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SI Text

Laguerre–Gauss Modes
Laguerre–Gauss (LG) modes are solutions of the paraxial wave
equation (which, for example, describes the propagation of laser
beams). They are described by two mode numbers: the radial mode
number n and the angular mode number l. The LG modes are
orthogonal to each other, and form a complete basis. They can be
written as

LGn;lðr;ϕ; z= 0Þ=Nn;l
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where Nn;l is a normalization constant, w0 is the beam waist at
z = 0, and Ljlj

n are Laguerre polynomials. The l number corre-
sponds to the orbital angular momentum (OAM) of the mode,

and n stands for the number of nodes in the intensity profile in
radial direction.

Mathematical Formulation of Our Result
With d-dimensional entanglement we understand correlations
that can never be explained by convex combinations of pure
states with a Schmidt rank lower than d. Notice that we indeed
have entanglement in a 34,596 (186 × 186)-dimensional Hilbert
space between almost all possible involved dimensions. How-
ever, even if all levels are entangled, it might still be that a con-
vex combination of qubit states would still be enough to explain
these correlations. This is what we explicitly exclude in deriving
the nonlinear witness for the Schmidt number, where an en-
tanglement dimensionality of 103 signifies that no combination
of d = 102 states could explain the observed correlations, thus
proving genuine high-dimensional entanglement.

Bounding the Schmidt Number from Normalized Subspace
Correlations
The goal of this section is to the determine lower bounds on the
Schmidt number from the sum of all two-dimensional normalized
subspace correlations in a D dimensional system. It is organized
as follows:

i) We first introduce the general correlation criterion for nor-
malized subspaces.

ii) We continue by deriving tight lower bounds for the same cor-
relations in nonnormalized subspaces.

iii) Finally we derive the global maximum of this correlation
function for perfectly correlated modes.

Using the following abbreviation

jLGn;l
�
= jki; [S2]

where we count allLGmodes of fn; lg [i.e., all Laguerre-Gauss modes
with mode number n (radial modes) and l (OAM modes)], we can
represent the performed measurements via the following operators:

σklx := jkihlj+ jlihkj;
σkly := ijkihlj− ijlihkj;
σklz := jkihkj− jlihlj:

[S3]

To lower bound the dimensionality of entanglement in normal-
ized subspaces we use the following correlation function

CðρÞ=
X
k<l

XD−1
l=1

g
�
ρkl
�
; [S4]

where the sum is taken over all ρkl, the normalized subspace
density matrices, where all but two degrees of freedom on both
sides are ignored, i.e.,

where Nkl is the normalization, such that TrðρklÞ= 1, and

g
�
ρkl
�
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��
σklz ⊗ σklz − σkly ⊗ σkly + σklx ⊗ σklx

	
ρkl
	
: [S6]

Comparing these to the correlations on the total state, i.e.,

fklðρÞ=Tr
��

σklz ⊗ σklz − σkly ⊗ σkly + σklx ⊗ σklx

	
ρ
	
; [S7]

we can write

gðρklÞ=
fkl
Nkl

; [S8]

and thus

CðρÞ=
X
k<l

XD−1
l=1

fkl
Nkl

: [S9]

It is important to note that of course we only consider contribu-
tions from subspaces with a nonzero contribution, i.e., if Nkl = 0
we set gkl = 0.

Lower Bounds from Nonnormalized Subspaces. The first step of the
witness construction is the determination of the maximal value
of f ðρÞ :=Pk<l

PD−1
l=1 fklðρÞ for d-dimensional states.

X
k<l

XD−1
l=1

fkl ≤ max
jψdi

f ðjψdihψdjÞ; [S10]

where jψdi=
Pd−1

i=0 λijiiAjiiB. The first step to achieve this maxi-
mization is to realize that

ρkl :=
ðjkihkj+ jlihljÞ⊗ ðjkihkj+ jlihljÞρðjkihkj+ jlihljÞ⊗ ðjkihkj+ jlihljÞ

Nkl
; [S5]
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where jϕDi := ð1= ffiffiffiffi
D

p ÞPD−1
i=0 jiii and we got an upper bound via

setting all negative contributions to 0. It can be derived (1,2) that
the maximal overlap of a D-dimensional state jϕDi with a
d-dimensional state Tr½jψdihψdjjϕDihϕD�Þ is achieved by jψdi :=
ð1= ffiffiffi

d
p ÞPd−1

i=0 jiii. This state also maximizes Tr½ððD− 3ÞPD−1
i=0 jiii

hiijÞjψihψ j� such that we can infer that indeed this state achieves
the global maximum for maxjψdif ðjψdihψdjÞ and thus we can di-
rectly calculate

f ðρÞ≤ ð2d+ ðD− 3ÞÞ: [S12]

Due to the linearity of f ðρÞ, the maximum is a pure state, thus
[S12] is an upper limit for pure and mixed states.

The Structure of the Global Maximum. Before we proceed to bound
the maximum of CðρÞ as a function of D and d we require a few
observations:

gkl =
4ℜe½hkkjρjlli�+ hkkjρjkki+ hlljρjlli− hkljρjkli− hlkjρjlki

hkkjρjkki+ hlljρjlli+ hkljρjkli+ hlkjρjlki
≤
4ℜe½hkkjρjlli�+ hkkjρjkki+ hlljρjlli

hkkjρjkki+ hlljρjlli ;

[S13]

i.e., monotonically decreasing in the elements hkljρjkli+ hlkjρjlki for
all k and l. We now argue that for our physical system it is sufficient
to maximize over states that are perfectly correlated, i.e., states that
can be written in the form of ρ=

P
k;l ckljkkihllj with TrðρÞ≤ 1. This

is physically motivated and discussed in Effect of Deviation from
Perfect Correlation. This particular form of the maximizing density
matrices implies that all Schmidt decompositions can be made in
a computational basis and we can write every vector in the decom-
position of the maximizing ρ as jψαi=

P
k∈α λ

α
kjkki.

This further implies we can decompose the maximizing density
matrix as

ρmax =
X
i

X
αi

pαi jψαi

�

ψαi j; [S14]

where α⊂ f0; 1; ð⋯Þ;D− 1g with jαj≤ d (where jαj is the number
of elements in α) denotes the set of dimensions in which the
decomposition element is entangled. Without loss of generality
we consider the case jαj= d, as every density matrix that can be
decomposed into Schmidt-rank d′< d states is strictly contained
in this definition (for some λk = 0). We write [S13] as

gklðρÞ= 4
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Here, λk can be chosen to be real (as it is standard for the Schmidt
decomposition), as any complex phases would only decrease the
value of Re½λkλl�. Using the abbreviation ~λ

αi
k :=

ffiffiffiffiffiffi
pαi

p
λαik we can take

the partial derivatives with respect to ~λ
αi
k to find general conditions

for all extremal points:

∂
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Thus
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Since the left-hand side is symmetric in k and l we can conclude
that ~λ

αi
l =~λ

αi
k . It then directly follows that
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And since only the right-hand side depends on α, every partial sum
of 1=Nkl is equal for k; l∈ ∪ αi. This implies that all Nkl that appear
in the union of all αi will be equal to some N. Thus, we can write

CðρmaxÞ≤
X

k;l∈∪αi

fkl
N

+
X

k∈∪αi;l∉∪αi

Nkl

Nkl
; [S19]

where N = 2=∪αi and we know from Eq. S12 that
P

k<l
Px−1

l=1 fkl
≤ 2d+ ðx− 3Þ for all x≥ d. We thus get an upper bound

CðρÞ≤Dd+
D
2
ðD− 3Þ: [S20]

Nowweknow that all extremal points (of course including allmaxima)
of the function are upper bounded by this value. At the same time we
know that on every boundary (given by a partial set of jψαii) all
extremal points are upper bounded by an even lower value. Together
this implies that indeed we have found the global maximum.

Maximizing Quantum State. It is worth pointing out that in general
for every d<D this bound is tight, i.e., there exists a mixed state
which saturates this bound

ρd =
1�D
d

	 X
α⊂ f0;1;⋯;D−1g

jϕd
α

�

ϕd
αj; [S21]

where jϕd
αi :=

�
1=

ffiffiffi
d

p �P
k∈αðjkkiÞ and jαj= d.

When we compare the maximizing state with the expected state
in our experiment (nonmaximally entangled pure state), we see
that we most likely will underestimate the Schmidt number for
photons created in down-conversion, thus we might have an even
higher number of entangled dimensions.

Effect of Deviation from Perfect Correlation
For the derivation of the bounds S20, we assumed perfect cor-
relations between all involved modes. This is physically moti-
vated. The first quantum number corresponds to the angular
momentum of light, which is known to be conserved in the down-
conversion process (3–5). The second quantum number corre-
sponds is the radial momentum, for which the limit of perfect
correlation (so-called quasi-Schmidt modes) can be realized ex-
perimentally with very good approximation (6, 7), as can be seen
in our experimental data in Fig. 3B.
Deviations from this assumption have been analyzed numeri-

cally. We have analyzed how nonperfect correlated states or
nonorthogonal projections influence our quantity S9. We have
found that for small deviations such as observed in our experiment,
the quantity S9 can only decrease, thus the resulting bounds still
hold. Therefore, the application of our entanglement dimen-
sionality criterion is perfectly justified.

Observed Visibilities
For the visualization of the observed visibilities, please see Fig. S2.
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Considered Modes vs. Entanglement Dimensionality
Fig. S3 visualizes the considered modes and corresponding en-
tanglement dimensionality for the measured results in our ex-
periment.
Example: To explain this behavior more, we give a simple example.
Considering the state

jψi=Nð0:5j0; 0i+ 0:07j1; − 1i+ 0:01j2;− 2i+ 0:01j3;− 3iÞ;

where N is the normalization, we can calculate the subspace
visibilities. The sum of the x, y, and z visibilities in every subspace
(SV = Vx + Vy + Vz) gives

SV0;1 = 1:550;1;  SV0;2 = 1:08;   SV0;3 = 1:08;  SV1;2 = 1:56;  

SV1;3 = 1:56;   and  SV2;3 = 3:

Calculating the sum of all visibilities (according to Eq. 1 in
the main text) gives W = 9.723. Comparing with our inequality
from [2] in the main text, using D = 4, we can confirm a two-
dimensional entanglement (bounds are 6, 10, and 14 for two-,
three-, and four-dimensional entanglement, respectively).
If we only consider modes 1, 2, and 3 (and do not consider mode

0), we get W = 6.12, which confirms a three-dimensional en-
tanglement (bounds are 3 and 6 for two- and three-dimensional

entanglement, respectively). This example shows how consider-
ing a smaller number of modes can verify a higher-dimensional
entanglement with our method.

Computer-Generated Holograms
The holograms on the spatial light modulators (SLMs) are cal-
culated using a plane-wave approximation. This could lead to
nonorthogonal projective measurements. However, for our sys-
tem, this effect can only reduce the visibilities and thus reduce the
observed dimensionality (Fig. S1). We restrict ourselves to two-
dimensional subspaces, as this leads to simpler holograms on the
SLMs and increases the mode transformation accuracy due to the
finiteness of the pixels. Furthermore this method allows us to treat
nonmaximally entangled state (Fig. 3A) directly; therefore we do
not need to perform any entanglement concentration.

Statistical Uncertainty
The detected photon numbers are assumed to be Poisson distrib-
uted, which leads to asymmetric distribution especially for low count
rates. Analytical treatment of error propagation for such a large
number of measurements was not feasible. Therefore, all confi-
dence intervals have been calculated using Monte Carlo simu-
lations. The statistical uncertainty is very small because it depends
on 200,000 measurements with a relatively small uncertainty.
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Fig. S1. A nonmaximally entangled state with D = 186 dimensions is considered, similar to the state we expect from our experiment. It is considered how
nonorthogonal projections and other measurement-induced errors (blue), nonperfect correlations (red), and both effects simultaneously (yellow) influence the
value of the quantity W [or C(ρ) (Eq. S9)]. For each type, 1,000 cases are calculated. The imperfections are introduced randomly, in each step the introduced
imperfections increase. The dashed black line shows the value calculated without imperfections. It can be seen that any introduction of nonperfect correlations
or nonorthogonal projections only decreasesW. These results guarantee that the experimentally observed deviation from the perfectly correlated state cannot
artificially increase the observed dimensionality (in contrast, it decreases the quantity W, thus the observed Schmidt number).
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Fig. S2. (Left) The visibilities of all of the two-dimensional subsets in all of the three bases are shown. The z visibility is usually larger, because nonmaximal
entanglement (Fig. 3A) reduces visibility in the x and y basis only. When we sum up the three visibilities (Right), we can see that some subsets are more
entangled than others. Every subspace with a value larger than 1 is two-dimensional entangled; this is true for most of the 17,000 subspaces. Modes with
similar count rates have high visibilities, whereas modes with a very different count rate have very low visibilities in the x and y bases. To reveal information
about the global, high-dimensional entanglement, we have to sum up all visibilities of all subsets and calculate quantity W in Eq. 1.

Fig. S3. The entanglement dimensionality d depends on the number of modes considered for hWi, as described in inequality 2 in the main text. We measured
all two-dimensional subspace correlations in x, y, and z bases for 186 different modes. If the state would be maximally entangled, one could extract as much
entanglement dimensionality as one considers modes (blue line). However, as it can be seen in Fig. 4A, there are modes which contribute stronger to hWi
(yellow region), and some modes that contribute less to the witness (for instance the Gaussian mode LG0,0). One can remove certain modes (i.e., not considering
all two-dimensional subspace measurement that contains these specific modes). We find a maximal detectable entanglement dimensionality d, if we only
consider the 167 strongest contributing modes (red curve). This leads to 103-dimensional entanglement (black dashed line). We also observe a set of 15 modes
which are entangled in 15 dimensions, which could be significant in special protocols in quantum communication.
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