
Supplemental Experimental Procedures 
 

Video data collection  
Video data was collected of 45 human participants experiencing genuine pain 
and faked pain (27 females, all university students).  The genuine pain condition 
consisted of the cold pressor task; this is a task where pain is induced by 
immersing the arm in ice water at 50 Celsius.  For the faked pain condition, the 
water was 200 Celsius. For both conditions, participants were instructed to 
immerse their forearm into the water up to the elbow, and hold it there for 60 
seconds. For the faked pain condition, participants were asked to manipulate 
their facial expressions so that an “expert would be convinced they were in actual 
pain.” Participants’ facial expressions were recorded using a digital video camera 
during both conditions. Examples are shown in Figures 1 and 2 of the main 
paper. The order of the conditions was kept the same for all participants; faked 
pain first, followed by real pain.  Real pain was always last due to the possibility 
that one’s faked pain expression may be unduly influenced by his or her genuine 
pain one minute earlier. This influence may be a product of explicit learning or of 
‘carry over effects’ [1] whereby the actual experience of a psycho-physiological 
state such as pain lingers thus confounding the next observation.   
 
Deception detection by human observers 
In Experiment 1, naïve observers viewed a series of pain expression videos 
individually and judged whether each video contained faked or genuine pain.  
Observer participants were undergraduates with no explicit training in facial 
expression measurement. First, observers were shown 25 videos, one of each of 
the 25 pain participants from either the genuine or faked pain condition. Observer 
participants then viewed a second set of 25 videos, of the same 25 pain 
participants but of their other condition (if it was a participant’s faked pain 
expression in video 1, then it was their genuine pain expression in video 2, or 
vice versa). Therefore, observers did not directly compare genuine and faked 
expressions within an individual. The videos were counterbalanced and 
presented sequentially in a randomized order.   
 
In Experiment 2, 35 new observers participated in a training phase where they 
were provided feedback for the detection of real versus faked pain.  Like the 
computer vision system, the humans were provided training on 24 subjects, 
including both real and faked pain samples from each subject. During training, 
the observers viewed 24 video pairs. The same person appeared in both videos 
in a pair. One video contained an expression of genuine pain, whereas the other 
contained an expression of faked pain.  Both videos were shown sequentially 



(the real or fake videos randomly shown as the first or second). Observers 
judged which one of the pair was real pain or which was faked pain. They were 
given immediate feedback about their accuracy. After being trained on the 24 
pairs, participants saw, in random order, 20 new videos of 20 new models in the 
test phase. Half of the models were expressing faked pain and the other half 
were expressing real pain. Without receiving feedback, observers judged 
whether the presently viewed video contained faked or genuine pain 
expressions. This design mimicked the machine learning and cross-validation 
procedure (see below). 
 
Overview of computational methods 
The Computer Expression Recognition Toolbox (CERT) [2] was applied to the 
two one-minute videos of each subject. A set of dynamic features was then 
extracted from the CERT outputs. These features were passed through a 
machine learning system allowing the system to learn to predict genuine or faked 
pain in novel participants.   A system overview is shown in Figure 2 in the main 
text.  The components of this system are described below.  
 
The Computer Expression Recognit ion Toolbox 
The Computer Expression Recognition Toolbox is a fully automated system that 
analyzes facial expressions from video in real-time. CERT automatically detects 
frontal faces in video and codes each frame with respect to a set of continuous 
dimensions, including facial actions from the Facial Action Coding System 
(FACS).  FACS is a system for objectively scoring facial expressions in terms of 
elemental movements, called action units (AUs).  FACS identified 46 AUs, each 
with unique movement and appearance characteristics - which roughly 
correspond to individual facial muscle movements (see Figure 1 in the main text). 
FACS was originally developed for manual coding by human experts.  Manual 
coding is laborious, and can take up to 3 hours to manually code 1 minute of 
behavior.  The frame-by-frame CERT output provides information on facial 
expression intensity and dynamics at temporal resolutions that were previously 
impractical with human coding.  
 
See [2] for more information on system design and benchmark performance 
tests. Currently, CERT measures the 20 major AUs from the FACS that have 
been most strongly associated with emotion. Detection performance by AU is 
provided in [2].  In addition, CERT estimates of expression intensity correlate with 
FACS expert intensity codes [2]. The present analysis employed CERT version 
4.4.  These facial action detectors are available from Emotient, Inc. 
 



Bags of temporal features 
CERT produced a 20 channel time series for each video consisting of a real 
value for each frame and for each AU (20 facial actions x 1800 frames). These 
dynamic signals were then characterized using a ‘bags of temporal features’ 
algorithm.  ‘Bags of temporal features’ builds upon the concept  of ‘bags of 
features’ from the computer vision literature [3-4] which provide sensitivity to 
some aspects of the signal, such as edges of different scales, while providing 
invariance to aspects of the signal across which we wish to generalize. It 
provides a rich description of temporal texture within a time window, while also 
providing invariance to the precise time point within the window at which the 
expression occurred. In this approach, histograms describe the probability 
distribution of a set of dynamic descriptors within each time window. Here we 
define and construct bags of temporal features on the CERT AU detection 
output.  
 
First, a set of temporal descriptors were defined that represent the local temporal 
texture at multiple time scales. The 1800 frame output of each AU detector was 
passed through a bank of eight temporal filters.  The temporal filters were a 
family of Gabor functions, which were cosine functions convolved with a 
Gaussian envelope, given by the following equation: 
 
    g(t,k) = e(-½ Δt2 k2/4) * cos(kt)   (1) 
    where k = (2-4-n/2) π for n=1 to 8. 
 
This resulted in 8 temporal frequencies, for which the wavelength of the cosine, 
λ, was calculated using  
 

λ= 2π/k = 1/ (2-5-n/2).    (2) 
 

This translates to 0.66 - .06 Hz with a frame rate of 30 frames per second. The 
bandwidth of each Gabor function was related to its temporal frequency 
according to σ = 2/k = λ/π, where σ is the standard deviation of the Gaussian.  
 
The temporal descriptors were derived from the filter output as follows (Figure 3 
of the main paper).  We first found zero-crossings in the output of each Gabor 
filter.  Curves above and below zero were handled separately.  (Negative outputs 
mean evidence that the facial action is absent, e.g. when the mouth is closed for 
the ‘mouth open’ detector.) The filtered outputs were squared to emphasize large 
values.  The area under each curve was then computed as the integral between 
the zero-crossings.  



 
The distribution of these measures over each one-minute video was then 
described in a histogram.  The histogram employed 6 exponentially spaced bins 
for outputs ranging from 100 through 105. Two histograms were generated for 
each filter output:  One for curves above zero (capturing information about the 
temporal texture of facial actions themselves), and one for curves below zero 
(capturing information about the dynamic intervals between facial actions). These 
are referred to as event and interval descriptors respectively. Histograms were 
computed for each of the 8 temporal filters and each of the 20 facial actions, 
resulting in a total of 320 histograms per video (8 temporal filters X 20 facial 
actions X positive/negative).  
 
Machine learning classifier for detecting faked expressions of pain. The bags of 
temporal features comprised the input representation  that was used to train a 
nonlinear support vector machine (SVM ) with Gaussian kernel. More information 
about SVMs is available in [5-7]. The training signal consisted of a binary value of 
[1, -1] to indicate whether the expression was real or faked. A hard margin SVM 
was employed, and the standard deviation  of the Gaussian kernel was 1.  The 
SVM was trained using the following equation for the kernel matrix, K:  
 

K(xi,xj) = exp(-c||xi-xj||2)   (3) 
 

where xi is training vector i, and c is a normalization constant. The core 
optimization algorithm was based on non-negative least squares [8]. System 
output was a continuous value indicating the distance to the separating 
hyperplane between the classes (the margin).    
 
Training and testing 
The computer vision system was tested on each video independently, without 
within-subject comparison of the real and faked conditions. Because the system 
is subject to over-fitting, performance was tested on novel data, data that was not 
used to estimate the parameters. Cross-validation, which provides an unbiased 
estimate of performance on novel data [9], was employed to test participant-
independent deception detection. In this approach, the system is trained on all 
but one subject’s data (48 videos), and all data from the final subject  is withheld 
for testing.  The system parameters are then deleted, and the process is 
repeated, each time holding out a different subject.  The set of hold-out subject 
performances provide a sample from which to estimate system performance.  
 



Because of the post-hoc nature of sequential feature selection, the 5-AU 
classifier was tested with double cross validation. Double cross validation 
approximates the use of two hold-out sets to test performance, one for choosing 
the features, and a separate one for testing the final model. In this approach, we 
first employ single cross validation testing where data from 23 of the 25 
participants are used for training, the 24th is held out for testing, and the process 
is repeated, each time holding out a different one of the 24 subjects. Feature 
selection was based on the single cross-validation performance. After the 
features were selected, the final model was then tested on the 25th participant.  
The entire feature selection process was then repeated for all 25 participants. 
The five selected features were consistent across the 25 hold-out cases.  
 
Evaluation  
Expression detection performance was assessed using a measure from signal 
detection theory, called the area under the ROC (receiver operating 
characteristic) curve [10]. The ROC curve is obtained by plotting true positives 
against false positives as the decision threshold ranges from one extreme (0 
detections and 0 false positives) to the other (100% detections and 100% false 
positives).The area under the ROC (A’) has a range of 0.5 (chance) to 1 (perfect 
discrimination). In order to estimate the area under the ROC curve from the 25 
cross-validation cases, the outputs for each pain participant were concatenated 
prior to computing the ROC. For this to hold, the real-valued predictions for each 
participant obtained from the application of 25 different classifiers were assumed 
to be comparable. The SVM algorithm includes a normalization mechanism (the 
unity product of weights and outer support vectors) that allowed for the 
comparison of outputs from different classifiers. A measure of percent correct 
was also provided for a decision threshold at equal error rate, where the rate for 
false positives and false negatives are equal. This was estimated from the A’ 
score by assuming unit normal distributions for target and nontarget populations, 
with means separated by a distance that produces a given A’ score. The 
threshold was then set to the equal error rate, and the probability of correct 
response was computed from the distributions.  
 
For statistical significance tests, percent correct was compared using a Z-test to 
compare two proportions.  Comparisons to chance were 1-tailed. Comparisons 
between two classifiers were 2-tailed.   
 
Evaluating dynamics: Classification performance was tested for temporal 
integration window sizes ranging from 100 frames (3.3 seconds) to 60 seconds.   



Performance for a temporal window of length N was computed by dividing the 60 
second video into segments of length N with 50% overlap, computing bags of 
temporal features for each segment, and then pooling the samples across 
temporal position for training an SVM. Generalization to novel subjects was 
tested using cross-validation.  
 
A measure of the duration of mouth openings as well as the intervals between 
mouth openings was extracted as follows. The CERT output for mouth opening 
was first smoothed with a Gaussian filter (σ2=10 frames).  We label this y. An 
estimate of the duration of mouth openings, τ,  was obtained by assigning a 
threshold, θ, at the 75th percentile for each subject, and measuring the duration 
of continuous frames for which y-θ > 0. Similarly, an estimate of the temporal 
intervals between mouth openings consisted of the compliment of τ.   
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