2280	MATa Δsst1 trp1-Δ63 leu2-Δ1::LEU2 ura3-52 his3-Δ200 lys2-801ambre ade2-101ochre::tetR-GFP::ADE2 CEN5-tetO2 × 112::URA3 SPC72-3mCherry::hphNT1 stu1Δ(aa1,182–1,513)-Zipper-ECFP::KANMX4 cdc20::HIS3MX6-pMET25-CDC20	6 G
YCF2351	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:TUBI-CFP::URA3 AME1-mCherry::hphNT1 lys2-801ambre:: pGAL1-FLAG-stu1Δ(aa570–716)-NLS-GFP::LYS2	6 (H–J), 7 (B and C), and S5
YCF1975	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:TUBI-CFP::URA3 AME1-mCherry::hphNT1 lys2-801ambre:: pGal1-FLAG-Stu1Δ(aa1–260)-NLS-GFP::LYS2	6 H, 7 (B and C), and S5

Table S1. Yeast strains used in this study (Continued)

Strain name	Relevant genotype	Experiment/figure
YCF2355	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:TUBI-CFP::URA3 AME1-mCherry::hphNT1 lys2-801ambre:: pGal-FLAG-stu1Δ(aa1,182–1,513)-NLS-GFP::LYS2	6 H, 7 (B and C), and S5
YCF2356	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52:TUBI-CFP::URA3 AME1-mCherry::hphNT1 lys2-801ambre:: pGal1-FLAG-stu1Δ(aa301–560)-NLS-GFP::LYS2	6 (H and I), 7 C, and S5
YVS2311	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52::CFP-TUB1::URA3 STU1-GFP::HIS3MX6 ASE1-mCherry::hphNT1 cdc20::LEU2-pMET25-CDC20	7 A
YVS2308	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre STU1-CFP::KANMX6 GFP-TUB1::TRP1 cdc20:: LEU2-pMET25-CDC20 Δase1::HIS3MX6	7 A
YVS1678	MATa Asst1 ade2-101ochre trp1-463 leu2-41 his3-4200 lys2-801ambre ura3-52:TUBI-CFP::URA3 AME1-mCherry::hphNT1	7 C
YJO1998	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre:: pGAL1-FLAG-STU1::LYS2 Δmad2::TRP1 ura3-52:CFP-TUBI:URA3 MTW1-mCherry::hphNT1	7 C
YCF2278	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre:: pSTU1-stu1(aa1,181–1,513)-NLS-GFP stu1Δ(aa1,182–1,513)-Zipper-ECFP:: KANMX4 ura3-52::CFP-TUB1::URA3 AME1-3mCherry::hphNT1	8 F
YCF2357	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52::TUBI-CFP::URA3 stu1Δ(aa1,181–1,513)-NLS-TEV-ProtA-7HIS-KANMX6	8 G
YCF2358	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52::TUBI-CFP::URA3 stu1Δ(aa1,181–1,513)-NLS-TEV-ProtA-7HIS-KANMX6 lys2-801ambre::Stu1 promotor-stu1(aa1,181–1,513)-NLS-GFP::LYS2	8 G
YCF2359	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 his3-Δ200 lys2-801ambre ura3-52::TUBI-CFP::URA3 stu1Δ(aa1,181–1,513)-NLS-TEV-ProtA-7HIS-KANMX6 lys2-801ambre::Stu1 promotor-stu1(aa261–569, aa1,181–1,513)-NLS-GFP::LYS2	8 G
YCF2185	MATa Δsst1 ade2-101ochre trp1-Δ63 leu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre PDS1-9MYC::klTRP1 scc1::HIS3MX6-pGAL-3HA-SCC1 SLK19-6HA::natNT2	S4 B
YCF2184	MATa Δsst1 ade2-101ochre trp1-Δ63 ieu2-Δ1 ura3-52 his3-Δ200 lys2-801ambre stu1Δ(aa–260)-NLS-CFP::KANMX6 scc1::TRP1-pGal1-3HA-SCC1 PDS1-9myc::hphNT1 SLK19-6HA::natNT2	S4 B

Table S2. Plasmids used in this study

Plasmid name	Description and markers
YDpK	LYS2, ampR
pBSII/SK	ampR
pJO607	mad2::TRP1, ampR
pBK1503	cin8::natNT2, ampR
pCF1137	pSTU1-STU1::URA3 in YDpK
pCF1419	pGAL1-FLAG-stu1∆(aa1–260)-NLS-GFP in YDpK
pCF1420	pGAL1-FLAG-stu1(aa1-260)-NLS-GFP in YDpK
pCF1421	pGAL1-FLAG-stu1(aa261–569)-NLS in YDpK
pCF1441	pSTU1-FLAG-stu1(aa1–762)-NLS-GFP in YDpK
pCF1442	pSTU1-FLAG-stu1(aa717–1,513)-NLS-GFP in YDpK
pCF1473	pSTU1-FLAG-stu1(aa717–996)-NLS-GFP in YDpK
pCF1474	pSTU1-FLAG-stu1∆(aa717–994)-NLS-GFP in YDpK
pCF1475	pSTU1-FLAG-stu1(aa996-1,181)-NLS-GFP in YDpK
pCF1498	pSTU1-FLAG-stu1∆(aa995–1,180)-NLS-GFP in YDpK
pCF1477	pSTU1-FLAG-stu1(aa1,181–1,513)-NLS-GFP in YDpK
pCF1478	pSTU1-FLAG-stu1∆(aa1,182–1,513)-NLS-GFP in YDpK
pCF1479	pSTU1-FLAG-stu1∆(aa1,182–1,513)-Zipper-NLS-GFP in YDpK
pCF1480	pSTU1-FLAG-stu1(aa1–260)-Zipper-NLS-GFP in YDpK
pCF1481	pSTU1-FLAG-stu1(aa1–260, aa1,181–1,513)-NLS-GFP in YDpK
pCF1515	S3-stu1∆(aa1–260)-natNT2-S2, ampR
pCF1523	pGal-FLAG-stu1∆(aa570–716)-NLS-GFP in YDpK
pCF1524	pGal-FLAG-stu1∆(aa1,182–1,513)-NLS-GFP in YDpK
pCF1526	pSTU1-FLAG-stu1(aa261–569, aa1,181–1,513)-NLS-GFP in YDpK
pCF1527	pSTU1-FLAG-stu1∆(aa1–260)-NLS-GFP in YDpK
pCF1482	pSTU1-FLAG-stu1∆(aa1–260)-NLS in YDpK
pVS1410	pGal1-FLAG-stu1∆(aa301–560)-NLS-GFP in YDpK
pVS1412	pGal1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS-GFP in YDpK
pVS1325	pGal1-FLAG-STU1-GFP in YDpK
pVS1414	pSTU1-stu1∆(aa1–260)-NLS-CFP::KANMX6 in pBSII/SK
pVS1362	pSTU1-stu1∆ (aa301–569)-EGFP::klTRP1 in pBSII/SK
pVS1444	pSTU1-stu1∆(aa570–716)-EGFP::klTRP1 in pBSII/SK
pVS1309	pSTU1-stu1∆ (aa995–1,180)-EGFP::kITRP1 in pBSII/SK
pCF1496	pSTU1-stu1∆(aa1–260, aa995–1,180)-GFP::klTRP1 in pBSII/SK
pCF1483	pSTU1-stu1∆(aa1–260, aa570–716)-CFP::KANMX6 in pBSII/SK
pVS1328	pSTU1-stu1∆(aa416–716) ∆(aa995–1,180)-EGFP::klTRP1 in pBSII/SK
pCF1511	pSTU1-FLAG-stu1∆(aa1,182–1,513)-Zipper-NLS-ECFP::KANMX4, ampR
pVS1381	pSTU1-stu1∆(aa1–260)-NLS-EGFP::kITRP1 in pBSII/SK
pVS1472	pSTU1-FLAG-stu1∆(aa301–569)-NLS in YDpK
pVS1471	pSTU1-FLAG-stu1(W339A, R342A, K428A,K429A)-NLS in YDpK
pVS1346	pSTU1-stu1∆(aa995–1,180)-CFP::KANMX6 in pBSII/SK

References

Al-Bassam, J., N.A. Larsen, A.A. Hyman, and S.C. Harrison. 2007. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. *Structure*. 15:355–362. http://dx.doi.org/10.1016/j.str.2007.01.012

Al-Bassam, J., H. Kim, G. Brouhard, A. van Oijen, S.C. Harrison, and F. Chang. 2010. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell. 19:245–258. http://dx.doi.org/10.1016/j.devcel.2010.07.016

Ayaz, P., X. Ye, P. Huddleston, C.A. Brautigam, and L.M. Rice. 2012. A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science. 337:857–860. http://dx.doi.org/10.1126/science.1221698

De la Mora-Rey, T., B.D. Guenther, and B.C. Finzel. 2013. The structure of the TOG-like domain of *Drosophila melanogaster* Mast/Orbit. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69:723–729. http://dx.doi.org/10.1107/S1744309113015182

Leano, J.B., S.L. Rogers, and K.C. Slep. 2013. A cryptic TOG domain with a distinct architecture underlies CLASP-dependent bipolar spindle formation. *Structure*. 21:939–950. http://dx.doi.org/10.1016/j.str.2013.04.018