# **Supporting Information**

## Koh et al. 10.1073/pnas.1405528111

#### **SI Materials and Methods**

**RNA-seq-Based Expression Analysis.** The amplified cDNA was converted to sequencing library according to Illumina's protocol and quantified by real-time PCR. Sequencing was performed on the GAII and the HiSeq instruments. The raw reads of RNA-seq were first assessed for their quality using FastQC. Bad quality reads (phred score < 30) were trimmed. Then the illumina adaptor sequences at the end of reads were cut. The reads were aligned against the UCSC hg19 version of human genome reference sequence using TopHat software. The gene expression level was quantified as fragments per kilobase of transcript per million mapped reads (FPKM) value using Cufflinks software.

**Microarray-Based Expression Analysis.** The amplified cDNA (by Nugen) was fragmented using DNase I and labeled with biotin, following by hybridization to Affymetrix GeneChip ST 1.0 microarrays. The gene expression value was computed by Affymetrix Expression Console software using the robust multiarray average (RMA) algorithm.

**Identification of Temporal Trends in Expression Data.** Identification of genes with temporal variation was performed using a repeated

- 1. Hui L, Slonim DK, Wick HC, Johnson KL, Bianchi DW (2012) The amniotic fluid transcriptome: A source of novel information about human fetal development. *Obstet Gynecol* 119(1):111–118.
- Xiao S-J, Zhang C, Ji Z-L (2010) TiSGeD: A database for tissue-specific genes. Bioinformatics 26(9):1273–1275.

ANOVA test across all genes with the ANOVA model using R and the Bioconductor package. The ANOVA model breaks down the variation of the quantified RNA transcripts into time, patients, and batches. Following ANOVA, correlation tests were performed. Because the ANOVA model only accounts for the variation, the additional correlation tests are required to pick out genes that match the required trends. In this study, we included nonpregnant samples and postpartum samples. The correlation tests will allow us to discover transcripts exhibiting low expression in nonpregnant controls and postpartum.

Selection of Fetal Tissue-Specific Transcripts Panel for Quantitative PCR. To detect the presence of these fetal tissue-specific transcripts, we selectively curate a list of known fetal tissue-specific genes from known literature (1) and databases. We validated the specificity for fetal tissues by cross referencing two main databases: Tissue-Specific Genes Database (TISGeD) (2) and BioGPS (3, 4) Most of these selected transcripts are associated with known fetal developmental processes. We further overlapped this list of genes with our RNA sequencing and microarray data to generate our panel of genes as shown in the results.

- Wu C, et al. (2009) BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. *Genome Biol* 10:R130.
- Su AI et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101(6):6062–6067.



**Fig. S1.** Summary of study design. In the current cohort, 11 pregnant women and 4 nonpregnant control subjects were recruited. For all of the pregnant patients, blood was drawn at the first, second, and third trimesters and postpartum. The cell-free plasma RNA was then extracted, amplified, and characterized by Affymetrix microarray, Illumina sequencer, and quantitative PCR.

#### Distribution of Detected fetal cell-free RNA Transcripts Type annotated with GENCODE



**Fig. 52.** Distribution of detected fetal cell-free RNA transcripts type as annotated with GENCODE. Using GENCODE as the annotation method for the transcripts present in the plasma cell-free RNA transcriptome, we were able to categorize the detected gene transcripts present in the plasma transcriptome. Approximately 15% of detected transcripts are long noncoding RNA, the majority of which are processed transcripts, transcripts that do not contain an ORF, and are placed in this category by ENCODE due to its complexity in structure. The relative proportions of different ncRNA categories remains relatively stable and consistent across all different patients and trimesters without huge deviations.

| Sub | Gene      | SNP                | Chr | Position  | Alleles    | T1 -> T2 -> T3 -><br>Post | First Trimester | Second Trimester | Third Trimester      | Post Partum | pvalues.cor | pvalues  |
|-----|-----------|--------------------|-----|-----------|------------|---------------------------|-----------------|------------------|----------------------|-------------|-------------|----------|
| P12 | CASP1     | rs199997208        | 11  | 104915231 | G/A        |                           |                 |                  |                      |             | 0.001045004 | 1.86E-07 |
| P12 | FAM46C    | rs2282456          | 1   | 118169463 | G/A        | $\sim$                    |                 |                  |                      |             | 0.003618119 | 6.43E-07 |
| P12 | SPTBN1    | rs1052820          | 2   | 54886347  | G/A        |                           |                 |                  |                      |             | 0.003618119 | 6.43E-07 |
| P12 | 5002      | rs7766006          | 6   | 160169258 | G/T        |                           |                 |                  |                      |             | 0.005391283 | 9.57E-07 |
| P12 | PFKFB3    | rs1539234          | 10  | 6276743   | G/A        | $\sim$                    |                 |                  |                      |             | 0.005391283 | 9.57E-07 |
| P12 | XPO7      | rs7220             | 8   | 21863290  | G/A        |                           |                 |                  |                      |             | 0.008711915 | 1.55E-06 |
| P12 | SEC14L1   | rs62078342         | 17  | 75211870  | C/A        |                           |                 |                  |                      |             | 0.009614964 | 1.71E-06 |
| P12 | STAT6     | rs4559             | 12  | 57489648  | с/т        |                           |                 |                  |                      |             | 0.009614964 | 1.71E-06 |
| P12 | CAST      | rs754615           | 5   | 96086334  | G/C        |                           |                 |                  |                      |             | 0.009614964 | 1.71E-06 |
| P60 | MARCKS    | rs79053472         | 6   | 114182253 | T/C        | -                         |                 |                  | Second second second |             | 0.01100167  | 1.56E-06 |
| P12 | MMP8      | rs4754871          | 11  | 102583279 | T/C        |                           |                 |                  |                      |             | 0.011762435 | 2.09E-06 |
| P36 | UBB       | rs17026960         | 17  | 16285266  | T/G        | $\sim$                    |                 |                  |                      |             | 0.016362781 | 2.32E-06 |
| P12 | DTX3L     | r\$74937187        | 3   | 122292965 | G/A        |                           |                 |                  |                      |             | 0.017222568 | 3.06E-06 |
| P12 | SP110     | rs1129411          | 2   | 231077725 | A/G/C      |                           |                 |                  |                      |             | 0.017222568 | 3.06E-06 |
| P12 | CD300LF   | rs191447419        | 17  | 72690630  | с/т        |                           |                 |                  |                      |             | 0.020624523 | 3.66E-06 |
| P12 | STK4      | rs17420378         | 20  | 43629135  | G/A        |                           |                 |                  |                      |             | 0.024289977 | 4.31E-06 |
| P36 | GMCL1     | rs114517801        | 2   | 70096862  | T/C        |                           |                 |                  |                      |             | 0.02442936  | 3.47E-06 |
| P12 | NA        | rs4779576          | 15  | 32792157  | G/A        |                           |                 |                  |                      |             | 0.024668749 | 4.38E-06 |
| P12 | DDX17     | rs5845381          | 22  | 38880098  | A/-        |                           |                 |                  |                      |             | 0.02507075  | 4.45E-06 |
| P12 | SMC5      | rs142489701        | 9   | 72897441  | G/A        |                           |                 |                  |                      |             | 0.02507075  | 4.45E-06 |
| P12 | MARCKS    | rs79053472         | 6   | 114182253 | T/C        | -                         |                 |                  |                      |             | 0.028553413 | 5.07E-06 |
| P12 | POLIMS    | rs2452600          | 4   | 95496882  | C/T        |                           |                 |                  |                      |             | 0.029706215 | 5.28E-06 |
| P12 | EIF4EBP2  | rs14761            | 10  | 72182975  | G/A        |                           |                 |                  |                      |             | 0.029943528 | 5.32E-06 |
| P58 | LINC00152 | rs28513497         | 2   | 87820915  | C/T        |                           |                 |                  |                      |             | 0.030145531 | 5.15E-06 |
| P12 | AKNAD1    | rs12030            | 1   | 109472813 | T/C        |                           |                 |                  |                      |             | 0.036000945 | 6.39E-06 |
| P12 | HIST1H4B  | rs115249469        | 6   | 26027286  | G/A        |                           |                 |                  |                      |             | 0.036000945 | 6.39E-06 |
| P36 | PTBP3     | rs7869523          | 9   | 114982549 | C/T        |                           |                 |                  |                      |             | 0.036236421 | 5.15E-06 |
| P12 | RAB31     | rs610532           | 18  | 9860755   | G/A        |                           |                 |                  |                      |             | 0.036283416 | 6.44E-06 |
| P12 | HNRNPH2   | rs3027574          | ×   | 100668296 | C/T        |                           |                 |                  |                      |             | 0.036283416 | 6.44E-06 |
| P12 | DDX17     | rs144704720        | 22  | 38880298  | A/-        |                           |                 |                  |                      |             | 0.043220809 | 7.68E-06 |
| P12 | MARCKS    | rs79053472         | 6   | 114182253 | T/C        |                           |                 |                  |                      |             | 0.047135842 | 8.37E-06 |
| P12 | CASP1     | rs55646419         | 11  | 104905047 | G/A        |                           |                 |                  |                      |             | 0.001601177 | 2.84E-07 |
| P12 | HNRNPK    | rs167203           | 9   | 86593314  | G/C        | ~                         |                 |                  |                      |             | 0.001601177 | 2.84E-07 |
| P12 | Clorf123  | rs1134688          | 1   | 53681699  | T/G        |                           |                 |                  |                      |             | 0.002413974 | 4.29E-07 |
| P12 | NCF1      | rs201802880        | ,   | 74193642  | G/A        | ~                         |                 |                  |                      |             | 0.002929277 | 5.20E-07 |
| P12 | ELFI      | 15/98/185          | 13  | 41515371  | C/1        |                           |                 |                  |                      |             | 0.005391283 | 9.576-07 |
| P12 | NCFI      | 15624/5423         | -   | /4193668  | G/A        | ~                         |                 |                  |                      |             | 0.005391283 | 9.578-07 |
| P12 | STAPO     | 15144429804        | 3   | 150036998 | AVI<br>TIC |                           |                 |                  |                      |             | 0.003391283 | 9.572-07 |
| P36 | RP525     | 1511545855         | 11  | 118888103 | 1/C        |                           |                 |                  |                      |             | 0.007570142 | 1.082-06 |
| P12 | SMARCUZ   | 130919             | 17  | 117709636 | 1/A        |                           |                 |                  |                      |             | 0.007986616 | 1.420-00 |
| P12 | 50025     | r5130240970        | 2   | 160721291 | AIG        |                           |                 |                  |                      |             | 0.007980816 | 1.416.06 |
| P36 | HISTIHAH  | re2303503          | 6   | 26295693  | TIC        | $\leq$                    |                 |                  |                      |             | 0.00999339  | 1.425-06 |
| P12 | FBYOZ     | rs9726             | 22  | 32887150  | CAT        |                           |                 |                  |                      |             | 0.011561441 | 2.055-06 |
| PSR | EEHD2     | TMP ESP 1 15755249 | 1   | 15755249  | GIA        |                           |                 |                  |                      |             | 0.011824645 | 2.025-06 |
| P12 | EKROLA    | rs79119937         | 20  | 1350026   | A/G        |                           |                 |                  |                      |             | 0.012037173 | 2 145-06 |
| P12 | FFF2      | (\$3170368         | 19  | 3976321   | TIG        | $\sim$                    |                 |                  |                      |             | 0.014123197 | 2.51E-06 |
| P12 | ADAR      | rs2229857          | 1   | 154573967 | T/C        |                           |                 |                  |                      |             | 0.014123197 | 2.51E-06 |
| P58 | SPI1      | rs1057233          | 11  | 47376448  | G/A        |                           |                 |                  |                      |             | 0.014685014 | 2.51E-06 |
| P36 | LUC7L2    | rs9683             | 7   | 139107739 | T/A        | $\sim$                    |                 |                  |                      |             | 0.014701477 | 2.09E-06 |
| P36 | HSP90B1   | rs116891695        | 12  | 104332224 | C/T        |                           |                 |                  |                      |             | 0.014701477 | 2.09E-06 |
| P12 | SEC14L1   | rs150757431        | 17  | 75212231  | C/T        | $\leq$                    |                 |                  |                      |             | 0.015418608 | 2.74E-06 |
| P53 | NA        | rs80037846         | 1   | 789050    | G/A        |                           |                 |                  |                      |             | 0.015796046 | 2.09E-06 |
| P53 | NA        | rs10158938         | 1   | 789099    | G/A        |                           |                 |                  |                      |             | 0.015796046 | 2.09E-06 |

Fig. S3. List of identified gene transcripts with identified fetal SNPs and the captured temporal dynamics. The bar plot reflects the relative contribution of fetal SNPs as reflected in the sequencing data. The red color bar reflects the extent of the relative fetal SNP contribution.



**Fig. S4.** The distribution of fetal-specific allele fraction at different SNPs loci over the time course of pregnancy. These SNPs loci are homozygous in mother's genome and heterozygous in fetus' genome. The fetal-specific allele fraction was calculated by the RNA-seq data of P58 at four time points (T1, first trimester; T2, second trimester; T3, third trimester; P, postpartum).



**Fig. S5.** The change of fetal-specific allele fraction at different SNPs loci over the time course of pregnancy. These SNPs loci are homozygous in mother's genome and heterozygous in fetus' genome. The fetal-specific allele fraction was calculated by the RNA-seq data of P58 at four time points (T1, first trimester; T2, second trimester; T3, third trimester; P, postpartum).



Fig. S6. The fraction of fetus-originated cell-free RNA in maternal plasma over the time course of pregnancy. The fraction of fetus-originated cell-free RNA was calculated by the RNA-seq data of P58 at four time points (T1, first trimester; T2, second trimester; T3, third trimester; P, postpartum).

NAS PNAS



**Fig. 57.** (A) Outward facing primers were designed such that amplification would only occur specifically in the presence of circular RNA identified from our sequencing data. (B) Gel picture of amplicons indicating the presence of these circRNA in the plasma. (C) Amplified sequences for SPECC1 and FNDC3B were Sanger sequenced and mapped back onto genome where the amplicons reveal the circular RNA junction.



Fig. S8. Heatmap of time-varying circular RNA transcripts identified from sequencing data. The color bar corresponds to different time points in pregnancy. Each row represents a transcript that showed specificity to a particular time point.



Fig. S9. Average number of genes detected by each technique across different trimesters. There is a general increasing trend for the number of genes detected across the different trimesters using RNA-seq and also for the common genes found in both the microarray and RNA-seq.



Fig. S10. Heatmap of time-varying genes identified from RNA-seq. The color bar on the top of the heatmap corresponds to different time points during pregnancy. Each row of the heatmap refers to a gene, and each column is a sample taken at a particular time point: D, nonpregnant controls (yellow); T1, first trimester (red); T2, second trimester (green); T3, third trimester (blue); and postpartum (black). Unsupervised clustering was performed on the genes across the different trimesters to find genes that exhibit similar temporal trends.



**Fig. S11.** Placental-specific genes. Plot showing the  $\Delta$ Ct value with respect to the housekeeping gene *ACTB* across the different trimesters of pregnancy including after birth. Time points across each patient is shown connected by the lines. Two replicates were performed for each patient at each time point. The general trends show elevated levels during the trimesters with a decline to low levels after the baby is born in concordance with the notion that fetal specific transcripts increased into the pregnancy followed by rapid clearance after birth.



**Fig. S12.** Fetal liver-specific genes. Plot showing the  $\Delta$ Ct value with respect to the housekeeping gene *ACTB* across the different trimesters of pregnancy including after birth. Time points across each patient is shown connected by the lines. Two replicates were performed for each patient at each time point. The general trends show elevated levels during the trimesters with a decline to low levels after the baby is born in concordance with the notion that fetal-specific transcripts increased into the pregnancy followed by rapid clearance after birth.

|           | First trimester |            |              | Second trimester |            |              | Third trimester |            |              | Postpartum |            |              |
|-----------|-----------------|------------|--------------|------------------|------------|--------------|-----------------|------------|--------------|------------|------------|--------------|
| Sample ID | RNA-seq         | Microarray | Intersection | RNA-seq          | Microarray | Intersection | RNA-seq         | Microarray | Intersection | RNA-seq    | Microarray | Intersection |
| P12       | 9,582           | 12,197     | 7,683        | 9,309            | 12,345     | 7,502        | 10,842          | 12,026     | 8,527        | 7,576      | 12,578     | 6,299        |
| P58       | 6,638           | 12,739     | 5,539        | 8,117            | 12,674     | 6,596        | 9,061           | 12,445     | 7,355        | 9,023      | 12,552     | 7,262        |
| P53       | 9,217           | 12,214     | 7,417        | 7,442            | 12,602     | 6,119        | 7,946           | 12,589     | 6,566        | 10,072     | 12,002     | 7,882        |
| P60       | 8,985           | 12,893     | 6,606        | 11,110           | 11,867     | 8,549        | 10,593          | 11,811     | 8,252        | 11,103     | 11,899     | 8,518        |
| P36       | 9,516           | 12,320     | 7,657        | 9,473            | 11,977     | 7,616        | 9,437           | 11,919     | 7,485        | 10,023     | 12,011     | 7,966        |
| P2        | 11,140          | 11,813     | 8,690        | 10,928           | 11,972     | 8,559        | 11,142          | 11,563     | 8,662        | 10,603     | 11,767     | 8,361        |
| P15       | 10,620          | 11,749     | 8,319        | 11,424           | 11,719     | 8,855        | 11,735          | 11,745     | 9,029        | 10,370     | 11,842     | 8,234        |
| P16       | 11,932          | 12,008     | 9,303        | 11,761           | 11,969     | 9,090        | 12,020          | 11,831     | 9,217        | 6,995      | 12,738     | 5,759        |
| P24       | 11,030          | 11,718     | 8,561        | 11,224           | 11,670     | 8,697        | 11,164          | 11,790     | 8,709        | 11,151     | 11,738     | 8,769        |
| P32       | 10,892          | 11,720     | 8,573        | 10,719           | 11,821     | 8,413        | 10,335          | 12,094     | 8,207        | 9,777      | 12,099     | 7,787        |
| Average   | 9,955           | 12,137     | 7,835        | 10,151           | 12,062     | 8,000        | 10,428          | 11,981     | 8,201        | 9,669      | 12,123     | 7,684        |

Table S1. Number of genes detected by RNA-seq and microarray for all samples

| Patient ID | First<br>trimester | Second<br>trimester | Third<br>trimester | Postpartum |
|------------|--------------------|---------------------|--------------------|------------|
| P12        | 0.747              | 0.741               | 0.778              | 0.685      |
| P58        | 0.619              | 0.672               | 0.713              | 0.698      |
| P53        | 0.726              | 0.655               | 0.668              | 0.764      |
| P60        | 0.471              | 0.778               | 0.781              | 0.764      |
| P36        | 0.73               | 0.76                | 0.744              | 0.762      |
| P2         | 0.781              | 0.77                | 0.805              | 0.772      |
| P15        | 0.771              | 0.799               | 0.805              | 0.762      |
| P16        | 0.795              | 0.778               | 0.795              | 0.56       |
| P24        | 0.776              | 0.789               | 0.782              | 0.786      |
| P32        | 0.784              | 0.763               | 0.739              | 0.715      |
| Average    |                    |                     |                    | 0.739      |

| Table S2. | Correlation coefficient (Pearson) between the |
|-----------|-----------------------------------------------|
| RNA-seq a | nd microarray for all samples                 |

### Table S3. Table of detected circular RNA transcripts in maternal plasma

PNAS PNAS

| Chromosome | Start     | End       | Start_gene | Normalized number of reads supporting<br>circular junction within gene |
|------------|-----------|-----------|------------|------------------------------------------------------------------------|
| 17         | 20107645  | 20109226  | SPECC1     | 26.70971874                                                            |
| 18         | 9182379   | 9221998   | ANKRD12    | 22.47875554                                                            |
| 1          | 117944807 | 117963272 | MAN1A2     | 19.16673656                                                            |
| 17         | 65941524  | 65972075  | BPTF       | 15.41139919                                                            |
| 3          | 171965322 | 171969332 | FNDC3B     | 14.58824622                                                            |
| 7          | 11021998  | 11030475  | PHF14      | 9.705013355                                                            |
| 14         | 31404368  | 31425449  | STRN3      | 8.974938985                                                            |
| 1          | 117944807 | 117957454 | MAN1A2     | 7.997175657                                                            |
| 4          | 129857809 | 129891624 | SCLT1      | 5.851566103                                                            |
| 2          | 40655612  | 40657445  | SLC8A1     | 5.212403724                                                            |
| 4          | 129857809 | 129880933 | SCLT1      | 4.804552673                                                            |
| 1          | 117944807 | 117984948 | MAN1A2     | 4.634693803                                                            |
| 5          | 89791493  | 89802492  | POLR3G     | 4.350910726                                                            |
| 1          | 1586822   | 1650895   | CDK11B     | 4.268166302                                                            |
| Х          | 76907603  | 76912144  | ATRX       | 4.129867024                                                            |
| 14         | 45587230  | 45599994  | FKBP3      | 3.314747709                                                            |
| 2          | 113057425 | 113069515 | ZC3H6      | 3.127492386                                                            |
| 1          | 117944807 | 117948268 | MAN1A2     | 3.091640232                                                            |
| 17         | 65941524  | 65944423  | BPTF       | 3.089342947                                                            |