a little	Nº.		3.7	ge	Plant notype*	Targeted ovules (%)	Untargeted ovules (%)
C.	a lite		A		+/+	407 (88.86)	51 (11.14)
		arp6-1	10	pistil	s from indic	ated genotype	s
	Pistil	Ovules	# of available	# of targeted	Targeting efficiency	Least squares-	-
	Pistil	Ovules	# of available ovules	# of targeted ovules	Targeting efficiency (%)	Least squares- mean	
	Pistil +/+ arp6-1	Ovules +/+ +/+	# of available ovules 206 203	# of targeted ovules 112 107	Targeting efficiency (%) 54.37 52.71	Least squares- mean 65.3 ^a 62.6 ^a	
	Pistil +/+ arp6-1 arp6-1	Ovules +/+ +/+ arp6-1	# of available ovules 206 203 189	# of targeted ovules 112 107 59	Targeting efficiency (%) 54.37 52.71 31.22	Least squares- mean 65.3 ^a 62.6 ^a 27.7 ^b	

Supplemental Figure 1. Reproductive defects in *arp6-1* pistils.

(A) A wild-type (WT) pistil pollinated with *pLAT52:GUS* pollen.

(B) An *arp6-1* pistil pollinated with *pLAT52:GUS* pollen. Ovules not targeted by a pollen tube are indicated with black asterisks (*). Note that the pollen tube growth in the transmitting tract in an *arp6-1* pistil is comparable to WT.

Scale bars (A) and (B) = 100 μ m.

(C) Quantification of defects in pollen tube targeting to WT and *arp6-1* ovules in pistils.

(D) Quantification of defects in pollen tube targeting to WT and *arp6-1* ovules in a semi *in vivo* pollen tube targeting assay.

Supplemental Figure 2. Analysis of meiotic divisions of microsporogenesis.

(A-D) Pollen development is apparently normal in *arp6* mutants. Wild-type (WT) (A), *arp6-1* (B), and *arp6-2* (C) pollen tetrads in *qrt* background did not exhibit pollen developmental defects. (D) Table showing enumeration of apparently normal pollen tetrads in wild-type and *arp6* mutants.

(E-L) Meiosis during microsporogenesis is apparently normal in *arp6* mutants. (E) and (I) WT and *arp6-2* microsporocytes, respectively, at pachytene stage of prophase I showing apparently normal synapsis of homologous chromosomes.

(F) and (J) WT and *arp6-2* microsporocytes, respectively, at metaphase I stage showing five bivalents alignment aligned at the equator.

(G) and (K) WT and *arp6-2* microsporocytes, respectively, at the anaphase I stage showing non-random segregation of the ten homologous chromosomes.

(H) and (L) WT and *arp6-1* microsporocytes, respectively, at anaphase II showing non-random segregation of sister chromatids.

(E-L) Scale bars = 10 μm

Supplemental Figure 3. *pSPL:GUS* expression in *arp6-1* ovules is comparable to wild type.

(A) GUS expression in wild-type (WT) stage 2-I ovules (prior to entering meiosis) carrying *pSPL:GUS* (390/390, n=6 pistils).

(B) GUS expression in *arp6-1* stage 2-I ovules carrying *pSPL:GUS* (334/334, n=8 pistils).

(C) and (D) Close-up views of ovules marked by black squares in (A) and (B) respectively, showing pSPL:GUS expression in the megasporocyte (me) and distal nucellus (nu) but not in the developing funiculus (fu) of stage 2-I ovules.

(A-D) Scale bars = 10 μ m.

Supplemental Figure 4. Localization of ARP6-YFP fusion protein in ovules undergoing megasporogenesis.

(A) Confocal Laser Scanning Microscopy (CLSM) image showing ARP6-YFP fusion protein activity in a stage 2-III/IV wild-type (WT) ovule carrying *ARP6-YFP* transgene. Image shown is a projection of six optical sections spanning ~60 μ m.

(B) Bright field image of the ovule shown in (A).

(C) CLSM image of a stage 2-III/IV ovule from a non-transformed WT plant.

(D) Bright field image of the WT ovule shown in (C).

(A) and (C) CLSM images were captured using identical image acquisition settings.

(A-D) Scale bars = 4 μ m.

Supplemental Figure 5. RT-qPCR analysis of *GFP* expression levels in wildtype, *arp6-1*, and *arp6-2* stage 2-III/IV ovules carrying *pDMC1:GFP*. Graph shows fold change in GFP mRNA levels in each genotype as compared to the levels in wild-type ovules based on an average of two biological replicates normalized to ACTIN2/8 mRNA levels. Error bars in the graph refer to the standard deviation of the data.

Supplemental Figure 6. Analysis of *pDMC1:GFP* expression during ovule and seedling development in wild-type and *arp6* plants.

(A) Confocal Laser Scanning Microscopy (CLSM) image of *pDMC1:GFP* expression in stage 2-I wild-type (WT) ovule.

(B) CLSM image of *pDMC1:GFP* expression in stage 2-I *arp6-1* ovule.

(C) CLSM image of *pDMC1:GFP* expression is detected in stage 2-I *arp6-2* ovule.

(D-F) Bright-field image of (A), (B), and (C), respectively.

(A-F) me, megasporocyte; fu, funiculus; nu, nucellus. Scale bars = 20 μ m.

(G-P) Ectopic expression of *pDMC1:GFP* is not detected in *arp6* vegetative tissues. (G) CLSM image of *pDMC1:GFP* expression in true leaves in a five-day old Wild-type (WT) seedling.

(H) CLSM image of *pDMC1:GFP* expression in true leaves in a five-day old *arp6-1* seedling.

(I) CLSM image of *pDMC1:GFP* expression in true leaves in a five-day old *arp6-2* seedling.

(J-L) Bright-field images of (G), (H), and (I), respectively.

(M) RT-qPCR analysis of endogenous *DMC1* expression levels in WT, *arp6-1*, and *arp6-2* seedlings. Results shown in the graph is the fold change in *DMC1* expression in *arp6* mutants compared to that in wild type. Results are an average of three biological replicates of *DMC1* expression normalized to expression of *HK2* in each genotype.

(N) CLSM image of *pDMC1:GFP* expression in cytoplasm and nucleus of a WT leaf trichome.

(O) CLSM image of *pDMC1:GFP* expression is observed in an *arp6-1* leaf trichome.

(P) CLSM image of *pDMC1:GFP* expression is observed in an *arp6-2* leaf trichome.

Scale bars (G-L) = 200 μ m; (N-P) = 20 μ m

Supplemental Figure 7. *pDMC1:GFP* expression during meiosis of microsporogenesis remains apparently unaltered in *arp6* mutants.

(A-F) Confocal Laser Scanning Microscopy (CLSM) image (A, C, and E) or bright field images (B, D, and E) of wild-type (WT), *arp6-1*, and *arp6-2* microsporocytes. (G-I) CLSM images of WT, *arp6-1*, and *arp6-2* pollen tetrads.

(J) Table showing enumeration of *pDMC1:GFP* expression in WT, *arp6-1*, and *arp6-2* microsporocytes.

(A-F) Scale bars = 20 μ m.

Supplemental Figure 8. *DMC1* gene structure in Arabidopsis (Col-0 ecotype). The diagram shows locations of PCR products (1-9) in *DMC1* assayed for H2A.Z deposition by ChIP-qPCR. Numbers 1-9 shown here also correspond to the numbers in the X-axis of graphs in Table 3 and Supplementary Figure 9. The promoter region shown includes the 1874 bp transposon insertion (white rectangle). TSS, transcription start site; black rectangles refer to the exons in *DMC1* and hatched boxes are 5' and 3' UTRs in *DMC1*.

10

Supplemental Figure 9. H2A.Z deposition at the *DMC1* gene body is partially dependent on ARP6.

(A-D) ChIP-qPCR analysis of H2A.Z deposition in biological replicates 1 (A), 2 (B), 3 (C), and 4 (D). In each panel, the top graph shows the fold enrichment of H2A.Z deposition at indicated location of *DMC1* (1-9) and *FLOWERING LOCUS C* (*FLC*) in wild-type (WT) or *arp6-1* plants \pm standard deviation of relative quantity values determined by ChIP-qPCR. The bottom graph in each panel shows fold difference in H2A.Z enrichment between wild type and *arp6-1* at indicated location \pm standard deviation of relative quantity values reported in the corresponding top graph of that panel.

Supplemental Ta microscopy observ	able 1. Confoc ations of WT ar	cal laser scanning nd arp6-1 ovules					
	Normal	Abnormal					
Ovule genotype	FG* (%)	FG⁺(%)					
+/+	80 (100)	0 (0)					
arp6-1	51 (56.04)	40 (43.96)					
FG, mature female gametophyte at stage FG7							
*mature female gametophyte with four nuclei in the							
micropylar end							
⁺ ovule with no fem	ale gametophyt	e					

Supplemental Table 1. Quantification of confocal laser scanning microscopy observations of WT and *arp6-1* ovules at mature female gametophyte stage (EC7) reported in Figure 14 D

(FG7) reported in Figure 1A-D.

Supplemental T	able 2.	Confocal	laser	scanning			
microscopy observations of megagametogenesis							
	Normal	A	bnorma				
Ovule genotype	FG* (%)	F	G⁺(%)				
+/+	104 (100)) 0	(0)				
arp6-1	92 (56.0	4) 69	69 (43.96)				
FG, female gamete	ophyte und	dergoing					
megagametogene	sis						
*female gametophyte with 1-2 nuclei							
⁺ female gametophyte with no degenerating megaspore							
or functional mega	spore						

Supplemental Table 2. Quantification of confocal laser scanning microscopy

observations of megagametogenesis reported in Figure 1I-Q

Female parent	Male parent	Noi see	rmal ds (%)	Aborted seeds (%)	Unf ovu	ertilized les (%)
arp6-1/+	+/+	810	(97.0)	((0.0)	25	(3.0)
+/+	arp6-1/+	979	(96.3)	2 (0.2)	36	(3.5)
arp6-2/+	+/+	606	(99.2)	((0.0)	5	(0.8)
+/+	arp6-2/+	863	(97.7)	1 (0.1)	19	(2.2)
+/+	+/+	683	(95.4)	2 (0.3)	31	(4.3)
arp6-1	+/+	415	(60.5)	: (0.4)	268	(39.1)
+/+	arp6-1	997	(97.2)	1 (0.1)	28	(2.7)
arp6-2	+/+	1538	(76.0)	4 (0.2)	481	(23.8)
+/+	arp6-2	782	(96.3)	1 (0.1)	29	(3.6)

Supplemental Table 3. Reduced fertility in *arp6-1* and *arp6-2* mutants is caused by defects in sporophytic tissues in pistils

Supplemental Table 3. Reciprocal crosses between wild-type and *arp6* heterozygotes or homozygotes were performed. Crossed siliques were opened 10 days after pollination and number of viable seeds, aborted seeds, and unfertilized ovules were counted. The crosses exhibited reduced fertility only when *arp6* plants were used as female parents, indicating that the reduced fertility phenotype is determined by the lack of *ARP6* function in the sporophyte rather than in the female gametophyte.

	Dyad	Triad1	Tetrad1	Tetrad2	Tetrad3	Triad2	Abnormal	Total
	Dyau	(%)	(%)	(%)	(%)	(%)	(%)	TOLAI
±/±	17	46	92	24	16	0	0	105
T/T	(8.72)	(23.59)	(47.18)	(12.31)	(8.21)	(0)	(0)	195
orof 1	25	122	3	0	0	42	64	256
arpo-r	(9.77)	(47.66)	(1.17)	(0)	(0)	(16.40)	(25.00)	200
	23	84	2	0	0	66	28	202
arpo-z	(11.33)	(41.38)	(0.99)	(0)	(0)	(32.51)	(13.79)	203

Supplemental Table 4. Meiosis during megasporogenesis is abnormal in *arp6* megasporocytes

Supplemental Table 4. Callose-stained ovules from either wild type or *arp6* inflorescences were observed for meiosis progression. The indicated meiosis stages in megasporocytes are as shown in Figure 2. Numbers within parentheses refer to the % meiosis stage type within an inflorescence of indicated genotypes.

-		arp6-	-1/WT		arp6-2/WT		
Gene	LSM [#]	Std. Dev.	P value	LSM [#]	Std. Dev.	P value	
DMC1	1.17 ^b	0.29	0.27	1.39 ^b	0.31	0.09	
ASY1	2.04 ^b	0.81	0.09	2.12 ^b	1.89	0.38	
DYAD	1.18 ^b	0.27	0.22	0.99 ^b	0.25	0.84	
MND1	1.20 [°]	0.26	0.18	1.28 ^b	0.35	0.22	
AML4	0.97 ^b	0.27	0.88	1.39 ^b	0.32	0.09	
SPO11	1.28 ^b	0.64	0.43	1.59 ^b	0.25	0.02*	
DIF1	1.96 ^b	0.99	0.17	1.32 ^b	0.47	0.28	
ATM	1.42 ^b	0.27	0.05*	1.60 ^b	0.59	0.15	
SDS	1.23 ^b	0.48	0.04*	0.85 ^b	0.46	0.71	
AML1	2.42 ^b	1.73	0.24	2.33 ^b	2.39	0.40	
RAD51	1.63 ^b	0.72	0.19	1.38 ^b	0.51	0.26	
SAP	6.55 ^ª	2.17	0.01*	9.87 ^a	2.88	0.01*	
SPL	1.42 ^b	0.34	0.08	1.24 ^b	0.32	0.23	

Supplemental Table 5. Expression of meiosis-related genes in *arp6* anthers

LSM, Least-Squares Mean of change in expression of a meiosis-related gene in *arp6-1* or *arp6-2* compared to that in wild-type (WT) anthers in five technical replicates (three biological replicates) assayed by RT-qPCR. Std. Dev., standard deviation.

P value, probability value associated with a pairwise test between change in the expression of a gene in *arp6-1* or *arp6-2* compared to that in WT anthers and change in the expression of *ACTIN2* in *arp6-1* or *arp6-2* compared to that in WT anthers. * $P \le 0.05$.

[#]Any pair of LSMs that do not share the same letter are significantly different $(P \le 0.05)$ from each other in pairwise comparisons for change in expression of a meiosis-related gene in *arp6-1* or *arp6-2* compared to that in wild-type (WT) anthers.

affected in arp6 megasporocytes							
Plant genotype	GFP-positive megasporocyt es (%)	GFP-negative megasporocyt es (%)	Total*				
+/+	270 (93.43)	19 (7.57)	289				
arp6-1	157 (52.86)	140 (47.14)	290				
arp6-2	150 (66.97)	74 (33.03)	224				

Supplemental Table 6. *pDMC1:GFP* expression is

Supplemental Table 6. Quantification of confocal laser scanning microscopy observations of *pDMC1:GFP* expression in ovules reported in Figures 5D to 5H. The frequency of ovules with GFP staining in the megasporocyte (GFP-positive) or without GFP staining in the megasporocyte (GFP-negative) are shown in the table. *Total number of megasporocytes observed.

Gene	Name	Primer sequence	Product size (bp)	Used in
At5g35770	SAPF1 SAPR1	TCTTCTTCTTCCCCTGTTCCTC TTGGCGAGATAGTAGTTGCCAT	311	RT-qPCR (Table 2)
At3g33520	ARP6F1 ARP6R1	ACCACTTACAGAGTTCGTTCGC GAAAGAATCGTCTACGACACCG	1308	RT-PCR (Table 2)
At5g61960	AML1F1 AML1R1	TCCACATAGGTTCTCATGGTAG CGTTCATTAAGCTTGAGTTCTG	630	RT-qPCR (Table 2)
At5g07290	AML4F1 AML4R1	ATGGATTTTGGTTCTCATAAGG TCAAACTTGAGTTCTGGAAATG	571	RT-qPCR (Table 2)
At5g20850	RAD51F1 RAD51R1	TACAGATAGCTGACAGGTTTGG	678	RT-qPCR (Table 2)
At1g63990	SPO11F1	GAAAAGCATGCGATCTTTCATC	410	RT-qPCR (Table 2)
At5g51330	DYADF1	GGAGAAATCCGTGACATCAGAG	431	(Table 2)
At3g48190	ATMPP1		378	(Table 2)
At1g14750	SDSFP1	AATGCTTCACACCCACAATCTT	352	(Table 2)
At1g67370	ASY1F1	CATGGTGGAGCTGTTAAGGAAG	306	(Table 2) (Table 2)
At4g29170	MND1F1	TAGCAGTGTTTGAAATCCTTTG	664	(Table 2)
At5g05490	DIF1F1	CTAAAAGTCCCCAGTGATTCC	406	RT-qPCR
At3g22880	DIF1R1 DMC1-0F	TAGGATTCTGATTGTTGACTCG	582	(Table 2) RT-qPCR
S65T	SGFPF1	ATGGTGAGCAAGGGCGAGGAGC	729	(Table 2) pDMC1:GFP
At3g18780	ACTIN2F1	CCTATTGAGCATGGTGTTGTTAGCAC	277	(Figure 5) RT-PCR (Table
At3g18780	ACTIN2R1 ACTIN2F2	TCCCTCAGCACACCATCACCAGA	68	2) RT-qPCR
At4g26410	ACTIN2R2 HK2F	GATTGGTGTCGCTGCTCATC	98	(Figure S7) RT-qPCR
	DMC1 2.7	ACGTGTCGACACACCTAATCGGTGA		
At3g22880	DMC1 3' Balll	GCAGATCTAGCCATCATTTTCTCGCT CTAAGAC	2700	(Figure 5)
At3g22880	DMC1-1F DMC1-1R	CCACATATACCTTTACACTAGAG GCACTTCACAACTCATATATTG	172	ChIP-qPCR (Table 3)
At3g22880	DMC1-2F DMC1-2R	CGACATTGGGACTCCTCACTAC TCTACCAACTATCATATTATCC	172	ChIP-qPCR (Table 3)
At3g22880	DMC1-3F DMC1-3R	GAGATGTTGAAAATCGTTTCTC CATGGAAAGAAATCACAAACCTG	175	ChIP-qPCR (Table 3)
At3g22880	DMC1-4F DMC1-4R	AATCAAGTTGGGAATCAATAGG CGCCGTAAGAGCTACAAACAC	289	ChIP-qPCR (Table 3)
At3g22880	DMC1-5F DMC1-5R	ATGCGGTTGATTTGCTAC CACGGTTAATCGAATCTCCT	141	ChIP-qPCR (Table 3)

Supplemental Table 7. List of primers used in this study

At3a22880	DMC1-6F	ACGGATGATAACTATGACG	187	ChIP-qPCR	
A10922000	DMC1-6R	TTTGCTCGATTTGCTTCGAGGGTTC	107	(Table 3)	
At2a22880	DMC1-7F	TGTACCTGACTCGCTTCTTCTCGT	105	ChIP-qPCR	
Al3922000	DMC1-7R	AGCTGCATCTGGCTCGTTTCTTCA	105	(Table 3)	
4+2~22000	DMC1-8F	CTCGTTGTTGCTTAATCGCTGGGT	150	ChIP-qPCR	
AI3Y22000	DMC1-8R	CGTTACCAAGGAGAACCATGTTCAG	152	(Table 3)	
4+2~22000	DMC1-9F	CTTGTGTCAGTGATCGCACAAGGT	06	ChIP-qPCR	
AI3Y22000	DMC1-9R	GGTATGCATCATGAGACCATTGCAGG	90	(Table 3)	
A+5~10140	FLC-F	AAAGTAGCCGACAAGTCA	170	ChIP-qPCR	
Al5910140	FLC-R	AAACCCAGGTAAGGAAAA	170	(Table 3)	
	DMC1-	TTAGGTCTGGGAAAACCCCAATTAG		In situ	
At3a22880	probe-F		328	Hybridization (Figure 5)	
/g	DMC1-	AGTTCTCCTCTTCCAGTGAAATCC	010		
	probe-R				
	nrohe-F	CAAAGGCTATGTTAAAGACCCTCA		In situ	
At3g33520	ARP6		335	Hybridization	
	probe-R	GTCGAAGCTCTCCTTCTAGTCTCT		(Figure 4)	
	ARP6 5'	ACGTGGTACCCACACTCATTTGGATT		Complementati	
At2a22520	Kpn2	GACACC	5400	on of <i>arp6</i>	
A13933320	ARP6 3'	ACGTGAGCTCGTGCAACAGCCTGAT	5400	mutant	
	Sac1	ACAGTAGC		phenotypes	

Supplemental Table 7. List of primer pair names, sequences, and the expected size of PCR products are shown.

			T2 plants	T2 plant
	GFP Expression in ovules or	% Kan ^R T2	showing MMC	used in
T1 Plant #	megasporocyte (MMC), floral buds,		expression	crosses to
	and stamens	plants	(positives/total	arp6
			tested)	mutants
1	ovules (+), immature buds (+)	-	-	-
2	ovules (+/-)	-	-	-
3	ovules (+), buds (+), stamens (+)	-	-	-
4	ovules (++), MMC (-)	-	-	-
5	MMC (+/-), integuments	-	-	-
6	ovules (+/-)	-	-	-
7	all organs tested (+/-)	-	-	-
Q	buds (++),carpel wall (?), stamens	_	_	_
0	(++)	-	-	-
9	MMC (+),integuments (+), buds (+)	95.8		
10	MMC (-), buds (-), stamens (-)	-	-	-
11	MMC (+/-), buds (-)	-	-	-
12	MMC (+/-), buds (+/-), stamens (+/-)	-	-	-
13	MMC (+),integuments (?), buds (+)	87.2	4/4	#13-4
14	MMC (+/-), buds (+/-)	92.1	-	-
15	MMC (+), buds (-)	71.4	3/3	-
16	MMC (+), later integuments (+), buds	86.2	0/4	_
10	(+), stamens (+)	00.2	0/4	-
17	MMC (-), buds (+/-)	-	-	-
18	MMC (+), buds (+)	100.0	-	-

Supplemental Table 8. Identification of transgenic plants expressing *pDMC1:GFP*