
Supplementary material for: Detecting and Locating Whole
Genome Duplications on a phylogeny: a probabilistic approach

1 Whole genome triplications
Whole genome triplications (WGT) are modeled similarly to WGD, with each
gene lineage being instantaneously triplicated and 1 or 2 or 3 copies being re-
tained with probabilities q1, q2 and q3. In other words, out of the 3 gene copies, a
maximum of 2 can be lost immediately after the triplication. This model requires
2 parameters (because q1+q2+q3 = 1), instead of a single retention rate q. Under
the assumption that the 2 extra copies are each retained independently with prob-
ability q, then the model simplifies to q3 = q2, q2 = 2q(1− q) and q1 = (1− q)2,
using a single parameter.

1.1 Gene count probabilities
To determine the probability that a lineage entering the WGT is doomed with no
descendants below the WGT, we consider the possible number of copies retained
immediately after the WGT and get the following recursion formula

d(uWGTbefore) = q3d(uWGTafter)
3 + q2d(uWGTafter)

2 + q1d(uWGTafter).

Based on our model for WGTs, the transition probability from i genes just
before the WGT to j genes immediately after is

PWGT(j|i) =
∑

k1, k2, k3 ≥ 0, k1 + k2 + k3 = i
k1 + 2k2 + 3k3 = j

i!

k1! k2! k3!
qk11 q

k2
2 q

k3
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where k1, k2, k3 are the number of original genes ending up with 1, 2, or 3 retained
copies after the WGT. The linear constraints on k1, k2 and k3 imply that k1 =
2i − j + k3 and k2 = j − i − 2k3, and the non-negativity of each ki implies that
max{0, j − 2i} ≤ k3 ≤ (j − i)/2. We get that PWGT(j|i) = 0 if j < i or j > 3i,
and otherwise

PWGT(j|i) =
b j−i

2
c∑

k=max{0,j−2i}

i!

(2i− j + k)! (j − i− 2k)! k!
q2i−j+k
1 qj−i−2k2 qk3 .
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These transition probabilities can be computed fast recursively using

PWGT(j|i+ 1) = q1PWGT(j − 1|i) + q2PWGT(j − 2|i) + q3PWGT(j − 3|i) ,

which is derived by considering the fate of the first and remaining i lineages en-
tering the WGT. Similarly, the survival transition probabilities w∗ along the WGT
edge into u = uWGDafter are obtained by considering the fate of the last surviving
lineage. Conditional on i = 1 lineage entering the WGT we get:

w∗u(1|1) = q1(1− d(u)) + 2q2d(u)(1− d(u)) + 3q3d(u)
2(1− d(u))

w∗u(2|1) = q2(1− d(u))2 + 3q3d(u)(1− d(u))2

w∗u(3|1) = q3(1− d(u))3 and
w∗u(i|1) = 0 for i = 0 or i ≥ 4.

The remaining values are then obtained recursively with

w∗u(j|i) = w∗u(1|1)w∗u(j−1|i−1)+w∗u(2|1)w∗u(j−2|i−1)+w∗u(3|1)w∗u(j−3|i−1).

1.2 Tree probability at a WGT
Along the edge of a WGT event, there are 3 different possible observed reconciled
subtrees Tk with k = 1, 2 or 3 leaves. Their associated probability terms are still
g(ν, uWGTafter, Tk) = f(T, Tk, R) h(uWGTafter, k) with

h(uWGTafter, k) =


q3 if k = 3,
q2 + 3q3d(uWGTafter) if k = 2,
q1 + 2q2d(uWGTafter) + 3q3d(uWGTafter)

2 if k = 1.

to account for the fact that more than k gene copies may be retained after the
WGT, but then doomed later on. The factor f(T, Tk, R) accounts for topological
symmetries at internal nodes in the gene tree. At a WGT, the birth-death process
does not apply, so equation (13c) in Rasmussen and Kellis (2011) simplifies to
f(T, T ′, R) = N2(T, T

′, R) (using their notations). Their rationale still applies to
calculate the N2 labeling factor, but we need to expand it to polytomies. Indeed,
when all 3 copies are retained T ′ = T3 is the 3-tip tree with a polytomy. In this
case, N2(T, T3, R) = 1, 3 or 6, corresponding to 1, 2, or 3 distinct “color labels”
at the 3 tips of T3. Two tips in T ′ have the same color label if the gene subtrees
that they subtend have the same topology, when their leaves are labeled by the
species in which they belong.
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2 Reconciliation method

2.1 Simulation results with unknown WGD location
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Figure 1: Estimated power of the reconciliation method on a 4-taxon tree from n
gene families when 2 possible locations for the WGD are considered.

2.2 Most parsimonious reconciliation at the WGD
We focus here on an edge (v, u) in the species tree, where a WGD is hypothesized
and on which nodes uWGDbefore and uWGDafter have been added to model the WGD.
We provide here an algorithm to refine the reconciliation of a gene subtree T ′

whose root ν has been reconciled to v and tips reconciled to u, to map each internal
node in T ′ to either uWGDbefore, uWGDafter, or u. To do so, we seek to maximize the
number of duplications at the WGD and then minimize the number of losses at
the WGD. A post-order traversal of T ′ (algorithm 1) is first used from the tips
to the root to maximize the number of WGD duplications on each subtree, when
constrained to originate before the WGD. This is followed by a pre-order tree
traversal of T ′ (algorithm 2) to determine the reconciliation of each internal node.
An example of most parsimonious reconciliation is shown in figure 2. Note that
this method cannot handle more than one WGD along each branch of the species
tree, and that it is specific to WGDs, not whole genome triplications.

3



Algorithm 1: WGDbestPosition
Input: tree T ′ rooted at node ν
Output: Bestposition: most parsimonious reconciliation of ν under the constraint that its

parent is reconciled at v or uWGDbefore (i.e. before the WGD).
Ndup: most parsimonious number of duplications at the WGD in T ′.

if ν is a leaf of T ′ then
Bestposition = u
Ndup=0

else
T ′
1 = subtree of T ′ rooted at the left child of ν
T ′
2 = subtree of T ′ rooted at the right child of ν

Ndupi = Ndup from WGDbestPosition(T ′
i ), i = 1, 2

if Ndup1+ Ndup2 > 1 then
Bestposition = uWGDbefore
Ndup = Ndup1+ Ndup2

else
Bestposition = uWGDafter
Ndup = 1

return Bestposition, Ndup

Algorithm 2: WGDresetReconciliation
Input: tree T ′ rooted at ν, reconciliation R mapping ν to either v or u and all other nodes

to u, and Bestposition for each node from algorithm 1
Output: updated reconciliation R
if ν is a leaf of T ′ then

reconciliation R[ν] is unchanged at u

else
if Bestposition[ν] = uWGDafter then

R[ν] = uWGDafter
label ν as a WGD duplication
stop (all descendants of ν have reconciliation R unchanged at u)

if Bestposition[ν] = uWGDbefore then
R[ν] = uWGDbefore
T ′
1 = subtree of T ′ rooted at the left child of ν
T ′
2 = subtree of T ′ rooted at the right child of ν

WGDresetReconciliation(T ′
1)

WGDresetReconciliation(T ′
2)
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Figure 2: Example of a gene subtree T ′ within a branch of the species tree with
a WGD (left) and its most parsimonious reconciliation at the WGD (right). Node
numbers and annotations indicate the “Ndup” and “Bestposition” values calcu-
lated by algorithm 1. Blue squares indicate duplications from the WGD.

2.3 Changes to SPIMAP
In addition to the changes for the presence of WGDs and a geometric prior dis-
tribution for the number of genes at the root, we implemented two conditional
probability calculations. By default, probabilities are conditional on the data be-
ing observed (non-extinct families). Users also have the option to condition on
filtering families having at least one gene in each subtree from the root.

In addition, we implemented the non-molecular-clock LOCAL sampler of Larget
and Simon (1999), called SubtreeSlides in SPIMAP. It modifies the tree only in a
small neighborhood of a randomly chosen internal branch, leaving the remainder
of the tree unchanged. We used a tuning parameter value of λ = 0.2 in order
to propose new branch lengths `∗ within a maximum of about 10% of the ini-
tial branch length ` according to `∗ = ` exp(λ(U − 0.5)), where U is random,
uniform in (0, 1). Users can therefore choose between three tree proposals: a
subtree pruning and regrafting (SPR), a nearest neighbor interchange (NNI) (both
already present in Rasmussen and Kellis, 2011), and the new SubtreeSlides sam-
pler. At each iteration, two proposals are performed, with hill climbing optimiza-
tion. The first proposes a new tree with a possibly new topology, using one of
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the SPR, NNI or SubtreeSlides operation. The second proposal evaluates changes
in branch lengths. With probability 0.8, we use the branch length optimization
of the branch likelihood term proposed by Rasmussen and Kellis (2011, section
Rapid Tree Search). With probability 0.2, small random changes are proposed to
the length of b branches, where b is the total number of branches in the gene tree
and branches are chosen at random. A new length is proposed within 10% of the
current length using tuning parameter λ = 0.2 as above.
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