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Data.The spread of Huanglongbing (HLB) during the four sweeps
is shown in Fig. S1. The epidemic first becomes apparent in
young trees in the east and then spreads both westward and to
older trees. Removal of symptomatic trees usually occurred 1–3
mo after detection.

Modeling Exposure to Infection. Because the regions of interest are
of suborchard scale and the timescale of the observations allows
the vector tomove a considerable distance, for the purposes of the
model, we assume that the total psyllid density is roughly constant
in space. Letting ~ρ denote the total psyllid density, κ denote, the
fraction that are infected, and Λ denote the intrinsic infection
rate per psyllid, the rate at which a susceptible tree becomes
exposed will be Λκ~ρ. It is convenient for modeling purposes,
however, to distinguish between vectors coming from outside
and inside the observed region. Let ~ρ0 denote the density of
external psyllids (assumed constant over the region of interest)
and ~ρij denote the density of psyllids at tree i arriving from tree j.
The density fraction ~ρij can be further modeled via a dispersal
kernel, namely, ~ρij =RKðxi; xjÞ, where R is a scaling constant and
xi denotes the position of tree i, etc. The dispersal kernels we
consider are isotropic, Kðxi; xjÞ= kðrij=αÞ, where rij is the Eu-
clidean distance between tree i and tree j and α is a length scale
to be determined.
To account for psyllid control in Southern Gardens, this was

carried out in the region under observation and surrounding
areas, it is necessary to let ~ρ= ~ρðtÞ. We assume that the same
function of time controls the time dependence of both ~ρ0ðtÞ and
~ρijðtÞ, namely ρðtÞ := ~ρ0ðtÞ=~ρ0ðt0Þ= ~ρijðtÞ=~ρijðt0Þ, and call it the
relative psyllid density. We estimate the relative psyllid density as
a piecewise linear function

ρðtÞ=
8<
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1; t≤ 1
2− t; 1< t≤ 2
0; t> 2

; [S1]

where t is measured in years and t= 0 corresponds to the start of
2005. Note that t0 < 1 is implied.
Defining e=Λκ~ρ0ðt0Þ and β=ΛκR, the instantaneous rate of

infection at time t for susceptible tree i can be written as
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where 1 is the indicator function that returns 1 when its argu-
ment is true and 0 otherwise. We identify « as the primary or
external rate of infection and β as the secondary rate of infec-
tion; both are model parameters to be estimated.
Although the form of Eq. S2 is standard, the physical and

biological reasoning underpinning the model of the exposure
process leads to the expressions for « and β given above. As
a direct consequence, the ratio of primary to secondary trans-
mission rates is the same constant for all spatial regions of
interest

e

β
=
~ρ0ðt0Þ
R

= constant: [S3]

Note that had we introduced the normalized secondary rate of
infection per tree, β′= β ·ZðαÞ, where ZðαÞ= ð1=NÞPi≠jkðrij=αÞ

and N is the number of trees, this result would not have been
apparent: the ratio e=β′ depends on α and the details of the
observed region.

Latent Period Parameters. The parameters of the cyclic, expo-
nential, and cyclic Weibull models are estimated from in-orchard
and in-nursery observations. Expert opinion, based on in-orchard
observations, for the upper bound on the combined latent and
cryptic periods was interpreted as the time for 95% of trees to
move from exposed to symptomatic. (Our results do not depend
sensitively on the assumption of 95%.) In-nursery observations of
the cryptic period then allow us to estimate the T0:95, the time for
95% of trees to move from exposed to infectious. By itself, T0:95
is not sufficient to fix the parameters of the cyclic, exponential,
and cyclic Weibull models, because these models describe a la-
tent period that depends on tE. Fortunately, the dependence on
tE becomes small for latent periods longer than the seasonal
period. The in-orchard data are given in Table S1.
On other hand, the gammamodel is a two-parameter model. Its

parameters are fixed by T0:95 and by expert opinion that the lower
bound on the combined latent and cryptic periods is at least 6 mo
and usually more than 1 y. The lower bound was interpreted as
the time for 5% of trees to move from exposed to symptomatic.
Recently, however, it has been realized that the latent period can
be as a little as 1 mo. This shortness of the latent period is in line
with the conclusions of our study, being entirely consistent with
the cyclic, exponential, and cyclic Weibull models.
It is also important to point out that seasonal effects were

introduced to account for the increase in symptomatic counts
during the second and third sweeps and the reduced counts in the
fourth sweep. Having seasonality in the latent period was forced
on us by a combination of the assumption of a compartmental
model for the epidemic, the early appearance of symptomatic trees
in Southern Gardens, the introduction of efficient psyllid control
measures, and the relatively long incubation period for HLB.

Cryptic Period Parameters. The parameters are fixed by in-nursery
observations showing that 5% (95%) of trees become symp-
tomatic within 2 (3) mo of becoming infectious.
Note that both the latent period and cryptic period parameters

could also have been estimated as part of the Bayesian inference.
Because the in-orchard and in-nursery observations lead to rather
strong priors on these parameters, it was the felt the extra
computational complexity would have yielded limited additional
information.

Parameter Estimation. We adopt a Bayesian approach to param-
eter estimation. We use Markov chain Monte Carlo (MCMC)
techniques, with uninformative exponential priors, to obtain, after
a burn-in period, a joint posterior density for the parameters,
conveniently represented as a vector ðα; β; e; t0Þ in the parameter
space Θ0.
Suppose there are initially N susceptible trees and that T is the

final observation time. Let S be the index set of trees never
exposed, E be those exposed but never infectious, I be those
infectious but never symptomatic, and D be those that were
symptomatic, up to time T. It follows that S; E; I ; and D are
disjoint sets and that S ∪ E ∪ I ∪D= f1; . . . ;Ng. Then, taking the
removal times as known, the theoretical joint probability density
for the epidemic times is
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where f ðtI jtEÞ is the probability density function for the latent
period, FðTjtEÞ := R∞

T dt  f ðtjtEÞ is its (right) tail distribution,
gðtDjtIÞ is the probability density function for the cryptic pe-
riod, and GðTjtIÞ := R∞

T dt  gðtjtIÞ is its tail distribution.
In practice, however, the times tEi and tIi are unobserved, and

we observe only that tDi ∈Δi, where Δi is some time interval.
Indeed, we cannot even specify the index sets S; E, or I . Ordi-
narily, we would integrate the joint density with respect to the
latent variables and over the censoring intervals to obtain the
probability PðftDi ∈Δi : i∈Dgjα; β; e; t0Þ, but such an approach is
not tractable here. The reason is that ΦiðtÞ depends on all in-
fectious times tIj < t, making it impossible to find a closed form
expression for the integral of Eq. S4 over the unobserved times.
To solve this problem, we use data augmentation and reversible-
jump MCMC methods.

Reversible-Jump MCMC with Data Augmentation. Let δ denote a
partition of the set of trees that were never symptomatic into
sets of trees that were not exposed, exposed but not infectious,
and infectious: Sδ ∪ Eδ ∪ I δ =D′. MCMC with data augmentation
(1–3) extends the parameter space from Θ0 to Θδ, where Θδ

contains Θ0 and all times consistent with the data and the par-
tition δ. Given a partition δ, MCMC will generate an empirical
joint posterior density on Θδ. The marginal density on Θ0 is then
the desired posterior.
The reversible-jump technique (4) enables MCMC to explore

Θδ for different δ, a requirement that is clearly necessary because
the actual partition is not known. Reversible-jump MCMC
generates an empirical joint posterior density on the parameter
space Θ :=∪δfδg×Θδ. Because Θ0 ⊂Θδ for all δ, we marginalize
over all times and partitions to obtain the posterior for the pa-
rameter vector.

Age Dependence in the Rates of Infection. The age dependence in
the rates of infection is show in Fig. S2.

Model Checking and Model Comparison. For subregion 13a, we
compare eight different models, a model being specified by
a choice of dispersal kernel and latent period model: (i) expo-
nential kernel plus cyclic model with yearly oscillations; (ii) ex-
ponential kernel plus exponential latent period; (iii) Cauchy
kernel (r−2 power law kernel) plus yearly cyclic model; (iv) ex-
ponential kernel plus gamma model; (v) r−4 power law kernel
plus yearly cyclic model; (vi) exponential kernel plus cyclic Weibull
model; (vii) r−8 power law kernel plus yearly cyclic model; and
(viii) exponential kernel plus twice-yearly cyclic model.
The labeling has been chosen so that in Figs. S4 and S5, the first

column shows the results of different dispersal kernels and the
second column shows the results of different latent period
models. We fit each model using reversible-jump MCMC with
data augmentation. From the resulting joint posterior for Θ0,
we randomly drew 100 parameter sets and simulated epidemics
using the Selke algorithm. We then compared the temporal and
spatial structure of simulated outcomes with those of the actual
outcome. Specifically, we considered the counts of symptomatic
trees in each of the four sweeps, and the two-point spatial cor-

relation of all symptomatic trees observed up to and including
the final sweep.
Dispersal kernel length scales. The estimated length scale α varies
with choice of dispersal kernel and latent period model. Table S2
gives the explicit form of the kernel kðr=αÞ in each of the eight
models above and the posterior mean and 95% credible region
for α measured in units of meters. Except for model c, the
marginal posterior densities for α were roughly bell-shaped. For
the Cauchy kernel in model c, the marginal posterior peaks at
α= 0. The interpretation when α is vanishingly small is that ex-
ternal sources of infection are entirely responsible for driving the
epidemic.
Counts of symptomatic trees. The counts of symptomatic trees are
indicated in Fig. S3. The red line is the actual observed count; the
frequency histogram of counts from the 100 simulations is in blue.
Only in models a and c are all actual counts well within the
distribution of simulated counts. Model d, the only model that
favors a long latent period, is completely ruled out.
Two-point correlation function. The two-point correlation function
we use is a modified Moran’s I statistic for presence-absence
data. Letting si = 1, if tree i is found to be symptomatic before or
at the final observation time and si = 0 otherwise, we define

ξ2ðr1; r2Þ=
hP

ijwijðr1; r2Þsisj
i
− s2

sð1− sÞPijwijðr1; r2Þ ; (5)

where s= ð1=NÞPisi and wijðr1; r2Þ= 1ðr1 ≤ jxi − xjj< r2Þ is a ring
weighting. Note that in the limit r→ 0, we have ξ2ð0; rÞ= 1.
The two-point correlation functions are shown in Fig. S4.

We chose a sequence of ring radii, r1; r2; . . ., and plotted
ξðriÞ := ξ2ðri; ri+1Þ. The red line is the actual observed two-point
correlation; the two-point correlations from the 100 simulations
for each model are in green. Each model gives correlation
functions that are consistent with the vanishing of the observed
correlation function for r > 80 m. Conversely, only model
a accommodates the observed correlation function for r > 80 m.
Models e and g fit reasonably well except in the range of 30–40 m.
Once again, model d appears to be completely ruled out.
Model predictions. In Fig. S5, the cumulative counts of symptomatic
trees are shown for 100 simulations of each model that have been
run more than 3 y past the final observation time. Note that
simulations are run from the randomly drawn initial times t0 ∈Θ0
and incorporate the removal of symptomatic trees. Although the
simulations are not constrained by the actual detections at the four
observational sweeps, they are in good agreement with the data, as
evidenced by the red lines that meet at the total cumulative de-
tection count at the final observation time. Alternatively, we could
have sampled from the full posterior for Θ, which, for each sample,
would have allowed us to infer a complete epidemiological state of
subregion 13a at the final observation time. We could then have
run each simulation forward from this time.
Model limitations. Our model for HLB spread is not uniformly
applicable. In subregions with very few symptomatic trees, a very
large length scale α can be favored. This outcome reflects an
underlying identifiability problem because in this case the dis-
persal kernel is essentially constant and mimics an external in-
fection. Such a situation occurred in the large subregion in the
southeast corner of Southern Gardens. Additionally, subregions
with trees of differing ages can be problematic because the ep-
idemic will proceed very differently in different parts of the
subregion. Because the parameters are phenomenological
quantities combining effects due to host and vector, dispersal
parameters can only be understood in an averaged sense.
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Fig. S1. (A) Sweep 1: November 2005 to March 2006, 1,748 detections, shown in blue. (B) Sweep 2: September 2006 to November 2006, 12,962 detections,
shown in green. (C) Sweep 3: January 2007 to April 2007, 10,591 detections, shown in orange. (D) Sweep 4: May 2007 to July 2007, 2,626 detections, shown in red.
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Fig. S2. Boxplots of the transmission parameter posteriors for 16 subregions; the subregions are color-coded by age: young (green), old (blue), and mixed
(red). (A) Secondary rate of infection, β, by average age of subregion at estimated epidemic start time. (B) Primary rate of infection, «, by average age of
subregion at estimated epidemic start time.
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Fig. S3. Comparing models by observed detections in each of the four successive sweeps. The red line is the actual observed count; the frequency histogram
(scaled to have unit area) of counts from 100 simulations is in blue. The vertical and horizontal scales are the same for each sweep.
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Fig. S4. Comparing models by the two-point spatial correlation of all detections. The red line is the actual observed two-point correlation; the two-point
correlations from 100 simulations are in green. Note that the actual correlation function goes to zero at about 80 m.
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Fig. S5. Comparing models by predicted future detection counts. The red lines meet at the actual observed count at the final observation time; the counts
from 100 simulations are in blue. White stripes in the plots are a result of the latent period models with cyclic hazard rates.

Parry et al. www.pnas.org/cgi/content/short/1310997111 7 of 8

www.pnas.org/cgi/content/short/1310997111


Table S1. Expert opinion of upper bound on combined latent
and cryptic periods for trees of different ages

Age (y) Upper combined latent and cryptic period (y)

1<a≤3 1.5
3<a≤10 3
a>10 4

Table S2. Posterior mean and 95% credible region for α
measured in units of meters

Model Dispersal kernel kðuÞ Length scale α (m)

a expð−uÞ 6:98:75:3

b expð−uÞ 6:07:84:4

c ð1+u2Þ−1 0:61:60:02

d expð−uÞ 4:05:72:8

e ð1+u4Þ−1 7:211:15:0

f expð−uÞ 6:98:95:3

g ð1+u8Þ−1 16:413:520:1

h expð−uÞ 6:07:84:4
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