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Supplementary Results 

1 - Correctly identifying transcript boundaries 
requires additional data 

Biases in RNA-seq read coverage have been widely reported
1 2 3 4

 and, although several methods 

have been developed to attempt to remove such bias
5 6

, the methods are typically aimed at 

correcting transcript expression levels rather than correcting read coverage estimates. As such, 

local, random changes in read coverage make it difficult to determine whether a particular site is 

a transcript initiation/termination site, or a random fluctuation in read coverage. To compound this 

problem, even when we restrict our attention to polyadenylated transcripts so that we can use 

poly(A) spanning reads to identify transcript ends, sequencing bias makes the poly(A) spanning 

reads much more rare than other read types
 7
. For instance, in the modENCODE poly(A)+ data 

sets, poly(A) spanning reads were roughly 100 times less likely than should have been given 

uniform read coverage across transcripts.  

To demonstrate the confounding effect of read coverage bias on transcript boundary 

identification, we use the CAGE and poly(A) data to determine the extent to which one could 

identify TSS and TES sites purely from RNA-seq data. For each gene in Flybase 5.45 (FB5.45) 

with a BPKM greater than 10, we found the 10 basepair window with the highest amount of 

CAGE signal, and recorded the ratio of the net base coverage 50 basepairs upstream of the site 

to 50 basepairs donwstream of the site. We calculated the same statistic for the furthest poly(A) 

site in each gene. These two sets gave us our positive control set. Next, for each gene, we 

uniformily sampled 10 random locations from within annotated transcription regions, and 

calculated the signal ratio to build the negative control set. Finally, we estimated the posterior 

probability of a site being a gene boundary by direct application of Bayes theorem, where the 

marginal probability of a promoter and poly(A) site were taken from the GRIT identified CAGE 

and poly(A) regions.  

On average, the signal enrichment ratios were 19.7 and 9.7 for TSS and TES’s 

respectively, versus 1 for the negative control set. Using the known frequency of promoters in the 



genome as an estimate of the probability of a promoter and the estimated enrichment ratios, the 

maximum posterior probability that a given position is a promoter is 67.9%, and occurs when the 

upstream to downstream signal ratio is 85.1 Similarly, for poly(A) sites, the maximum posterior 

probability is 35.5% and occurs when the downstream to upstream ratio is 83.2 (Supplementary 

Fig 3). Thus, even under ideal conditions, RNA-seq coverage alone is likely insufficient to 

accurately identify transcript boundaries.  

  



 

2 - Exon switching may regulate protein 
localization signals 

We find that, of the 1727 genes that have alternative N-terminal coding exons, 701 (40.6%) 

encode multiple protein localization signals. In comparison, 174 of 1205 (14.4%) genes that have 

alternative C-terminal coding exons encode multiple protein localization signals.  As expected, 

alternative N-terminal coding exons are more likely to encode alternate localization signals (p < 

2.2e-16, binomial test).  As the majority of known localization signals are N-terminal, the 

enrichment relative to other alternative exons makes a useful, albeit conservative negative 

control. Thus, we conservatively estimate that 26.2% of genes that have alternate first coding 

exons encode multiple protein localization signals. When we performed the same analysis using 

FlyBase 5.45 gene models, we found that 127 of 544 (23.3%) of genes that contain alternative N-

terminal coding exons encode multiple protein localization signals, versus 44/542 (8.1%) of C-

termini (p < 1e-11, binomial test).  

  



 

Supplementary Notes 

1 - Parameter estimation 

Maximum likelihood estimation 

Maximizing the likelihood equation requires optimizing    (   ⃗)  ∑        [∑       ], subject to the 

constraints      and ∑      . Although this is convex and can be solved using standard convex 

solvers like CVX
 8
, the potentially large number of candidate transcripts makes such approaches 

too expensive to use routinely. We have found that, in practice, a projected gradient ascent 

method is the most performant (data not shown). We find a starting location by minimizing 

∑ (
  

∑    
 ∑       )  s.t.      and ∑       using a QP solver. Then, we use projected gradient 

ascent with a fast simplex projection method
 9
 until the update differences are less than machine 

precision. Since the likelihood surface is smooth and convex, this method always converges to 

the optimum. We have verified that solutions found by the GRIT software package are equivalent 

to the CVX solutions (data not shown).  

Confidence bound estimation 

Finding the lower confidence bound for a given transcript,   , involves finding the minimum value 

of  ⃗ which minimizes the  ’th component, subject to the restriction that the log likelihood ratio 

   (   ⃗   )     (   ⃗) is sufficiently high. We use the objective 

   (   ⃗)       ∑        [∑       ] where    and    are the estimated fraction and the count of 

reads that fall outside the gene of interest. This objective accounts for the fact that the number of 

reads that originates from a given gene locus is random. Because the maximum likelihood 

estimate of    is 
  

   ∑    
, we rescale  ⃗    by     ̂ to calculate    ( ⃗   ). 

Choosing the sparsity parameter   



For the sparse objective function,     {   (   ⃗)  
 
  ⁄
}, we wish to choose the largest   that 

guarantees that the sparse solution,  ⃗, lies with the confidence region, ΔR. Formally, we wish to 

choose   such that ∑       [∑       ]   
‖ ⃗‖

 
 ⁄  ∑       [∑        ̂ ]   

 
  (  ), where     ̂  refers 

to the maximum likelihood solution, and we use 2α because the confidence bound test is one-

sided. Setting ‖ ⃗‖
 

 to    {    ⃗}, the maximum lower confidence bound,    

 
   {        ⃗  

  }[    (  )     ( )]. Even though   is typically very close to 0 in the unidentifiable case, in such 

cases very small values of lambda can change the solution substantially because a large portion 

of the parameter space has likelihood values very close to the maximum.  

 

  



2 - Sensitivity to tuning parameters 

GRIT has two main tuning parameters: one that governs the threshholding of segments with low 

read coverage, and one that governs the retention of canonical introns.  

Changes to the minimal exon read coverage tuning parameter affects the results very 

little over reasonable ranges. For instance, in the data set we analyzed for the purposes in this 

manuscript, changing this parameter from 0.01 BPKM to 1 BPKM reduces the recall by less than 

1%, and increases the precision by less than 1%. This is consistent with our observation that the 

limiting factor for transcript construction is junction reads, rather than read coverage within a gene 

body.  

The other important tuning parameter is the canonical intron retention threshold and, 

unfortunately, the optimal value is a function of the assay type. For instance, we have applied 

GRIT to total RNA-seq (data not shown) and find that a threshold of 80% percent is necessary to 

prevent the routine inclusion of unprocessed introns. However, in the poly(A)+ data that we 

analyzed for this study, a threshold of 5% was sufficient to exclude the vast majority of 

unprocessed transcripts. We currently err on the side of conservatism, setting this to 80% by 

default. This setting has the potential to miss retained introns in poly(A)+ RNASeq, but seems to 

provide good results over a wide variety of organisms and protocols. 

  



Supplementary Tables 

Table 1 – Accession numbers 

Data Type Sample Type Biological 
Sample ID 

SRA Accession 
Number 

CAGE Adult Mated Female Heads, 20 
days post eclosion 

287 SRR488279 

CAGE Adult Mated Male Heads, 20 
days post eclosion 

290 SRR488280 

RNA-seq Adult Mated Female Heads, 20 
days post eclosion 

287 SRR070420 

RNA-seq Adult Mated Female Heads, 20 
days post eclosion 

288 SRR111882 

RNA-seq Adult Mated Male Heads, 20 
days post eclosion 

290 SRR070421 

RNA-seq Adult Mated Male Heads, 20 
days post eclosion 

291 SRR070424 

poly(A)-site-seq Adult Mated Female Heads, 20 
days post eclosion 

288 SRR1151373 

poly(A)-site-seq Adult Mated Male Heads, 20 
days post eclosion 

291 SRR1151374 

 

  



Supplementary Figures 

Supplementary Figure 1 - Simulations 

 
Simulations - We used the simulation method described in technique described in Methods – 

Simulations. (a) Dscam1 Simulations: We simulated from the 38016 potential transcripts 

identified in Flybase 5.45. Trinity was not able to reconstruct any full length transcripts; Cufflinks 

was only able to construct a single full length transcript in 1/100 simulations. GRIT recovered 

most transcripts with high average precision when provided 1000 reads, and was able to 

reconstruct all 38016 transcripts with perfect precision when provided at 10,000 or more reads. 

(b) Simulation Models: The set of transcript models we simulated from for figure panels c, d, e, 

and f. Because the middle exon is 600 basepairs - longer than the length of the largest fragment - 

it is impossible to observe exons 2 and 4 in the same read. Thus the staistical model is not 



identifiable when all four transcript isoforms are present. (c) Transcript Recovery: We ran 20 

simulations, simulating reads in equal proportions from all four models in panel b, and found that 

only GRIT is able to consistently recover all four models with over a thousand reads. Trinity did 

not correctly recover any transcript models. Cufflinks recovered 2/20 with 100 reads, 2/20 with 

1000 reads, 1/20 with 10k reads, and 6/20 with 10 thousand reads. However, because of the 

shortest path assumption, each time it built all four models it created an artificial TSS or TTS 

between 20 and 50 basepairs from the true TSS or TTS. When we restricted the transcripts to be 

equivalent only when the gene boundaries are within 10 basepairs of the truth, then Cufflinks did 

not correctly identify more than two models correctly. (d) Confidence Bound Accuracy: We 

simulated reads from all for models in panel b, with frequencies of 0.49, 0.49, 0.01, and 0.01 for 

models 1-4 respectively. For each tool, we plotted the fraction of times that the estimated 

confidence bounds contained the truth. The dashed black line is at 0.95, the expected fraction of 

times that the confidence bounds should contain the truth. GRIT’s confidence bounds are slightly 

conservative, covering the truth an average of 99% of the time. Because of the identifiability 

problem, Cufflinks and Rsem confidence bounds are extremely anti-conservative, never covering 

the truth for n=10000. This is a summary of the data plotted in panel f. Note that, because over 

30% of genes have both alternate TSS’s and alternate TES’s, Cufflinks and Rsem have the 

potential to produce anti-conservative confidence bounds for a large fraction of annotated gene 

loci. (e) Identifiable Simulations: We simulated from models 1 and 2, with frequencies of 0.75 

and 0.25 respectively. The green bar is the true frequency. Blue bars identify estimated upper 

bounds, black bars represent estimated frequencies, and red bars represent estimated lower 

bounds. All methods perform reasonably well, although Rsem and Cufflinks estimates exhibit a 

slight bias. (f) Unidentifiable Simulations: We simulated from all four models, with frequencies 

of 0.49, 0.49, 0.01, and 0.01 for models 1-4 respectively. The green bar is the true frequency. 

Blue bars identify estimated upper bounds, black bars represent estimated frequencies, and red 

bars represent estimated lower bounds. Because of the identifiability problem, no methods are 

able to correctly estimate the transcript frequencies. However, only GRIT is able to properly 

estimate the confidence bounds. The confidence bound estimate accuracy are plotted in panel d.  



Supplementary Figure 2 - Expression estimation overview 

 
 
 

Expression estimation overview - See Section 2.1.4: To identify the set of transcripts in pod1, 

find the set of non-overlapping segments, labeled exon segments, with which it possible to 

reconstruct the transcript set. In the zoomed-in region containing segments 7-12, the possible 



bins, labeled Single-End Bins, that can be observed from 75 basepair reads are shown. Next, 

estimate the fragment length distribution, and then identify the sets of pseudo exons that can be 

overlapped by paired end reads. The blue and green fragments are possible fragments taken 

from transcript model 2. For example, in the 200 basepair fragment labeled {7,8;10,11}, read 1 ( 

in blue ) overlaps exon segments 7 and 8, while pair 2 ( in green ) overlaps segments 10 and 11. 

The fact that read 1 overlaps segments 7 and 8 doesn’t give us any additional information about 

the transcript isoform from which it originated, but the fact that read 2 overlaps 10 and 11 implies 

that it must have come from either model 2 or 5.  

  



Supplementary Figure 3- Internal structure recall-precision curve 

 
Internal structure recall-precision curve: This is the same plot described in Fig 2, but we 

increased the boundary match condition to ±1000 basepairs. We do not believe that this is a good 

measure of tool’s performance, but rather gives an upper bound to how well the various tools can 

perform at predicting internal structure. Even when we ignore gene bounds for the purposes of 

evaluation, GRIT outperforms other methods.  

  



Supplementary Figure 4 - Identifying gene boundaries solely from RNA-seq 

 
 

Identifying gene boundaries solely from RNA-seq: The dark red line indicates the marginal 

distribution of RNA-seq signal across exonic regions. The dark blue and dark green lines indicate 

the distribution of RNA-seq signal ratios over CAGE peaks and poly(A) sites, respectively. The 

dashed blue and green lines indicate the posterior probability that a location is a TSS or TES, 

based solely upon its RNA-seq signal ratio. For instance, the dashed blue line peaking at 0.65 

indicates that it is impossible to identify a CAGE site from RNA-seq signal ratio alone with greater 

than 65% certainty. 
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