Supporting Information

Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae

Yi Shao^{1, a}, Bonnie L. Bassler^{1, 2*}

¹ Department of Molecular Biology, Princeton University, Princeton, NJ, USA

² Howard Hughes Medical Institute, Chevy Chase, MD, USA

* Corresponding author

^a Current address:

Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA

This supporting information contains:

Figures S1 to S7

Tables S1 to S3

References

Western blot showing secreted Hcp protein in *V. cholerae* V52, V52 Δ hapR (YS2030), 2740-80, 2740-80 Δ hapR (YS2029), O1 El Tor C6706 Δ tsrA (YS2031), C6706 Δ tsrA, Δ hapR (YS2034), C6706 Δ qrr1-4, Δ tsrA (YS2039), and C6706 Δ qrr1-4, Δ tsrA, Δ hapR (YS2040). When comparing these results to those in the main text, note that the amount of secreted Hcp by the pandemic strain C6706 Δ qrr1-4, Δ tsrA is lower than that secreted by the non-pandemic strains V52 and 2740-80.

Putative base pairing between *V. cholerae* Qrr4 and the *hapR* 5'UTR was predicted by RNAhybrid (<u>http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/</u>). The *hapR* translational start site is denoted +1. *hapR** contains the indicated GG to CC double nucleotide change. Sequences encoding stem-loops are shown with over-lines.

Schematic representation of the T6SS gene clusters in V. cholerae.

Fluorescence from *E. coli* carrying a plasmid with an IPTG inducible translational GFP fusion to VC1415/VCA0017 (pYS347) was measured in the presence of an empty vector (pLF253) or a vector expressing tetracycline inducible *V. cholerae qrr*4 (Vc Qrr4, pYS245). The 5' UTR is identical upstream of VC1415 and VCA0017. A plasmid harboring a GFP translational fusion to this region was constructed. It reports on the first gene in both of the two small clusters. GFP production from three independent cultures was measured and the means and SEMs are shown, with all measurements normalized to the mean of the vector controls.

V. c. Qrr1 Qrr2 Qrr3 Qrr4	'. cholerae rr1 UGACCCGCAAGGGUCACCUAGCCAACUGACGUUGUUAGUGAAUAAUCAA-UGUUCACAAA-UAACAGCCAAUAGACUCA-UUCUAUUGGCUAUUUUUUU rr2 UGACCCUUG-UUAAGCCGAGGGUCACCUAGCCAACUGACGUUGUUAGUGAAUAGU-AU-UGUUCACAUUAUAUAAAGCCAAUCGCGGUUCUUGCGA-UUGGCUAUUUUUUU rr3 UGACCCUUAAUUAAGCCGAGGGUCACCUAGCCAACUGACGUUGUUAGUGAAUGAA							
	SL1	SL2	SL3	SL4				
V. harveyi								
Qrr1	GGACCCCUCGGGUC	ACCUAGCCAACUGACGUUGUUA	GUGAACG-ACAUGUUCACAGA	ACG-A-GCCAAUAGAUCCGACUGCCUAUUGGCUUCUUUUU				
Qrr2	CGACCCUUC-UUAAGCCGAGGGUC	ACCUAGCCAACUGACGUUGUUA	GUGAAUACACAU-UGUUCACAAAAU	ACAUA-A-GCCAAUCGCCCUAAUUGCG-GUUGGCUAUUUUUUU				
Qrr3	UGACCCUUC-UUAAGCCGAGGGUC	ACCUAGCCAACUGACGUUGUUA	GUGGACUCGAAUUUGUUCACAAA-U	AUAUA-A-GCCAAUCGCACAAAUUGCG-GUUGGCUAUUUUUU				
Qrr4	AGACCCUUA-UUAAGCCGAGGGUC	ACCUAGCCAACUGACGUUGUUA	GUGAAUACACAU-UGUUCACAAG-U	AUAUACC-GCCAAUCAACUUUAUUGUG-AUUGGCGUUUUUU				
Qrr5	UGACCCUUUUAAGCCGAGGGUC	ACCUAGCCAACUGACGUUGUUA	GUGAACCCA-AU-UGUUCACACG-U	AUAUACA-GCCAAUCACAAACCUUGUG-GUUGGCUUUUUUUU				
	SL1	SL2	SL3	SL4				

RNA sequence alignment of *V. cholerae* Qrr1-4 and *V. harveyi* Qrr1-5. Sequences corresponding to predicted stem-loops are indicated with underlines.

The level of VCA0107 mRNA in *V. cholerae* O1 EI Tor C6706 $\Delta qrr1$ -4, $\Delta tsrA$, hapR* (YS2048) was measured by qRT-PCR before (-) and after (+) 1 hour induction of *V. cholerae* Qrr4 (Vc Qrr4, pYS249), *V. harveyi* Qrr4 (Vh Qrr4, pLF575), or the *V. harveyi* Qrr4 SL2 inversion variant (Vh Qrr4 SL2*, pYS348). Means and SEMs of triplicate samples are shown, with all measurements normalized to the mean of the uninduced controls.

mRNA levels of VCA0107, *hapR*, VC1415, and VCA0017 in *V. cholerae* O1 EI Tor C6706 Δqrr 1-4 (SLS456) following pulse induction of *V. cholerae* Qrr4 (pYS249) were measured by qRT-PCR. Samples were collected at different time points, and means and SEMs of triplicate samples are shown.

Strain	Relevant Genotype	Source	
E. coli			
S17λpir	wild type	(de Lorenzo and Timmis, 1994)	
BW-RI wild type		(Levine <i>et al.</i> , 2007)	
V. cholerae			
C6706	wild type	(Thelin and Taylor, 1996)	
2740-80	wild type	(Basler <i>et al.</i> , 2013)	
V52	wild type	(Pukatzki <i>et al.</i> , 2006)	
SLS456	C6706 Δ <i>qrr</i> 1-4	(Svenningsen et al., 2009)	
YS2029	2740-80 Δ <i>hap</i> R	this study	
YS2030	V52 ∆hapR	this study	
YS2031	C6706 ΔtsrA	this study	
YS2032	C6706 luxOD47E ΔtsrA	this study	
YS2033	C6706 $\Delta luxO \Delta tsrA$	this study	
YS2034	C6706 $\Delta tsrA \Delta hapR$	this study	
YS2037	C6706 luxOD47E Δqrr1-4 ΔtsrA	this study	
YS2039	C6706 Δqrr 1-4 $\Delta tsrA$	this study	
YS2040	C6706 Δqrr 1-4 $\Delta tsrA \Delta hapR$	this study	
YS2047	C6706 luxOD47E $\Delta qrr1$ -4 $\Delta tsrA hapR^*$	this study	
YS2048	C6706 Δqrr 1-4 $\Delta tsrA hapR^*$	this study	
P. aeruginosa			
PAO1	wild type	(Holloway, 1955)	

Table S1 Strains used in this study.

Plasmid	Description	Source
pEVS143	vector	(Dunn <i>et al.</i> , 2006)
pZA31-lucNB	vector	(Levine <i>et al.</i> , 2007)
pZE12	vector	(Levine <i>et al.</i> , 2007)
pSLS155	pEVS143-Vc Qrr4 (constitutive promoter)	(Svenningsen <i>et al.</i> , 2009)
pKAS32	vector for chromosomal mutation in V. cholerae	(Skorupski and Taylor, 1996)
pMM1162	pKAS32 for <i>hapR</i> deletion	(Miller <i>et al.</i> , 2002)
pLF253	pZA31-lucNB empty vector	(Shao <i>et al.</i> , 2013)
pLF127	pZA31-lucNB-Vh Qrr4	(Shao <i>et al.</i> , 2013)
pLF575	pEVS143-ara-Vh Qrr4	(Shao <i>et al.</i> , 2013)
pYS230	pZA31-lucNB-Vh Qrr4 SL1*	(Shao <i>et al.</i> , 2013)
pYS231	pZA31-lucNB-Vh Qrr4 SL2*	(Shao <i>et al.</i> , 2013)
pYS232	pZA31-lucNB-Vh Qrr4 SL3*	(Shao <i>et al.</i> , 2013)
pYS245	pZA31-lucNB-Vc Qrr4	this study
pYS249	pEVS143-ara-Vc Qrr4	this study
pYS254	pZE12-VCA0107-GFP	this study
pYS335	pKAS32 for <i>tsrA</i> deletion	this study
pYS345	pKAS32 for <i>hapR</i> *	this study
pYS347	pZE12-VC1415/VCA0017-GFP	this study
pYS348	pEVS143-ara-Vh Qrr4 SL2*	this study
pYS350	pZE12-VCA0107(BP-)-GFP	this study

Table S2 Plasmids used in this study.

Primer	Sequence	Use
YS757	ATAGGATCCATCAAATAAAACGAAAGGCTC	pYS245
YS758	GTGCTCAGTATCTCTATCACTGATAGG	pYS245
YS765	TGACCCTTCTAAGCCGAGGGTC	pYS245/pYS249
YS766	GCGGGATCCCAAGATGCTATGGCGAATGTGGTG	pYS245
YS767	CCGGGTACCAGGATCCGGTGATTGATTGAGCAAG	pYS249
YS768	GGAGAAACAGTAGAGAGTTGCGATAAAAAG	pYS249
YS772	GCGGGTACCCAAGATGCTATGGCGAATGTGGTG	pYS249
YS794	GCTGCTAATGATAAGTTTGCATAATAAGCC	pYS254
YS796	AATAGGTACCTTTGGGAGCTACACTTCCTTCTTTAGA	pYS254
YS997	GTGCTCAGTATCTTGTTATCCGCTC	pYS254/pYS347
YS998	GCGGGTACCATGTCTAAAGGTGAAGAAC	pYS254/pYS347
YS811	GCGGGTACCATGTTAATGGCTCGGTTGCTACAAGG	pYS335
YS812	GGTGTTTTGGATTCCAAACGGTTAGTC	pYS335
YS813	CGTTTGGAATCCAAAACACCTCGAACGCTCATTCCCTATATCGCC	pYS335
YS814	GCGCCTAGGCAGTCCCTGTAACTTGCCATTGCAG	pYS335
YS1146	GCGGGTACCGTTTTGTCTACGGTATCGAGGATGG	pYS345
YS1147	GCGCCTAGGCCGTAAGAAAGGCGAAATGGTGC	pYS345
YS1148	GGAATTGAGTTGTTGATTGAGCATTTTGCTC	pYS345
YS1149	GCTCAATCAACAACTCAATTCCCAAGGATATACCCCTATGGACGC	pYS345
YS1195	ACGGTGCGCAGAGCGCGTTAA	pYS347
YS1197	AATAGGTACCTTCGATAGAGATATAACATGGAGTTGGCAT	pYS347
YS733	CCTTATTAAGCCGAGGGTCATTGTTGCAGTCAACCGATCCAGTGA	pYS348
	ATACACATTGTTCAC	
YS734	GTGAACAATGTGTATTCACTGGATCGGTTGACTGCAACAATGACC	pYS348
	CTCGGCTTAATAAGG	
YS1200	TGATTGAATGATTTCAATCAACTGTAAGTAACTGTTGCAATGGCAT	pYS350
	AGGTATTGGAGACGTAATA	_
YS1201	TATTACGTCTCCAATACCTATGCCATTGCAACAGTTACTTAC	pYS350
	GATTGAAATCATTCAATCA	
STR0382	CTAAGGGGCAATCTCTACAAG	hfq qRT-PCR
STR0383	AATTGATCAAATGATTCGATCTGA	hfq qRT-PCR
YS1084	AAATCGCGTTGGAAGTGTTT	hapR qRT-PCR
YS1085	CGAGTTGGGAAGTAGTTGAA	hapR qRT-PCR
YS1153	ATTGATTGAGTTGCGTGAAG	VCA0107 qRT-PCR
YS1154	TCTCTCGACTCTTCTGAGTT	VCA0107 qRT-PCR
YS1206	GAAAACCGTTGAGCTGAAGT	VC1415 qRT-PCR
YS1207	TGGATGTCGACGATAGACGC	VC1415 qRT-PCR
YS1165	GAAAACCGTTGAGCTGAAAT	VCA0017 qRT-PCR
YS1166	TGGATATCAACGATAGACGC	VCA0017 qRT-PCR

Table S3 Primers used in this study.

References

Basler, M., Ho, B.T., and Mekalanos, J.J. (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. *Cell* **152**: 884–94

Dunn, A.K., Millikan, D.S., Adin, D.M., Jeffrey, L., Stabb, E. V, and Bose, J.L. (2006) New rfp - and pES213-Derived Tools for Analyzing Symbiotic Vibrio fischeri Reveal Patterns of Infection and lux Expression In Situ. *Appl Environ Microbiol*.

Holloway, B.W. (1955) Genetic recombination in Pseudomonas aeruginosa. *J Gen Microbiol* **13**: 572–81

Levine, E., Zhang, Z., Kuhlman, T., and Hwa, T. (2007) Quantitative characteristics of gene regulation by small RNA. *PLoS Biol* **5**: e229

Lorenzo, V. de, and Timmis, K.N. (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. *Methods Enzymol* **235**: 386–405.

Miller, M.B., Skorupski, K., Lenz, D.H., Taylor, R.K., and Bassler, B.L. (2002) Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae. *Cell* **110**: 303–314.

Pukatzki, S., Ma, A.T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W.C., *et al.* (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. *Proc Natl Acad Sci U S A* **103**: 1528–33

Shao, Y., Feng, L., Rutherford, S.T., Papenfort, K., and Bassler, B.L. (2013) Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. *EMBO J* **32**: 2158–71

Skorupski, K., and Taylor, R.K. (1996) Positive selection vectors for allelic exchange. *Gene* **169**: 47–52

Svenningsen, S.L., Tu, K.C., and Bassler, B.L. (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. *EMBO J* 28: 429–39

Thelin, K.H., and Taylor, R.K. (1996) Toxin-coregulated pilus, but not mannosesensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 EI Tor biotype and O139 strains. *Infect Immun* **64**: 2853–6