
Figure S.1: In filtering stage, RNA-seq reads that have identical splice junctions are merged, and extended in both

ends

(a) � < L

(b) l ≥ 2L

Figure S.2: Combining pairs of sequences that share a prefix and suffix string. First, we identify overlap-node-pairs
as pairs of merge nodes (out degree 1) and split nodes (in-degree 1) with length � (L ≤ � < 2L) sequence in between

the two. (a) If � < L, the generated sequences cannot share an identical prefix and suffix. (b) If l ≥ 2L, the prefix and

suffix of generated sequences will not overlap

Comparison with other gene prediction methods

We compared the list of identified novel peptides using our proteogenomics pipeline against var-

ious gene prediction results provided from other groups using identical RNA-seq data-sets. The

file of gene predictions is available,17 and includes GeneFinder,17 single exon gene predictions,

predictions based on RNA-seq, and predictions from conserved ORFs (against C. briggsae). A

1

(a) Sequence generated from the first visited nodes

(b) Sequence generated from split nodes

(c) Sequence generated from merge nodes

Figure S.3: Illustration of hashing technique to rapidly identify overlap-node-pairs. (a) For the first visited node

path from a start to an end node, the generated sequence is the full path from the corresponding start to end node.

This full path cannot be merged with others. (b) In traversing the graph in a depth first fashion, we store all the

split nodes present in a candidate list. For each split node u, we hash the prefix string using the first 3 nodes as

key(key1), so that each key contains the list of the paths such that prefix of the paths same as the corresponding

key. (c) Every time a merge node is encountered in the DFS, we traverse the subsequent path, querying the hash

table continuously using 3 node triplets(key2, key3, and key4) to query the hash table. When a match is found

(key4 and key1), the hash table returns a list of sequences that corresponding paths starting with the appropriate key.

(‘TCG’+‘CG’+‘GG’+‘AAC’+‘CCTA’+‘AATATG’). We search each sequence within the returned sequences, using

remaining suffix of the queried sequence. In our example, the remaining sequence is ‘A’ which appears right after

key4. We merge the matched sequence with queried sequence and output to a FASTA file.

2

Figure S.4: Description of parameter W . In this example, W is set to 10bp. From the splice graph all possible

combinations of the resulting sequences, considering all splicings, total 7 as shown above ((a) through (g)). If multiple

spice edges exist withinWbp, and only when the corresponding node has a following consecutive node, then the splice

path will be ignored. As a result, (a), (b), (c), and (d), are converted and expressed to the FASTA file. On the other

hand, (e), (f), and (g) are discarded.

Figure S.5: Alignment result of novel gene example. The highlighted region corresponds to the alignment of iden-

tified peptide ‘R.CYRYIIVSDIEKAFHQVRLQKAFR.N’ against the sequence of hypothetical protein CRE_ 09558

[Caenorhabditis remanei].

3

Table S.1: Overall statistics of splice graph data structure

Number of components(G) 116355

Number of nodes 652936

Number of edges 337648

Average node length 57.00 bp

Average number of edges per node 0.44

total of 688 novel peptides were matched to 1194 different predicted gene sequences (Table S.2).

Table S.2: Number of overlapping sequences between identified novel peptides using our proteogenomics pipeline

versus protein sequences generated from other gene prediction methods.

Prediction methods17 # of overlapped sequence

GeneFinder 286

Conserved C. briggsae ORFs 364

RNA-seq data 543

Single exon gene predictions 1

4

Figure S.6: Translated UTR spectral counts throughout different developmental stages

5

Figure S.7: RNA vs peptide transcription level

6

Calculation of split mapped coordinates from CIGAR string in

SAM file format

The CIGAR string of the SAM format file is used to determine splice junctions. For exam-

ple, consider a match, starting at coordinate x, with the accompanying CIGAR string given by

‘35M1000N35M’ which is translated to “match 35bp”, “skip 1000bp”, followed by “match 35bp”.

We convert this string to two GFF lines, denoting the intervals [x,x+35] and [x+1035,x+1070].

In this example, [x+35,x+1035] represents a splice junction.

Detailed RNA-seq methods

RNA-seq Alignment methods:

Step 1:

1. identify all reads beginning with at least 4 TTs

2. identify all reads that begin with at least 6 bases of SL on the front

3. identify adaptor sequence on the 5’ and 3’ ends of the reads

4. align the reads against the WS220 genome using cross-match

5. align the reads against the AG1003 aggregate genelet transcriptome (transformed intoWS220

coordinates) using cross-match

From combining the information from the output of these steps, if z<=5 bases on either end of the

read are unclassified/unaligned, then the read is considered to be mapped.

The non-C. elegans worms, C. briggsae and C. remanei, were searched against theWS225 database

for each of those genomes. C. japonica and C. brenneri, were searched against theWS227 database.

Step 2:

Next, all reads that had at least 30 bases of match to the genome but were not yet successfully

placed, are aligned to the WS220 genome using splice-aware cross-match. Those results are in-

7

tegrated with the alignments to step 1 to again decide which reads are now considered to be fully

mapped.

Step 3:

Reads still not placed but with at least 30 bases of match in the genome, are aligned against a

splice junction database using cross-match. The splice junction database contains all confirmed

and predicted splice junctions (wormbase and RNAseq etc.) plus all possible novel combinations

of those junctions (within 4kb of one another) with 75 bases appended on either side of the junc-

tion. Combine these alignments with the information from step 1 to determine if the read is fully

accounted for (<=5 bases unaligned from either end).

Step 4:

For reads still not placed, look for multi-segment alignments from bwasw that suggest multiple as

yet unpredicted exon pairs and identify splice junctions to join those multi-segment alignments.

Combine these alignments with the information from step 1 to determine if the read is fully ac-

counted for (<=5 bases unaligned from either end).

Comparison of spectra dataset used in this study with Merrihew

et al. (2008)17

TheMerrihew et al. (2008)17 paper used different fractionation methods, samples and data analysis

than the current submission to discover novelty.

The 2008 paper used biochemical fractionation of all stages of C. elegans to improve identifications

while the new dataset uses molecular weight fractionation of different stages of C. elegans. The

molecular weight fractionation gives us information about the protein before digestion and giving

us the potential to map the peptides back to different isoforms. Sampling the different stages of C.

elegans improves the identifications and provides information about when proteins are expressed.

8

The 2008 data analysis relied on a search database made up of the following components: Worm-

base (versionWS150) protein-coding genes, less conservative predictions from a version of Genefinder,

and intergenic ORFs from Wormbase (version WS130) greater than 30 codons with homology be-

tween C. elegans and C. briggsae. All of the above components are outdated and most, if not all

of the novel findings from the 2008 paper have been confirmed by other experimental methods

provided by the modENCODE project. Wormbase is currently on version WS236 which incor-

porates all these modENCODE findings. This paper describes a different method for assessing

novelty using a non-redundant compact database of information from RNA-seq reads to identify

novel events in mass spectrometry data. The 2008 paper used some RNA-seq data from the Green

lab but it only used the data to confirm the novel events found based on our database search. Also

when the 2008 paper was written the Green lab had only RNA-seq data for part of the C. elegans

genome.

Additionally our chromatography conditions and mass spectrometers have improved tremendously

since 2008. The new data was collected using nano-flow liquid chromatography and using a mass

spectrometer with higher resolution, increased sensitivity and faster scanning. The 2008 data used

standard flow liquid chromatography and a standard mass spectrometer.

9

Proof of correctness and completeness in applying Rule1, Rule2,

and Rule3

We use three rules to eliminate shared sub-paths.

1. For a pair of paths, xz and yz with a shared string z, we generate two FASTA strings xz, and

y ·prefL(z), where prefL(z) denotes a length L−1 prefix of string z.

2. For a pair of paths, xz and xy with a shared prefix x, we generate two FASTA strings xz, and

suffL(x) · y, where suffL(x) denotes a length L−1 suffix of string x.

3. For paths xy and yz, which have a prefix-suffix match with y≥ L, generate the FASTA string

xyz.

Claim: Applying rules 1,2, and 3, doesn’t violate completeness and correctness

Proof: Let G be a splice graph with nodes and edges. Each node represents exons containing se-

quence of nucleotides, and edges represents the possible event of splicing.

First we’ll define the followings,

• S is a set of every sequences from graph G.

• S1 is a set of sequences from S with applying rule 1.

• S2 is a set of sequences from S1 with applying rule 2.

• S3 is a set of sequences from S2 with applying rule 3.

• Sα(l) is a set of length l sequences from Sα .

It is clear that S(l) contains every length l sequences that can be generated from G, and doesn’t

have any sequences that cannot be generated from G. So, the claim will be satisfied if S(l) = S3(l)

To show S(l) = S3(l), we need to show S(l) ⊃ S1(l) ⊃ S2(l) ⊃ S3(l) and S(l) ⊂ S1(l) ⊂ S2(l) ⊂
S3(l)

10

Because of rule 1, 2 eliminating the sequence or subsequence of elements in S1 and S2, S(l) ⊃
S1(l) ⊃ S2(l) is clear. Also, rule 3 may produce extra length l path during the combining proce-

dure, S2(l)⊂ S3(l) is also clear.

What we need to show are the following,

1. S(l)⊂ S1(l)

2. S1(l)⊂ S2(l)

3. S3(l)⊂ S2(l)

1. S(l)⊂ S1(l)

It is clear that x is an element of S1(l) if S1 has at least one element y which has x as a subsequence.

So, it is enough to show that for ∀x ∈ S(l), ∃y such that y ∈ S1 and x is a subsequence of y. Recall

that S1 is generated from S with applying rule 1 which preserve one sequence for the shared suffix.

This means that rule 1 eliminates the suffix only when there is at least one sequence which contains

the same suffix. Hence y exists in S1.

2. S1(l)⊂ S2(l)

Recall that every element in S1 has distinct length l suffix and S2 is generated from S1 with rule 2.

So | S2 |=| S1 |. Set a bijection between S2 and S1 which has same length l suffix. Then the only

difference between these sets is part of the prefix that is eliminated by rule 2. But rule 2 also never

eliminates the prefix until one of the other elements in S2 has same prefix. Therefore every length

l sequence in S1(l) is also in S2(l).

3. S3(l)⊂ S2(l)

Rule 3 is applied only when two elements in S2 shares the node as their suffix and prefix. So, newly

generated length l sequences have their corresponding location in graph G. By 1 and 2, S2(l) have

every length l sequnce in G. So there is no element x such that x ∈ S3(l), x 	∈ S2(l).

11

Proof of correctness and completeness in DFS algorithm imple-

mentation of Rule1, Rule2, and Rule3

Claim: Our algorithm doesn’t violate the completeness and correctness.

Proof: From above, we have shown that application of Rule 1, 2, and 3 doesn’t violate the con-

straints. Here, we want to show our algorithm correctly apply rule 1, 2, and 3.

We begin with the two functions used in our implementation which follows conventional DFS

algorithm. DFS:́ An algorithm same as DFS, but stop when it evumerate visited node

DFSFiniteLength : An algorithm same sa DFS, but stop when it enumerate length L further from

desired node.

Rule 1:

For Rule 1, we will show this in a two step.

Step 1: For a certain merge node n, if every input edges are retrived, then keep search DFS for one

edge and call DFSFiniteLength for others. We want to show this is same as application of Rule 1

for the sequence set generated from n by DFS.

Step 2: For every merge node in G, DFSŕetrieve every input edges of all merge nodes.

If Step 1 and Step 2 are true, DFSánd DFSFiniteLength correctly apply rule 1 for every merge

nodes. Step 1 and Step 2 are shown as the following.

1. Assume we have merge node n and multiple input edges e1,e2, ...,ek.

Define:

• path pi : a path that passes through ei and stops at node n.

• set Ei : set of paths such that all elements in the set have pi as a prefix and are a result of

enumeration from n by DFS.

| Ei | are all identical because they are generated at same node n by DFS. Therefore, we can set

a bijenction for any element from Ei to E j which shares the suffix. Keep E1, and for E2, ...,Ek,

12

eliminate the suffix of all elements except (L−1) from corresponding sequence of n.

This is the same as application of Rule 1 for same merge node n.

2. Define: DFS´ is an algorithm the same as DFS, but stopping when it enumerates a visited node.

If we color the edges enumerated by DFS´ , then we can easily see that all edges in G will be

colored. This means that every merge node in G will be visited by DFSf́rom all its incoming

edges.

By 1. and 2., Rule 1 is implemented except for some path set that shares the suffix but does not

share the path.

Rule 2:

Whenever DFS´ visit splitting node during the enumeration, every sequence set from that node will

share the prefix. Therefore keep one and eliminate the prefix except (L−1) from the node is same

as application if Rule 2 for that node.

DFSánd DFSFiniteLength apply this for every splitting node, hence Rule 2 is implemented for all

splitting nodes.

Rule 3:

Candidate pair set contains every possible prefix-suffix ‘coordinate’ overlap which shares the se-

quence, so combining prefix-suffix pair in candidate pair set implements Rule 3.

Note that our algorithm applies Rule 1, Rule 2, and Rule 3 only when sequences have ‘coordinate’

overlap (having only sequence level overlap does not satisfy this condition, and having coordinate

overlap guarantees that the sequences have sequence level overlap within the same reference DNA

13

system). This is different then Edwards and Lippert16 where they merge all overlapping sequences

(less than a certain parameter), and do not consider coordinate information. Again, unlike Ed-

wards and Lippert,16 our method uses a genomic coordinate-based data structure(represented in

base pairs) rather than minimizing the amino acid sequence overlap. We claim that for proteoge-

nomic analysis the coordinate based approach is more appropriate since it can easily reconstruct

the original genomic coordinate of the identified peptide.

14

