Journal of Experimental Botany

Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice

Susumu Mochizuki, Yusuke Jikumaru, Hidemitsu Nakamura, Hanae Koiwai, Keisuke Sasaki, Yuji Kamiya, Hiroaki Ichikawa, Eiichi Minami, Yoko Nishizawa

Supporting Information

Supplementary Table S1. Oligonucleotide primers used in this work.

Supplementary Table S2. RAP-ID and Probe-ID list of the nitrogen-related genes shown in Fig. 2.

Supplementary Fig. S1. Inhibitory effect of nitrogen on crown root elongation in transgenic rice plants overexpressing *EL5*.

Length of the longest crown root of non-transformants (NT, white bars) and two independent transgenic lines overexpressing the wild-type *EL5* (gray bars) formed after 4 d under different concentrations of KNO₂. Values are averages (n = 22 to 23 roots per treatment) with SD. Different letters above the bars indicate significant differences at P < 0.01 (Tukey-Kramer test).

Supplementary Fig. S2. Effect of KNO_2 treatment and EL5 function on gene expression in whole roots.

(A) Values of the box-plot analysis shown in Fig. 2A.

(B, C) Heat maps with hierarchical clustering of the expression levels of up-regulated genes (group I) and down-regulated genes (group III) in untreated roots of transgenic rice plants overexpressing *EL5V162A* (mEL5).

(D, E) Heat maps with hierarchical clustering of up-regulated genes (group IV) and down-regulated genes (group VI) in KNO₂-treated non-transformants (NT).

Magenta and green colors indicate up- and down-regulated expression, respectively. The color scale (representing the ratio of the average \log_2 value to the same value of untreated NT) is shown at the bottom right.

Supplementary Fig. S3. Expression profiles of representative nitrogen-related genes.

Magenta and green colors indicate up- and down-regulated expression respectively. The color scale (representing the ratio of the average log_2 value to the same value of untreated non-transformants) is shown at the bottom. NT, non-transformants; mEL5, transgenic rice plants overexpressing *EL5V162A*.

Supplementary Fig. S4. Expression profiles of representative pathogenesis-related genes.

Magenta and green colors indicate up- and down-regulated expression respectively. The color scale (representing the ratio of the average log_2 value to the same value of untreated non-transformants) is shown at the bottom right. NT, non-transformants; mEL5, transgenic rice plants overexpressing *EL5V162A*.

Supplementary Fig. S5. Expression profiles of representative photosynthesis-related genes.

Magenta and green colors indicate up- and down-regulated expression respectively. The color scale (representing the ratio of the average log_2 value to the same value of untreated non-transformants) is shown at the bottom. NT, non-transformants; mEL5, transgenic rice plants overexpressing *EL5V162A*.

Supplementary Fig. S6. Expression profiles of representative genes for biosynthesis, inactivation, and response of cytokinin.

Magenta and green colors indicate up- and down-regulated expression respectively. The color scale (representing the ratio of the average log_2 value to the same value of untreated non-transformants) is shown at the bottom. NT, non-transformants; mEL5, transgenic rice plants overexpressing *EL5V162A*.

Supplementary Fig. S7. Effect of cytokinin on browning at lateral root emergence sites (LRES).

(A) Dose-dependency of cytokinin-induced LRES browning. Roots were grown for 4 d without nitrogen sources and then treated with different concentrations of iP for 2 d.

(B) Effect of cytokinin on nitrite-induced LRES browning in non-transformants (NT). Roots were grown for 4 d without nitrogen sources and then treated with 200 μ M tZ or iP with or without 5 mM KNO₂ for 3 d.

Values are averages (n = 40 shoots per treatment) with SD. White bars, NT; gray bars, transgenic rice plants overexpressing *EL5V162A* (mEL5). Different letters above the bars indicate significant differences at P < 0.01 (Tukey-Kramer test with inverse sine transformation).

Supplementary Fig. S8. Accumulation of NO after nitrite treatment.

(A) NO accumulation after KNO₂ treatment in non-transformants (NT, white bars) and transgenic rice plants overexpressing *EL5V162A* (mEL5, gray bars). Roots from 10 shoots per bottle were grown for 4 d without nitrogen sources, and then 10 μ L DAF2-DA solution (1.82 g L⁻¹ in DMSO) was added simultaneously with or without 5 mM KNO₂ for 1 d. Quantities of DAF2-T fluorescence in 100 μ L culture medium from three independent bottles were measured, and average strength of fluorescence is presented. Error bars indicate SD. Different letters above the bars indicate significant differences at *P* < 0.01 (Tukey-Kramer test with inverse sine transformation).

(B) NO accumulation at lateral root emergence sites (LRES) after KNO₂ treatment. Typical confocal micrographs of DAF2-T fluorescence at the LRES are presented with each bright field image. Roots were grown for 4 d without nitrogen sources and then treated with or without 1 mM KNO₂ for 1 d with DAF2-DA (final concentration 0.182 mg L⁻¹). The fluorescence-field panels are confocal images composed of stacked Z-series images. Scale bars = 100 μ m. Images were observed by TCS SP5 confocal microscope (Leica, Wetzlar, Germany). DAF2-T fluorescence was excited at 488-nm, and detected at 500–540 nm. Images were processed and arranged by LAS AF software (Leica), MetaMorph software (Molecular Devices, Inc., Sunnyvale, CA), and Photoshop CS4 (Adobe, San Jose, CA).

Supplementary Fig. S9. Expression profiles of representative abscisic acid (ABA)-related genes.

Magenta and green colors indicate up- and down-regulated expression respectively. The color scale (representing the ratio of the average log_2 value to the same value of untreated non-transformant) is shown at the bottom. NT, non-transformants; mEL5, transgenic rice plants overexpressing *EL5V162A*.

Supplementary Table S1. Oligonucleotide primers used in this work.

Primer name	Sequence $(5' \text{ to } 3')$	Target gene (GenBank ID)
Primers for qRT-PO	CR	
EL5-QRT-FW4	GCGAGGTCGTCAAGTATTATAAGG	EL5 (AB045120)
EL5-QRT-RV4	CCATCCATACATTTCTCTTTGCTAC	
rub1-sense	CCAGTAAGTCCTCAGCCATGGAG	UBQ (ubiquitin; AK121590)
rub1-antisense	GGACACAATGATTAGGGAATCAC	
Primers for constru	ection of <i>EL5</i> p- <i>GUS</i> plasmid	
EL5p-sense	GCAAATAGGGTCTCTCGTTAGC	EL5 promoter fragment
EL5p-antisense	GACGAAGACTCGTCCATGGC	

Genes	RAP-ID	Probe-ID
OsNRT1,1	Os03g0235900	Os03g0235900 mRNA AF140606 CDS+3'UTR
OsNAR2.1	Os02g0595900	Os02g0595900 COMBINER_EST CI554982 0
OsNAR2.2	Os04g0480200	Os04g0480200 mRNA AK109571 CDS+3'UTR
OsNRT2.1	Os02g0112100	Os02g0112100 mRNA AB008519 CDS+3'UTR
OsNRT2.2	Os02g0112600	Os02g0112600 mRNA AK109733 CDS+3'UTR
OsNRT2.3	Os01g0704100	Os01g0704100 mRNA AK109776 CDS+3'UTR
OsNia1.1	Os08g0468100	Os08g0468100 mRNA AK101662 CDS+3'UTR
OsNia1.2	Os08g0468700	Os08g0468700 COMBINER_EST CI196459 6
OsNia2	Os02g0770800	Os02g0770800 mRNA AK102178 CDS+3'UTR
OsNiR1.1	Os01g0357100	Os01g0357100 mRNA AK061893 CDS+3'UTR
OsNiR1.2	Os02g0765900	Os02g0765900 COMBINER_EST CI138324 6
EL5	Os02g0559800	$Os02g0559800 mRNA AB045120 CDS + 3' UTR^{1)} \\$
	- Os02g0561800	
ORYsaGLB1a	Os03g0233900	Os03g0233900 mRNA AK064054 CDS+3'UTR
ORYsaGLB1c	Os03g0234000	Os03g0234000 COMBINER_EST Os03g0234000 8
OsNIGT1	Os02g0325600	Os02g0325600 mRNA AK101809 CDS+3'UTR
OsNIGTL1	Os03g0764600	Os03g0764600 mRNA AK105625 CDS+3'UTR
OsNIGTL2	Os07g0119300	Os07g0119300 mRNA AK070421 CDS+3'UTR
OsNIGTL3	Os12g0586300	Os12g0586300 COMBINER_EST Os12g0586300 8
OsNLP	Os02g0136000	Os02g0136000 COMBINER_EST CI549716 3
Os-LBD37	Os03g0445700	Os03g0445700 mRNA AK071624 CDS+3'UTR
Os-LBD38	Os07g0589000	Os07g0589000 mRNA AK069813 CDS+3'UTR
Os-LBD39	Os03g0609500	Os03g0609500 COMBINER_EST CI261705 6

Supplementary Table S2. RAP-ID and Probe-ID list of the nitrogen-related genes shown in Fig. 2.

1) This probe can hybridize to the 3'UTR region (148-bp from the 3' end of the coding sequence) of mRNA, which is transcribed from 6 copies of rice genes (Os02g0559800 to Os02g0561800).

		Genotype (treatment)	N	Average	SD	Min	10%	25%	Median	75%	90%	Max	75%-25%
		NT(KNO2)	17003	-0.04850	0.00602	-6.05327	-0.85608	-0.49241	-0.14233	0.33762	0.80579	7.78790	0.83003
All g	enes	mEL5(mock)	17003	-0.00032	0.00602	-3.90720	-0.78173	-0.40755	-0.03281	0.39869	0.78713	6.40276	0.80624
		mEL5(KNO2)	17003	-0.02660	0.00602	-6.05654	-1.04595	-0.53804	-0.06921	0.47090	0.93821	8.41384	1.00894
	.4.0 5 (1)	NT(KNO2)	1084	0.82540	0.02383	-3.87858	-0.79610	-0.15314	0.58852	1.58829	2.77305	7.78790	1.74143
	+1.0 ≤ (I)	mEL5(KNO2)	1084	1.79530	0.02383	-3.27832	0.38527	0.94482	1.57090	2.49804	3.54988	8.41384	1.55322
m ELE (maald)	4.045 (4.0 (1))	NT(KNO2)	14859	-0.05520	0.00644	-6.05327	-0.75613	-0.45136	-0.12771	0.31880	0.72655	7.03442	0.77016
mEL5 (mock) -1.0 to +1.0 (II)	mEL5(KNO2)	14859	-0.03170	0.00644	-4.14735	-0.83143	-0.47426	-0.06321	0.41490	0.78276	4.98417	0.88916	
	< 1.0 (11)	NT(KNO2)	1060	-0.84880	0.02410	-4.28122	-1.66908	-1.22111	-0.82279	-0.46328	-0.10256	3.13055	0.75783
	S -1.0 (III)	mEL5(KNO2)	1060	-1.81770	0.02410	-6.05654	-2.89847	-2.23606	-1.64985	-1.28225	-1.01272	3.35848	0.95381
		mEL5(mock)	1148	0.97070	0.02316	-2.68527	0.06895	0.40675	0.74568	1.35755	2.19755	6.40276	0.95080
	+1.0 ≤ (IV)	mEL5(KNO2)	1148	1.57590	0.02316	-2.65615	0.35494	0.74063	1.22557	2.17110	3.40818	8.41384	1.43047
	1.040 11.0.00	mEL5(mock)	14688	-0.02050	0.00648	-3.89922	-0.70011	-0.38762	-0.04644	0.35287	0.68903	4.36952	0.74049
NT (KNO ₂)	-1.0 to +1.0 (V)	mEL5(KNO2)	14688	-0.05190	0.00648	-3.97613	-0.88220	-0.48810	-0.07618	0.40600	0.78343	4.53773	0.89410
	- 1000	mEL5(mock)	1167	-0.70180	0.02297	-3.90720	-2.10099	-1.23904	-0.68503	-0.15941	0.56429	3.20129	1.07963
	≤ -1.0 (VI)	mEL5(KNO2)	1167	-1.28490	0.02297	-6.05654	-2.71745	-1.80970	-1.21681	-0.74917	-0.06232	3.45849	1.06053

С

Ε

Α

В

D

mEL5

	(NO3)		HOY
Ammonium transporter	NT W. mE	1.5 mel 5	
Os04q0509600			OsAMT1;1
Os02q0620600			OsAMT1;2
Os02q0620500			OsAMT1;3
Os05g0468700			OsAMT2;1
Os01g0831900			OsAMT2;3
Os01g0870300			OsAMT3;1
Os03g0838400			OsAMT3;2
Os02g0550800			OsAMT3;3
Glutamine synthase			
Os02q0735200			OsGS1:1
Os03q0223400			OsGS1:2
Os03q0712800			OsGS1:3
Os04g0659100			OsGS2
Glutamate synthase			
Os01g0681900			OsGLT1/OsNADH-GOGAT1
Asparatate aminotransferase			
Os02g0797500			OsAAT1
Os01g0760600			OsAAT2
Os06g0548000			OsAAT3
Os02g0236000			OsAAT4
Asparagine synthetase			
Os03q0291500			OsASN1
Os06g0265000			OsASN2
Glutamate dehydrogenase			
Os03g0794500			OsGDH1
Os04q0543900			OsGDH2
5			-
	-3	0	3
	-3	U	J

PR-1 Os07g0129300 Os07g0125500 Os07g0126100 Os07g0124900 Os07g0126800 Os07g0125600 Os07g0125000 Os07g0129200 Os07g0127700 Os10g0191300 Os07g0126500 Os07g0127100 Os02g0787000 Os02g0786900

PR-2

Os01g0947000 Os01g0940700 Os01g0944500 Os01g0941400 Os01g0946700 Os01g0946500 Os01g0713200 Os07g0539100 Os01g0940800 Os05g0535100 Os01g0946600 Os03q0669300 Os07g0539300 Os08g0244500 Os03g0296500 Os07g0539900 Os03g0722500 Os03g0845600 Os02g0532900 Os11g0704600 Os03g0221500 Os03g0227400 Os09g0533200 Os07g0577300 Os08g0326500 Os07g0510200 Os06g0607000 Os03g0792800 Os09g0502200 Os01g0860800 Os02g0139300 Os01g0947700 Os07g0168600 Os03g0656800 Os05g0443400 Os05g0375400

NTWNON RELEARNON

PR-3

Os10g0542900 Os05g0399300 Os06g0726200 Os06g0726100 Os08g0522500 Os05g0138200 Os09g0494200 Os03g0132900

PR-4 Os11g0592200 Os11g0591800 Os11g0592100 Os11g0592000

NTWNON NELS N RESPOND

PR-5 Os11g0703100 Os03g0661600 Os03g0663500 Os03g0663400 Os12g0629700 Os12g0630500 Os12g0569300 Os11g0706600 Os10g0147200 Os09g0536300 Os10g0412700 Os06g0716200 Os01g0839900 Os07g0419300 Os03g0244200

PR-7

Os09g0482200		
Os09g0482500		
Os02g0473200		
Os03g0317300		
Os01g0777200		
Os01g0663400		
Os08g0255500		
Os05g0137400		
Os10g0428200		
Os01g0598600		
Os01g0290000		
Os01g0140100		
Os07g0533800		
Os05g0567100		
Os12g0263800		
Os04g0330900		
Os06g0304600		
Os12g0112200		
Os07g0533600		
Os06g0717900		
Os06g0610800		
-		

PR-8 Os01g0860500 Os05g0247100 Os01g0687400 Os11g0702100 Os01g0660200 Os08g0518800 Os11g0701100 Os11g0700900 Os11g0701200 Os01g0860400 Os08g0519300 Os06g0356800 Os11g0701800

3

NOP INT SHADON WT WMOD PR-9 Os03g0234500 Os05g0162000 Os07g0677200 Os07g0677100 Os06g0547400 Os12g0112000 Os03g0762300 Os11g0112400 Os12g0191500 Os03g0235000 Os03g0121300 Os04g0656800 Os06g0521500 Os09g0471100 Os07g0115300 Os10g0109300 Os06g0695500 Os06g0522300 Os01g0327400 Os12g0111800 Os06g0521900 Os10g0566800 Os06g0522100 Os03g0369200 Os03g0762400 Os03g0368900 Os01g0326000 Os07g0104400 Os08g0113000 Os01g0787000 Os10g0109600 Os03g0563600 Os11g0112200 Os01g0543100 Os04g0423800 Os04g0628200 Os05g0135500 Os06g0306300 Os05g0135200 Os08g0302000 Os10g0536600 Os06g0681600 Os06g0274800 Os07g0677300 Os06g0695200 Os04q0688100 Os08g0532700 Os03g0121200 Os07q0639400 Os05g0499400 Os07g0104600 Os03q0368000 Os07g0499500 Os09g0323700 Os03g0368600 Os07g0677600 Os06g0695300

	- CHNON	S.M	°G.	10 ³)
FNR	N THE	ilis ne	, ¹	
Os02a0103800				OsLFNR1
Os06g0107700				OsLFNR2
PSI subunits				
Os08q0560900				OsPSAD
Os07q0435300				OsPSAE
Os03q0778100				OsPSAF
Os09q0481200				OsPSAG
Os05q0560000				OsPSAH
Os07q0148900				OsPSAK
Os12g0420400				OsPSAL
Os05g0242400				OsPSAN
PSII subunits				
Os01g0938100				OsPSB28
Os01g0501800				OsPSBO
Os07g0141400				OsPSBP
Os07q0147500				OsPSBR
Os04q0690800				OsPSBS
Os01q0773700				OsPSBW
Os03q0343900				OsPSBX
Os08g0119800				OsPSBY
Light-harvesting p	roteins			
Os04q0457000				OsCP24
Os07g0558400				OsCP29
Os11g0242800				OsASCAB9-A
Os09g0346500				OsCAB1R
Os01g0600900				OsCAB2R
Os01g0720500				Type I Chlorophyll alb binding protein
Os07q0577600				Type II Chlorophyll a/b binding protein
Os07q0562700				Type III Chlorophyll <i>a/b</i> binding protein
Os02g0197600				Type III Chlorophyll a/b binding protein
Photosynthesis re	lated			
Os03g0125000				Chloroplast 50S ribosomal protein
Os05g0388500				Chloroplast 50S ribosomal protein L1
Os03g0811100				OsChID
Os07g0656500				OsChlH
Os03q0323200				OsChlH-homolog
Os03g0563300				OsChll
Os11q0707000				Rubisco activase
Os08g0104600				OsFd1
	-	-	-	
	-3	0	3	3

Figure S5

Synthesis genes	MINT	mets	MI MELS W	m ⁰²
Os05g0312000				OsIPT3
Os03g0810100				OsIPT4
Os05g0551700				OsIPT7
Os01g0968700				OsIPT9
Os06g0729800				OsIPT10
Os01q0588900				LOG
Os01g0708500				LOGL1

Inactivation genes

Os10q0483500		OsCKX3
Os01q0940000		OsCKX4
Os01q0775400		OsCKX5
Os08g0460600		OsCKX11

Type-A response regulator genes

Os02g0557800	OsRR2
Os02g0830200	OsRR3
Os04q0673300	OsRR6
Os11q0143300	OsRR9
Os12q0139400	OsRR10

Type-B response regulator genes

Os01g0904700			OsRR16
Os02g0182100			OsRR17
Os02g0796500			OsRR18
Os03g0224200			OsRR19
Os06g0183100			OsRR20
	2	0	,
	-3	U	3

OsABA80X2

PP2C genes (ABI1/2 type genes)

Os08g0472800

Os01g0583100		OsPP2C1
Os01g0656200		OsPP2C2
Os01g0846300		OsPP2C3
Os03g0268600		OsPP2C4
Os05g0457200		OsPP2C5
Os05g0537400		OsPP2C6
Os05g0592800		OsPP2C8
Os09a0325700		OsPP2C9

