
Supporting information

Glossary

internal model
GRN Gene Regulatory Network RBN Random Boolean Network
NRBN Noisy Random Boolean Network TES Threshold Ergodic Set
ATN Attractors Transition Network DTMC Discrete-Time Markov Chain

morphological model
CPM Cellular Potts Model DAH Di↵erential Adhesion Hypothesis
ECM Extra Cellular Matrix MCS MonteCarlo Step

cell types
St Stem cell TA1 Transit amplifying stage 1
TA2-A Transit amplifying stage 2A TA2-B Transit amplifying stage 2B
Pa Paneth cell Go Goblet cell
Ee Enteroendocrine cell Ec Enterocyte cell

statistics
PC Pearson’s correlation coe�cient MI Moran Index

Mathematical specification of the model

We here present the full mathematical specification of our multiscale model. With respect to the main
text some notation might di↵er, when appropriate.

The lattice-based model of cellular tissue

Within a n ⇥ m 2D lattice of positions L 2 {1, . . . , k}n⇥m a population of k cells of any type is
placed. We denote with l

i,j

the single-site variable (spin in CPM terminology) associated with po-
sition (i, j), we write l

i,j

= (c, ⌧) if the position is occupied by a cell c 2 C of type ⌧ 2 T , i.e.
T = {St,TA1,TA2-A,TA2-B,Pa,Go,Ec,Ee} [{Ecm} being the finite set of cell types we consider
plus a special type for the ECM. A cell C(c, ⌧) with current area a(c, ⌧) is defined by

C(c, ·) = {l
i,j

= (c, ·) | (i, j) 2 L} , a(c) =
X

l

i,j

=(c,·)

a0 = |C(c, ·)|a0 (13)

where a0 is a basic area (in unit of pixels p) assigned to a single lattice position (a pixel).
The mutual interaction energy is defined via the Hamiltonian H : In⇥m ! R

H(L) = hDAH(L) + harea(L) . (14)

Let N (i, j) denote the Von Neumann neighborhood of (i, j), and let ⌧

i,j

denote the type of cell in l

i,j

,
the contribution to the energy according to the DAH is

hDAH(L) =
1

2

X

l

i,j

2L

·
X

l

x,y

2N (i,j)

J(⌧
i,j

, ⌧

x,y

)
h
1� �(l

i,j

, l

x,y

)
i

Graudenzi et al. (2014): Investigating the relation between stochastic differentiation,
homeostasis and clonal expansion in intestinal crypts via multiscale modeling

where � is the Kronecker delta function (which ensures that only the surface sites between di↵erent cells
contribute to the adhesion energy), and J is the surface energy discussed in the main text. Let ⌧

c

denote
the type of cell c, the contribution to the energy of the area constraint is

harea(L) = �

X

c2C

h
a(c)�A(⌧

c

, t

c

)
i2

·Heav
⇣
A(⌧

c

, ·)
⌘
,

where the ECM has unconstrained area, i.e. A(Ecm, ·) is constant and negative, and its constraint is
suppressed by the Heaviside function Heav(·). Notice that here we made explicit the time-dependency of
the area constraint by using t

c

, the relative time since the beginning of the cell cycle for c.
Given a lattice L, we define the flip of a position (x, y) to a cell c to be the new lattice L[c (x, y)]

where

l

i,j

=

(
(c, ⌧

c

) if (i, j) = (x, y),

l

i,j

otherwise .

The CPM simulation is as follows: uniformly pick a position (i, j) of L and pick a neighbor position
occupied by a cell c (uniformly distributed on the set N (i, j)), i.e. the candidate flip. The CPM proba-
bilistically accepts or rejects the flip, i.e. keeps L or update it to L[c (i, j)], according to the energy of
both lattices and the temperature-dependent probability distribution discussed in the main text, when
k

B

T > 0. Instead, when k

B

T = 0 the distribution is

P
⇣
c (i, j)

⌘
=

8
><

>:

0 if �H > 0
1
2 if �H = 0

1 if �H < 0

. (15)

A computation starting at time t

s

and ending at time t

e

performs t

e

� t

s

Monte Carlo steps each one
attempting nmk random flips, as discussed in the main text. Once all the attempts of flips are finished,
the new lattice is determined as a result of all the accepted flips. A stochastic process {L(t) | t = 0, 1, . . .}
whose states are the lattice configurations, underlies the CPM. Technically, such a process is a Discrete
Time Markov Chain.

The boolean model of Gene Regulatory Network

Let x(t) be the RBN binary vector-state at time t, its i-th component in x(t+ 1) is

x(t+ 1)
i

= f

i

(x(t)) . (16)

An execution of an RBN is a series of steps from an initial state x(0)

x(0)! x(1)! . . .! x(k1)! x(k2)! . . .! x(k
n

)! x(k1)! . . .

which, since the state-space is finite (i.e. for w genes there exist at most 2w vectors in {0, 1}w) and the
dynamics is fully deterministic, will enter a limit cycle x(k1) ! . . . ! x(k

n

) from any initial condition.
Such a cycle is termed RBN attractor, the sub-sequence from x(0) to x(k1) (excluded) is its transient;
the set of initial conditions ending up to the same attractor is its basin of attraction.

Our approach first selects, either exhaustively or randomly, a set I = {x 2 {0, 1}w} of initial con-
ditions, and determines numerically its associated set of attractors A

I

. Iteratively, in each attractor in
A

I

random flips are performed, i.e. some x
i

is complemented in {0, 1} yielding a new state x0. The
attractor ↵ reachable from x0 is then computed and included in A

I

, if ↵ 62 A

I

. By an arbitrary iteration
of this process the ATN A of the subsumed NRBN is drawn as follows: for each perturbation yielding a

jump among attractors ↵ and � the entry a

↵,�

2 A is incremented, the matrix is finally normalized. As
running example, consider the following ATN

0

BBBB@

A ↵1 ↵2 ↵3 ↵4

↵1 0.886 0.064 0.001 0.049
↵2 0.068 0.877 0.054 0.001
↵3 0 0.06 0.896 0.044
↵4 0.053 0.004 0.052 0.891

1

CCCCA
.

The di↵erentiation tree T induced by A is generated according to the strategy discussed in [30]. With
no aim of exhaustivity we briefly recall it here. Firstly, A is interpreted as the adjacency matrix of the
graph of the attractors GA. Secondly, the set of strongly connected component in GA is evaluated by
standard algorithmic techniques; this is the TES at threshold 0, T0, which is supposed to contain all the
nodes of GA. If T0 does not contain all the required nodes, the RBN is rejected and the process restarts
with a new network. Otherwise, T0 is assigned to the root of the di↵erentiation tree. In the above ATN,
T0 = {(↵1,↵2,↵3,↵4)}.

This process now iterates proportionally to the size of the tree we want to generate, which has a
maximum theoretical depth proportional to the number of nodes when T reduces to a path. The idea
is that a threshold 0 < � < 1 is picked, A is pruned of any a

↵,�

< �, and the new number of TESs
at threshold �, T

�

, is evaluated. The set of direct descendants of the root of T is defined by T

�

via an
injective map, i.e. each TES in T

�

defines a unique descendant. In the example above, when � = 0.053
the pruned ATN is (in bold the pruned entries)

0

BBBB@

A ↵1 ↵2 ↵3 ↵4

↵1 0.886 0.064 0 0
↵2 0.068 0.877 0.054 0
↵3 0 0 0.896 0
↵4 0 0 0 0.891

1

CCCCA

which induces T0 = {(↵1,↵2), (↵3), (↵4)}. The process stops when no more TESs emerge, and the last
descendants determined become the leafs of T . For the example above further candidates thresholds are
0.06 and 0.068.

The multiscale link

Each A, re-normalized once a threshold is fixed, is actually a Discrete-Time Markov Chain (DTMC)
and the sub-matrix A

✓

associated to the emerging TESs ✓ is, by definition, a ergodic DTMC (i.e. it is
possible to go from each state, in any number of steps, to every other state). In DTMCs terminology
the transition probability matrix A

✓

is irreducible and thus the stationary probability distribution of the
chain

⇡ = lim
i!1

A(i)
✓

is unique and can be evaluated as the fixed point of the recursive transformation

A(0)
✓

= p0 A(i+1)
✓

= A
✓

A(i)
✓

, (17)

where p0 is an arbitrary initial distribution over the states of the chain. By fixing an arbitrary small ✏,
this fixed point can be evaluated yielding an approximation ⇡

⇤ ⇡ ⇡, which can be used as explained in
the main text.

Algorithmic implementation of the model

We describe the pseudocode of the model implementation. For clarity, we separate the general simulation
driver for the model (Algorithm 1), the search of the suitable NRBN (Algorithm 2), the set up of the
multiscale link (Algorithm 3), the external CPM dynamics (Algorithm 4) and the internal (Algorithm 5)
dynamics.

Algorithm 1 High-level simulation driver.

1: Input: initial and final times (t0 and T , in MCS), initial lattice L0

2: NRBN-search(); {search for suitable NRBNs, Algorithm 2};
3: Multiscale-link(); {set up the multiscale link, Algorithm 3};
4: set L L0 and t t0; {initialize time and the lattice};
5: set t

N

0; {this counts time cyclically, in NRBN time units};
6: while t < T do
7: CPM-dynamics(); {perform a single MCS of the CPM, Algorithm 4};
8: t t+ 1; {increase time in MCS steps};
9: if t

N

= 150/ˆ̀
⌧

then

10: NRBN-dynamics(); {NRBN steps performed every 150/ˆ̀
⌧

MCS, Algorithm 5};
11: t

N

 0 {reset counter};
12: else
13: t

N

 t

N

+ 1; {Increase time in NRBN steps};
14: end if
15: end while
16: Output: the final lattice L;

Algorithm 2 Noisy Random Boolean Network search with sampling.

1: Input: the NRBN parameters in Table 2, a lineage-commitment tree T ;
2: repeat
3: generate a n-nodes graph; {uses, e.g., Erdös-Rènyi or Barabási-Albert algorithms};
4: assign boolean functions; {functions can be, e.g., logical connectives, random or canalizing};
5: determine a set I ✓ {0, 1}n of initial conditions for the network; {exhaustive or sampled};
6: for all x0 2 I do
7: determine the attractor reachable from x0; {see equation (4)};
8: end for
9: collect all the attractors to define the Attractors Transition Network (ATN);

10: loop
11: flip a node in an attractor state, determine the reachable attractor, update the ATN; {exhaustive

or sampled, according to the size of the state space};
12: end loop
13: given all flips, set the probability of switching among attractors;
14: determine the thresholds, the Threshold Ergodic Sets (TESs) and the NRBN-induced di↵erentiation

tree T

NRBN

with the algorithm discussed in [30];
15: until T matches T

NRBN

{use a standard tree-matching algorithm}
16: Output: the matched NRBN, the ATN, the TESs and the thresholds;

Algorithm 3 Multiscale link set up.

1: Input: the ATN and the TESs;
2: given the TESs, determine the steady state probability ⇡; {use numerical algorithms for eq. (17)};
3: given ⇡, determine for each cell type ⌧ the cycle length `

⌧

as of equation (5);
4: determine the average cell cycle length ˆ̀

⌧

;
5: evaluate the time unit conversion as of equation (6);
6: Output: each value `

⌧

and ˆ̀
⌧

;

Algorithm 4 Cellular Potts Model dynamics, single MonteCarlo step.

1: Input: the current lattice L;
2: for h · w · k times (see Table 2) do
3: pick a random lattice site l; {uniform distribution over L};
4: pick a random neighbor lattice site l

0 2 N (l); {uniform distribution over N (l)};
5: evaluate the system energy H(L) as of equation (3);
6: attempt the flip to l

0 according to equation (2), in case the flip is accepted update the lattice;
7: end for
8: Output: the resulting lattice;

Algorithm 5 Noisy Random Boolean Network, single time step.

1: Input: the ATN, the TESs and the lineage-commitment tree T ;;
2: for all cells c in the lattice do
3: let ↵ be the attractor the cell is assigned to;
4: by interpreting the TES and the corresponding ATN assigned to the current type of c as a Discrete-

Time Markov Chain, perform a jump from ↵; {roaming models stochastic di↵erentiation};
5: if c is Paneth and its apoptosis is triggered then
6: kill c; {remind that the other cell types are shed through the lumen};
7: end if
8: if c has completed its cell cycle then
9: evaluate the next di↵erentiation type ⌧ according to the attractor the cell is assigned to, and T ;

10: divide the cell pixels C(c); {cell is doubled, this is mitosis};
11: assign to the newborn cells the type ⌧ and reset their area target, if c is a stem cell one newborn

is c itself; {force asymmetric division of stem cells};
12: else
13: increase linearly the area target A(c); {this is as of equation (7)};
14: end if
15: end for
16: Output: the new internal state of each cell;

Networks analysis

In our model GRNs drive the spatial dynamics, thus we analyzed di↵erent properties of the networks
matching the crypt lineage tree. In Table 1 one can find some statistics for the 7 suitable network used in
the simulations: (i) the length of any single attractor of the network (i.e. the number of states of all the
gene activation patterns) |↵|; (ii) the robustness of any attractor, in terms of probability of remaining in
the same attractor after one single flip perturbation, which is the first entry of ATN matrix, A(↵,↵); (iii)
the stationary distribution of the ATN for each attractor ⇡(↵), which accounts for the average portion

of time (in percentage) spent in each attractor and which is used to weigh the length of attractors when
computing the cell cycle length.

Please refer to the Results section for the comments on these measures.

Table 1. Properties of the suitable NRBNs used in the simulations.

0

BB@

Net1 ↵1 ↵2 ↵3 ↵4

|↵| 4 6 8 8
A(↵,↵) 0.985 0.956 0.812 0.825
⇡(↵) 0.456 0.351 0.102 0.09

1

CCA

0

BB@

Net2 ↵1 ↵2 ↵3 ↵4 ↵5

|↵| 7 1 7 7 7
A(↵,↵) 0.945 0.98 0.882 0.914 0.894
⇡(↵) 0.325 0.083 0.117 0.09 0.383

1

CCA

0

BB@

Net3 ↵1 ↵2 ↵3 ↵4

|↵| 4 4 2 14
A(↵,↵) 0.775 0.78 0.9 0.78
⇡(↵) 0.386 0.332 0.053 0.228

1

CCA

0

BB@

Net4 ↵1 ↵2 ↵3 ↵4

|↵| 1 1 1 1
A(↵,↵) 0.8 0.74 0.92 0.9
⇡(↵) 0.371 0.342 0.057 0.228

1

CCA

0

BB@

Net5 ↵1 ↵2 ↵3 ↵4

|↵| 20 20 20 20
A(↵,↵) 0.886 0.877 0.896 0.891
⇡(↵) 0.262 0.266 0.251 0.221

1

CCA

0

BB@

Net6 ↵1 ↵2 ↵3 ↵4

|↵| 8 13 4 7
A(↵,↵) 0.732 0.821 0.975 0.791
⇡(↵) 0.245 0.176 0.358 0.219

1

CCA

0

BB@

Net7 ↵1 ↵2 ↵3 ↵4

|↵| 6 6 2 2
A(↵,↵) 0.793 0.856 0.87 0.86
⇡(↵) 0.26 0.327 0.199 0.213

1

CCA

