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Figure S1. Components toxic to the cyanobacteria in a rich, chemically defined medium, TCM1. (A)
The growth curve of the cells in the media listed to the right of the plot. Clearly, the cells grew only
when the amino acids (11 different amino acids; see Table S1 for the components of TCM1) were
omitted from TCM1 (except in BG-11, the positive control). (B) The n-fold increase in the cell
concentration after 4 days of growth in media where one amino acid was added to the amino
acid-omitted TCM1. The amino acid added to each culture is listed at the bottom of the plot. Cell
growth was inhibited when Arg, His, Lys, Met, Phe, or Thr (but not any of the other five amino acids)

was added. Thus, we identified those six as toxic amino acids.
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Figure S2. Preculture for the evolution experiment in TCMO. We transferred the cells from BG-11 to
TCMO and transferred them 4 times in TCMO. The colors show the cultures with different inoculation
concentrations as plotted at time 0 (8.8x10%, 3.8x10° 8.3x10°, and 3.9x10° cells/mL for blue, green,
red, and black, respectively) and we used the red line for the preculture of the evolution experiment.
Growth was not stable before approximately 15 days, but later stabilized (black and red lines),
showing initial adaptation from BG-11 to TCMO0. We found no mutations in the genome of the initially
adapted cells (red line, see Table S2).
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Figure S3. The specific growth rates (1) as a function of the relative concentration of the toxic amino
acids (x) in each transfer round. 4 were determined from the growth curve as a slope of the linear
regression of the natural log of the cell concentration when the number of data points for the round
was greater than 2 and as In(C¢/Cp) when the number of the data points for the round was 2. Crand Cy
are the final and initial cell concentrations for the round. The red curves show the fitting of the
experimental data to the equation # = gma/(14x/ICs0) = €P'/(1+x/e*), where B1 and B2 are the fitting
parameters that correspond to In[umax] and In[ICso], respectively. The fitting results are summarized in
Figure 3A-i.
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Figure S4. Population dynamics in the evolution experiment. The colors show the culture media used
(TCMx media; x is shown at the right). The solid, dotted, and dashed lines are independent cultures.
The transfers of the culture by dilution are shown as the vertical decrease in cell concentration. The
initial cell concentration of each transfer was varied (mostly approximately 10° cells/mL). The cell
concentration affected the growth, although the basis is still unclear. For example, less than 10°
cells/mL seemed to make the culture unstable after day 79, and less than 10° cells/mL seemed to make
the culture unstable at the first culture of the initial adaptation (Figure S2). Thus, we compared the

growth in TCM1 to that in TCMO at the same initial cell concentration (dashed redline and black line,
respectively).
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Figure SS. The difference between the approximate analytical solution of Eq. 2 and the numerical
simulation according to Eq. 1. We calculated Sicso by both Eq. 2 and the numerical simulation using
the various parameters of 7, d., and N. The range used for » and d. was 10°~0.1 and 0.01~1,
respectively, the same as the range shown in Figure 3C, and N = 10° (black), 107 (blue), or 10° (red).
The gray solid line shows where the points should fall if Eq. 2 and the numerical simulation were
equal. The dotted lines show the experimentally determined value of Sicso. The deviation from the gray
line becomes rather large for Sics0<0.001 and 1<Sicso (more than 10 fold). Because we determined Sicso
from the numerical simulation for generation until 100, Sicso becomes too small to accurately quantify
for Sic50<0.001. For 1<Sicso, the value of the probability » used for this range was large (almost 0.1),

which is out of our approximations.



Table S1. Components of TCM1. The toxic amino acids are listed in red.

Component Concentration (mM)
L-Arg 1.42
L-His 0.95
L-Ile 1.52
L-Leu 1.52
L-Lys 1.09
L-Met 1.01
L-Phe 0.91
L-Ser 1.43
L-Thr 1.68
L-Trp 0.73
L-Val 0.85
Guanosine 7.1x102
Uridine 8.2x10
KoHPO4 1.10
KH>PO4 1.84
Tripotassium citrate 2.00
MgSO4+ 7H,O 2.03
CaCl, 6.8x107
HEPES 20
EDTA-2Na 3.0x107
H;BO; 4.6x107
NaNO; 17.6
Na riboflavin phosphate - 2H,0 9.7x10*
DL-6,8-Thioctic acid 4.8x10*
Thiamine-HCI 1.5x107
Pyridoxal-HC1 4.9x10*
Nicotinic acid 7.3x107°
D-Pantothenic acid, Ca-salt 3.4x107
Folinic acid, Ca-salt 2.0x10*
FeCls-6H,0 3.7x107
MnSO;4-4H,0 7.17%107
Co(NOs3),*6H,O 1.72x107
ZnS04- 7TH0 1.56x10
CuSO04*5H,0 1.20x107
(NH4)6M07024° 4H,0 8.09x107
Glucose 27.8
Hemin 1.00x10



Table S2. All detected mutations in the chromosome, relative to the reference (NC_000911.1;

Synechocystis sp. PCC 6803 chromosome, complete genome), by the genomic analysis. The variant

frequency in the population of ancestral (Anc.), initially adaptive (Init-adapt.), and evolved cells

(Evolved) are shown. ND indicates that mutations were not detected.

Frequency
Position (nt) Nucleotide Gene Strand [ Anc. Init- Evolved Notes
changes adapt.
Single-base 7438 TtoC photosystem II D1 protein + 27% 27% 29%
substitution 7444 TtoC photosystem II D1 protein + 28% 27% 29%
. . Nonsynonymous:
335496 Cto A carboxysome formation protein CcmA - ND ND 100% Gly to Glu @43
619733 AtoG probable esterase + 100% 100% 100%
. Nonsynonymous:
829508 CtoT RNA polymerase alpha subunit - ND ND 100% Arg to GIn @193
943495 Gto A P700 apoprotein subunit Ta + 100% 100% 100%
1012958 GtoT hypothetical protein - 100% 100% 100%
periplasmic substrate-binding and integral
membrane protein of the ABC-type Bgt Nonsynonymous:
1114921 GloC permease for l:)asic amino acids and~ :lutafnine . ND ND 100% Phe to Leu @367
BgtB
. Nonsynonymous:
1128135 Cto G unknown protein - ND ND 100% Ala to Pro @625
1364187 AtoG orotidine 5' monophosphate decarboxylase - 100% 100% 100%
1737000 Cto A similar to polyA polymerase - 100% 100% 100%
1819782 AtoG photosystem II D1 protein - 67% 66% 70%
1819788 AtoG photosystem II D1 protein - 68% 68% 72%
2092571 AtoT asparaginase - 100% 100% 100%
2198893 TtoC probable cation efflux system protein - 100% 100% 100%
2301721 AtoG unknown protein + 100% 100% 100%
2602717 CtoA unknown protein + 100% 100% 100%
2602734 Tto A unknown protein + 100% 100% 100%
2748897 CtoT two-component sensor histidine kinase + 100% 100% 100%
3063738 Gto A two-component sensor histidine kinase - 100% 100% 100%
putative transposase [ISY 100v: 3095975 - 3096319,
3096187 TtoC join 3097194 - 3097362, join 3098314 - 3098743] - 70% 72% 61%
3110189 GtoA | putative transposase [ISY523r: 3109761 - 3110626] - 98% 100% 96%
3110343 GtoT putative transposase [ISY523r: 3109761 - 3110626] - 88% 90% 94%
3142651 AtoG sucrose phosphate synthase - 100% 100% 100%
. Nonsynonymous:
3203715 Gto A probable cation transporter - ND ND 97% Pro to Ser @50
Indel  |Nextto 1905171 CléeTl'C G penicillin-binding protein - ND ND  84% Iilfi;nfﬁ geslz"s";
Next to 2204575 Del. G a part of pilC, pilin l;oiogenesis ]'J'rotein, required for . 81% 0% 81%
twitching motility
Next to 2350285 Ins. A photosystem II reaction center Psbl protein - 96% 97% 98%
Next to 2360245 Ins. C hypothetical protein + 95% 93% 93%
Next to 2409242 Del. C unknown protein - 95% 91% 98%
Next to 2419397 Del. T hypothetical protein Y CF22 - 99% 96% 98%
Next to 2544044 Ins. C unknown protein - 99% 99% 98%
Next to 2500063 Del A pilus biogenesis.protein homologoys to general . 93% 93% 95%
secretion pathway protein E
Next to 3260089 Del. C hypothetical protein - 76% 79% 82%



Text S1

Here we derive Eq. 1 and 2 shown in the main text. We used an approximate continuous
derivation for simplicity. We first assume a cell population with the frequency 4(z,7) in which each cell
has a trait z (a variable that represents In[ICs¢]) and a specific growth rate u(z), with a variable
population size Np(t) = fjooo h(z,t)dz. When a cell with z produces an offspring, the trait of the
progeny becomes z+d: with a probability 7, or else becomes z (the same as the parent) (1—7). Then, we
derive the rate equation

Oh(z,t)
ot
Here, u(z) is described as u(z)=umaxe”/(e*+x) along with the main text definition (1(z) = pmax/(1+x/1Csp)

=(1-r)u(2)h(z,t) +ru(z—d_ Yh(z—d_,t). Eq. S1

= UmaxICs0/(ICsotx)), where x is the toxic amino acid concentration. We approximated it as u(z) = c¢’,
where ¢ = pmax/X, assuming e“+x~=x in the transferred line during the experimental evolution. Note that
the evolutionary properties with respect to generation (not time) do not depend on the absolute fitness
(i.e., ¢) but only depend on the relative fitness (c is canceled out below), and we ignored the fact that

we changed the amino acid concentration x (thus ¢) in the experimental evolution.

Both terms on the right hand side are positive, with 0<r<1 and x(z)>0, and the population size

increases over time as
B _zon, ), Eq. 2
derived by taking the integral of both sides of Eq. S1 with respect to z. Then, we derived the rate
equation for the frequency f(z,t) with the fixed population size N, i.e., f(z,t) = N - h(z,t)/Ny(t),
as
o) _
o
from Egs. S1 and S2. The generation is determined from the time variation in N,(f). From Eq. S2, Ny(?)

(A=) f(.O0+ruz—d ) f(z—d . )-p®) f(z,1),  (Eq.1)

is solved as Ny, (t) = Npgexp[[ Ot a(t)dt], where Ny, is the total frequency at time 0. The generation
g satisfies N (t) = Np29, and is solved as g = fot a(t)dt /In2. Thus

dg _ A1)

dt In2

which is required to obtain the evolutionary rate per generation (see below).

, Eq. S3

We roughly obtain an approximated analytical solution of the evolutionary rate of the mean
of z (designated as M) per generation dM/dg (=Sicso, when it is constant) in the model shown in Eq. 1.
Because the trait z is a discrete variable with a step size d., we considered a short time period ) for the

one-step change in M to approximately obtain dM/dg (using Eq. S3) as



dM dM dt d. In2
dg dt dg 7, u(t)
We assumed that M satisfies mode of f(z,7) and u(M)=f1. The time period 7j satisfies f(M + d,, ty +

Eq. S4

™y) = f(M,t,) for a time t, assuming that the shape of the frequency distribution f(M,t) does not
change in this short time period. The frequency at z=M+d. can be solved as f(M + d,, t) =
f(M +d,, ty) exp[{u(M + d,) — @}(t — ty)] from Eq. 1, by assuming that j is constant for this
short time period and the contribution of 7 is negligibly small (+~0). Then, 7y satisfies f(M +
d,, to) exp[{u(M + d,) — g}ty] = f(M, t,), and dM/dg can be solved from Eq. S4 as

M

— ~2(In2)c?, Egq. S5
dg

by assuming that f{z,7) is a Gaussian with mean M and standard deviation ¢ and that e% — 1 ~ d,.
Equation S5 means that the evolutionary rate is proportional to the variance (¢%), known as Fisher's
fundamental theorem of natural selection, and thus we should determine o. We consider the one-step
change of the edge (z=zg) of the distribution because the edge and ¢ should be almost proportional (see
below). We assume that z satisfies f(zg, ty) = 1. Thus, zy; = M + am , assuming that f{z,?7) is
the Gaussian and In[N] — In[ov27| ~ In[N]. The time period for the one-step change at the edge (zz)
is considered to satisfy f(zg + d,, ty + tz) = 1. From Eq. 1, f(zg, t) = f(zg, to) exp[{u(zg) —

@}t — ty)] by assuming =0, and f(zg + d,, t) = ftto ru(zg)f(zg, s)ds because f(zg +d, ty) = 0.
Thus, £ can be solved from the equation fti)OHE ru(zg)f (zg, to) expl{u(zg) — @}(s —ty)]ds =1,

and gives dzp/dg = (d,/t5)(In2/[x) as

dz, (In2)d ov2InN
dg In(1/7)

, Eq. S6

by assuming 1+ 7 ~ 1, In[1/7] + In[1 — e"?V2!"V] ~ In[1/7], and e?V3"N — 1 ~ g+/2InN. From
Eqgs. S5 and S6, the variation in o (=<(ze — M) /+/2 In[N]) is described as

d—0~ln2 a, - 2 olo
dg In(l/r) 2InN )~

Eq. S7 means that g becomes constant (do/dg=0) at

_d_A~N2InN

o, = :
7 20n(l/r)

Eq. S7

Eq. S8

Thus, the evolutionary rate also becomes constant, and from Eqs. S5 and S8, it is described as

d’InN
S5 *2(In2)02 =12 % 0 (Eq. 2)

(Inr)

This is the slope of the evolutionary change in In[ICso] per generation shown in Figure 3A-i.



Appendix S1. The source code in MATLAB for the numerical simulation that calculates the evolution

shown in Fig. 3A-ii.

%parameter definitions

xmax=100;%max x (x=z/dz)

dz=0. 4;%discrete step of z

r=0. 00023 %probabi | ity

npop=10"7;%population size N

dNdt=0. 01;%fraction of the increase in N for one calculation interval
grag=[20 40 60 80 100]; ndist=length(grag); pcol=jet(ndist);%for distribution graphs
gmax=100;%max generation for the calculation

tmax=round ( gmax*log(2)/log(1+dNdt) ) ;%max intervals for gmax
meanx=zeros (1, tmax) ;%mean of x

modex=zeros (1, tmax) ;%mode of x

edgex=zeros (1, tmax) ; %edge of x

varx=zeros (1, tmax) ;%var iance of x

gen=zeros (1, tmax+1) ;%generation

f0=zeros (1, xmax) ;%frequency distribution

df=zeros (1, xmax) ;%change in frequency distribution

f1=zeros (1, xmax) ;%temporary variable for f0

%initial distribution

mean0=10; sd0=0;%mean and sd of x at time 0

0 = exp (- (([1:xmax]-mean0). ~2)./ (2% (sd0"2))) ;%Gaussian if sd0™=0

if (sd0==0) fO=zeros (1, xmax); fO0(mean0)=1.0; end%delta function if sd0=0
f0=npop*f0/sum (f0) ; %set the total population

f0=round (npop*f0/sum(f0)) ;%for approximate discreet population

%evolution
¢=0;%graph counter
for t=1:tmax;
df (2:xmax-1) = (1-r)*exp(dz. *[2:xmax—-1]).*f0(2:xmax-1) +
rxkexp (dz. *[1:xmax-2]) . *f0 (1:xmax-2) ;%Eq. S1 (h —> f)
f1=f0+df* ( dNdtxsum(f0) /sum(df) ); % f1 = fO + (df/dt)*dt;
gen (t+1)=gen (t) +10g2 (sum (f1) /sum(f0)) ;%calculation of generation
fO=npopxf1/sum(f1) ;%di lution for constant population size
f1 = f0 - f0.*(0<f0). % (f0<1) + ( (rand(1, xmax) < f0) .* ((0<f0).*(f0<1)) ) :%for

approximate discrete population
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f0=f loor (f1) ;%approximate discrete population

%distribution graphs
if( (t>2) && ( gen(t-1)<=grag(c+1) ) && ( grag(c+1)<gen(t) ) );
c=c+1;%graph counter
subplot(4,1,1); plot(dz*[1:xmax], f0, Color’, pcol(c, :), "LineStyle', "="); axis([0
dzxxmax 0 max (f0)1); hold on %distribution graph
end
%representative values
meanx (t) =sum ([1:xmax]. *f0) /sum (f0) ;%mean of x (=M/dz)
modex (t) =max (f ind (max (f0) ==0) ) ;%mode of x
edgex (t) =max (find (f0>0)) ;%edge of x
varx (t)=sum( ((([1:xmax]-meanx (t))). "2).*f0) /sum(f0) ;%var of x
end

gen (tmax+1)=[]:%adjust vector size

%representative value graphs

subplot (4,1,2); plot([1:tmax], dz* (meanx-mean0), .-"); axis ([0 tmax

floor (dz* (meanx (2) -mean0)) ceil (dz* (meanx (tmax) -mean0))]1) ; axis "auto x';%mean of z (=M) -
meanz0 vs t

subplot (4, 1,3); plot(gen, dzx(varx. " (0.5)), b.", gen, dz* (edgex -

modex) / ((2%log (npop)) "0.5), r-"); axis ([0 gmax 0 1.2%dz*max (varx. ~(0.5))]) ;%sd of z (=sigma)
Vs g

subplot(4,1,4);

plot (gen, dz* (meanx-mean0), 'b. ", gen, dz*x (modex—mean0), ' r—', gen, dzx (edgex-mean0), g-') ;

axis ([0 gmax floor (dz* (meanx (2) —-mean0)) ceil (dz* (meanx (tmax)-mean0))]) ; %mean (M) and edge (ze)

of z — meanz0 vs g
%approximate slope

poly=polyfit (gen, dzxmeanx, 1); [poly (1), 2%log(2)*(dz"2)*log (npop)/((log(r))"2)1%[regression

line, approximate analytical solution (Eq. 2)]
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