
Supporting Information
Hersch et al. 10.1073/pnas.1320355111
SI Materials and Methods
PlantMaterial.All mutants were generated in the Col background.
The pif4pif5, hfr1, hfr1pif4pif5, and sav3-2/taa1 mutants have
been described previously (1–3). The hfr1taa1 and pif4pif5taa1
mutants were obtained by crossing sav3-2, respectively, to hfr1-
101 and pif4-101pif5 (pil6-1), and genotyping was performed as
previously described (1–3). For sav3-2, genomic DNA was ampli-
fied with CF505 (AACATCCCCATGTCCGATTT) and CF506
(AACACAAGTTCGTCATGTCGC). After digestion with Mnl1,
the WT fragment produces two bands of 220 and 108 bp,
whereas the sav3-2 is not digested.

Pharmacological Treatment. For picloram (Sigma-Aldrich)/α-(phenyl
ethyl-2-one)-IAA (PEO-IAA) (provided by Ken-ichiro Hayashi,
Okayama University of Science, Okayama, Japan)/L-kynurenine
(Sigma-Aldrich)/yucasin (provided by T. Koshiba, Tokyo Metro-
politan University, Tokyo, Japan) treatment, seedlings were first
grown on 1/2 Murashige and Skoog (MS). After 4 d, the meshes
were transferred onto new 1/2 MS plates containing different con-
centrations of the drugs or DMSO as a control. All products were
kept frozen as a 1,000× concentrated stock in DMSO. Hypocotyl
elongation during the treatment was measured as the difference of
hypocotyl length between day 4 and day 8 and expressed relative to
the elongation of seedlings grown on DMSO.

RNA Extraction and Quantitative RT-PCR. These experiments were
performed as described in ref. 4. For real-time RT-PCR on
dissected hypocotyls and cotyledons, 7-d-old seedlings grown on
horizontal plates were harvested in cold acetone and vacuum
infiltrated for fixation. Seedlings were moved to 70% (vol/vol)
ethanol to dissect cotyledons and hypocotyls. After removal of
ethanol, samples were ground with glass beads, and RNA was
extracted using the RNeasy plant mini kit with on-column DNA
digestion (Qiagen). RNA (200 ng) was used for the reverse tran-
scription as described in ref. 5. Except when indicating in the figure
legends, YLS8 and UBC10 were used as housekeeping genes.

Determination of Auxin Content. Aerial parts of seedlings were
pooled, weighed, and frozen in liquid nitrogen for quantification
of free IAA content. The sample fresh weight was around 10 mg,
and five replicates were analyzed for each line and treatment.
13C6-IAA (500 pg) internal standard was added to each sample,
and the samples were purified and analyzed using gas chroma-
tography coupled to tandem MS as described in ref. 6, with
minor modifications.

Computational Methods. Model. The regulatory network was mod-
eled using ordinary differential equations. The same general pur-
pose equation was used to model molecular activity. It is given by

_xi = si +Σjajixi − kixi −Σjdjixjxi: [S1]

Here xi represents the activity of node i, in our case the molec-
ular activity, and aji and dji are the weight of the positive and
negative edges from node j to node i and are strictly positive. The
positive source term si models all activating effects not explicitly
represented in the network, such as baseline protein production.
The degradation term kixi models all inactivating effects not
explicitly in the network. In this equation, all effects are very
coarsely approximated by a linear function, and the degradation
term is bilinear. In sum, each positive edge corresponds to a lin-
ear activation, and each negative edge corresponds to a bilinear

inhibition that ensures a positive activity. Relevant biological
knowledge is also inserted in the model. For example, for mutants,
the corresponding node activities are constrained to zero, and the
ratio of phytochrome B (phyB) activity in high vs. low red light(R):
far red light (FR) was set to 10, as documented by spectral mea-
surements (7). Using contraction analysis (8), the system can be
shown to converge to a single attractor as long as there is no cycle
of positive edges in the network. The system is thus safely assumed
to be at steady state. This set of equations differs from other
general purpose network equations proposed in the literature,
such as the Boolean network, continuous Boolean networks (5),
or Hopfield-like networks (9). In those networks, activities have
a lower and upper bound (usually zero and one). Our network only
has a lower bound but no upper bound. This property, along with
the use of linear activation terms, reduces the nonlinearity of the
network, which is very advantageous for the performance of the
sampling algorithmwe subsequently use. It can be justified on a the-
oretically level by assuming that molecular activities do not reach
saturation level. Indeed, there can be differences of many orders of
magnitude in the concentrations of proteins and assigning a gating
function to the activities is also somewhat arbitrary, especially as
units are left unspecified. Only for the readout node, hypocotyl
elongation, do we add a bounding sigmoidal function, because we
know that the observed elongations belong to the same order of
magnitude. The sigmoidal function takes the following form

y= β½1+ expð−x+ β=2Þ�−1;

where β gives the amplitude (or saturation level) of the function,
which has β=2 as a fixed point.
We define the network parameter vector θ consisting of the

weight of all edges, the source and degradation terms of all
nodes and β. Moreover, we set the list of experimental conditions
λ as the (discrete) inputs of the network specifying the combi-
nations of light conditions and the mutant used. We can then
define the output vector g(θ, λ) as the values of the elongation at
steady state when using parameter values θ and all experimental
conditions λ. Therefore, for each parameter vector θ, there is
a vector of outcomes g(θ, λ), specifying the values of the read-out
node at steady state for each experimental condition in λ. These
steady states are computed numerically.
The advantage of thismodel lies in its simplicity, as it only contains

one effective parameter per node (si=ki) and one parameter per
edge. In the present study, the network topology is also kept as
simple as possible. If needed, however, the role of additional players
can be explored because both node and edges can be expanded into
more detailed subnetworks as long as we can generate enough data
to constrain it with the relevant mutant combinations.
As mentioned above, this model cannot model sensitivity be-

cause activations are linear. When needed, we modeled the in-
fluence of node j on the sensitivity of node i to node k with a
bilinear term aijkxjxk.
Parameter sampling vs. estimation. In the method suggested here,
a parameter sampling strategy rather than a parameter estimation
strategy is applied. The idea behind it is to go beyond the “average
response” criticized by Trewavas (10) and consider the distri-
bution of the experimentally observed responses. Indeed, bi-
ological replicates differ one from another because each individual
is to some extent unique, and this uniqueness can be related to the
model parameters. One could argue that each biological replicate
has a somewhat different parameter vector. Therefore, instead
of considering an average response and estimating a vector of
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optimal parameters, as is commonly done, we sample the pa-
rameter space according to a particular distribution that de-
pends on the distribution of the experimental data. Let Ω be this
m-dimensional experimental read-out distribution, where m is the
number of different conditions and genotypes (i.e., the size of λ).
In other words, Ω is the distribution of measured hypocotyl
elongations, where each mutant and experimental condition runs
along a different dimension. Because the conditions are in-
dependent, this distribution is assumed to be Gaussian with
a diagonal covariance matrix. Using a Markov chain Monte
Carlo method (GaA-MCMC) (11), we then sample a parameter
vector θ according to

pðθÞ∝ pΩ½gðθ; λÞ�:

In other words, θ is sampled such that the distribution of the
corresponding network outcomes g(θ, λ) follows Ω, the experi-
mental distribution of the hypocotyl elongation. Each point θ of
the parameter space is thus (theoretically) assigned a probability,
and this probability corresponds to the probability of observing g
(θ, λ) according to Ω. The distribution p(θ) captures our uncer-
tainty of the parameter values as we do not settle for a single
parameter vector, but assign a probability to the whole parame-
ter space. This probability distribution enables the exploitation
of the information contained in the variance of the experimental
data (both in terms of biological regulation and experimental
uncertainties), and not only its average as done by classical pa-
rameter optimization. Having a distribution on the network pa-
rameters θ allows us to predict the effect of a new knockout
mutant by solving the network equation at steady state for each
of the sampled parameters and looking at the distribution of
responses. The mean of the resulting response provides a predic-
tion and its variance gives a measure of confidence in this pre-
diction.
This approach is similar to the approximate Bayesian com-

putation (ABC) methods often used for stochastic models in
population genetics (12) and that have also been applied to
model selection (13). These methods also sample the parameter
space, for example, with MCMC (14), and the probabilistic (or
varying) outcome of the model for each parameter θ is compared
with the distribution of the observed data. This sampling is done
to estimate the posterior likelihood function of θ, which can then
be maximized. In contrast, in our case, each parameter θ gen-
erates a single output, and the distribution of θ in the biological
samples is estimated by matching the distribution of corre-
sponding model outcome to distribution of the observations. In
this sense, it can hardly be said to be a Bayesian likelihood

function and the Bayes factor (essentially a likelihood ratio)
cannot be used for model selection. Instead we use leave-one-out
cross-validation, as described below.
Network evaluation. To evaluate the network, we look at the
accuracy of its predictions in a leave-one-out cross-validation
scheme. All but one mutant data are used to sample the pa-
rameter space (as described above), and the resulting parameter
distribution is then used to predict the elongation of the re-
maining mutant (called the test mutant). This prediction is done
by estimating themean of the distribution of elongations of the test
mutant when sampling from the distribution of parameters. This
procedure is applied for all mutants, providing a prediction for
each mutant in normal and simulated shade conditions. The
Mahalanobis distance between the predicted and the observed
mean elongations are then used to quantify the accuracy of the
predictions. This distance is equivalent to the absolute log z-score
of the predictions according to the experimental distribution of
elongations. It thus reflects how well the network can capture the
essential features of the biological system. If the distance is zero,
it means that all mean mutant elongations are perfectly predicted.
The bigger the distance is, the poorer the predictions are (and
thus the network). Because the sampling entails some ran-
domness, we assess the reliability of the predictions and eval-
uation by running the evaluation procedure 10 times and
looking how much they vary from one another. The final score
is the average score across the 10 runs. This procedure penal-
izes overfitting, as can be seen from the simulation results
where having both the sensitivity and production of the PIFs in
the network does not produce a better score than having just
one of them (Fig. 2C vs. Fig. S2 and Fig. S5 B vs. C).
Noise model. We consider the following simple elongation model,
ylgi = blgxlgi, where y is the observed elongation, x is the auxin signal,
b is the auxin sensitivity, and l, g, and i denote, respectively, the light
condition, the genotype, and the seedling index. To model noise, we
include a multiplicative noise « and an additive measurement noise
μ, obtaining ylgi = blgxlgi«lgi + μlgi. This model is justified by the fact
that the SD scales linearly with the average elongation (Fig. S9). We
are interested in the variance of «, which can be interpreted as the
variance in the auxin signal read-out. Assuming noise inde-
pendence, we have varð«lgÞ= ½varðylgÞ− varðμlgÞ�=ðblgxlgÞ2. We es-
timated the variance of measurement noise varðμlgÞ (assumed to be
the same for all l and g) by measuring twice the same data set,
whereas blgxlg is estimated as the average elongation for a given light
condition and genotype. Assuming normal distributions for μ
(centered) and « (centered on 1), an F test can be used to assess
whether varð«lgÞ varies significantly between two conditions.
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Fig. S1. Experimental setup. (A) Seedlings were grown on vertical plates along a nylon mesh. Pictures were taken at day 4 and day 8. (B) Hypocotyl elongation
during the last 4 d of the experiment. Hypocotyl elongation during the treatment was measured as the difference of hypocotyl length between day 4 and day
8. n = 25–34, error bars = 2 SE.
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Fig. S2. Observed and predicted elongation of seedlings grown in low light intensity in normal (white background) and low R:FR (shaded background) for the
network including the link between PIF and auxin production [through the YUCCA (YUC)] and auxin sensitivity.
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Fig. S3. Quantitative RT-PCR analysis of shade-responsive genes. The different genotypes were grown 4 d in constant high R:FR light followed by 3 d in low or
high R:FR. Gene expression was normalized to YLS8 and UBC and expressed relative to one WT control grown under high R:FR. Error bars represent the SEM of
three biological replicates.
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Fig. S4. Quantitative RT-PCR analysis of YUC genes in the hfr1pif7 double mutant. The different genotypes were grown 4 d in constant high R:FR light
followed by 3 d in low or high R:FR. Gene expression was normalized to YLS8 and UBC and expressed relative to one WT control grown under high R:FR. Error
bars represent the SEM of three biological replicates.
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Fig. S5. (A–D) Observed and predicted elongation of seedlings grown in high light intensity conditions for various networks. Network B makes predictions
significantly better than all other networks. Refer to the legends of Figs. 2 and 4A for more details.
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Fig. S6. Differential effect of yucasin on pif4pif5 depending on PAR. Relative hypocotyl elongation of WT seedlings in low R:FR in presence of inhibitor of
auxin synthesis (yucasin) at the concentration of 100 μM. n > 14, mean ± 2 SE. *Statistical difference (P < 0.01) using a t test. As previously published (1), the
efficiency of yucasin to inhibit hypocotyl elongation is limited.

1. Nishimura T, et al. (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77(3):352–366.
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Fig. S8. AFB1 expression is not induced in the cotyledons in response to low R:FR. Gene expression was determined by quantitative RT-PCR in cotyledons of
7-d-old WT seedlings grown in low light intensity, high R:FR (T0), or subjected for 2 h to low R:FR (2 h). Data are mean ± 2 SE (n = 3 × 40 seedlings).
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Fig. S9. Noise analysis. For most genotypes and conditions, a linear relationship is observed between mean elongation and its SD, confirming the validity of an
additive and multiplicative noise model. In high light, the Col elongation displays less variability than what would be expected from its mean elongation,
suggesting that the increased auxin signal intensity makes it more robust. Interestingly, this is not the case for the pif4pif5 mutants. The regression line for low
light conditions is shown in blue.

Fig. S10. Metaphorical illustration of the model. In foliar shade, a weaker signal (represented by fewer auxin molecules) is compensated by an increased
sensitivity (represented by the hearing aid).
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