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Supplementary Material

S1. List of models

The list of main models available in the current version of GENFIT is reported here-

after. Each model is briefly described and labeled with its number µ, enclosed in

brackets, reflecting the historical order of the models integrated into GENFIT. There

are other models in GENFIT that are not listed hereafter. Actually, on the one hand

these models are very complex, however on the other hand they are very specific. We

have decided to omit them in order to distribute a software tool of general use. The

authors of GENFIT are willing to distribute a version of the software that includes

all models upon request.
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S1.1. Asymptotic behaviours

Guinier’s law (16)

I16(q) = exp

(

−
q2R2

g

3

)

with qRg ≤ C (S1)

The two parameters of the model are the gyration radius, Rg, and the validity upper

limit of the law, i.e. C. The user should define C as a fixed parameter (Flag=0).

Typical C values range between 1 and 2 (Glatter & Kratky, 1982; Pèrez et al., 2001).

Porod’s law (22)

I22(q) =
2πS

q4V 2
(S2)

The two parameters of the model are the particle surface S and the volume V (Glatter

& Kratky, 1982).

Debye’s law (17)

I17(q) = 2
exp(−R2

gq
2) +R2

gq
2 − 1

R4
gq

4
with qRg ≤ C (S3)

Eq. S3 represents the form factor of a Gaussian chain (model (1), see Sect. S1.3), which

is used to reproduce the asymptotic behaviour of a scattering pattern at low q to cal-

culate the radius of gyration, Rg of a disordered chain. Hence, the two model param-

eters are Rg and the validity upper limit C of the approximation. The user should

define C as a fixed parameter (Flag=0). Typical values of C are around 3 (Glatter &

Kratky, 1982; Pèrez et al., 2001).
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Beaucage model of polymeric mass fractals (58) This model uses a combined Guinier/power

law, able to describe multiple size-scale structures (Beaucage, 1996),

I58(q) = G exp

(

−
R2

gq
2

3

)

+B exp

(

−R2
subq

2

3

)[

((kqRg/
√
6))3

q

]P

+Gs exp

(

−R2
sq

2

3

)

+Bs

[

((ksqRs/
√
6))3

q

]Ps

(S4)

The model parameters are described in the cited reference.

S1.2. Geometric solids

Homogeneous sphere (18)

I18(q) =

[

4π

3
R3(ρ− ρ0)Φ(qR)

]2

(S5)

Φ(x) = 3
sinx− x cosx

x3
(S6)

The parameters are scattering length densities of the sphere and the matrix , ρ and

ρ0, respectively, and the sphere radius R.

Two-density level sphere (19)

I19(q,R, δ) =

{

4π

3

[

(ρe − ρ0)(R+ δ)3Φ (q(R+ δ))

+(ρi − ρe)R
3Φ(qR)

]}2
(S7)

The model parameters are scattering length densities of the inner sphere, the outer

sphere and the matrix, ρi, ρe and ρ0, respectively, the inner sphere radius, R, and the

shell thickness δ.

Three-density level sphere (42) This model is a straightforward extension of model

(19) (Glatter & Kratky, 1982).
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Two-density level cylinder (6)

I6(q) =

∫ π/2

0
dβ sinβ [A6(q)]

2 (S8)

A6(q) = 2πL
sin
(

1
2qL cosβ

)

1
2qL cosβ

×
[

(ρs − ρ0)(R+ δ)2
J1(q(R+ δ) sinβ)

q(R+ δ) sinβ

× +(ρc − ρs)R
2J1(qR sinβ)

qR sinβ

]

(S9)

where J1(x) is the 1st order Bessel function of the first kind. Model parameters are:

the inner cylinder radius R; the external shell thickness δ; the cylinder height L; the

scattering length densities of shell, matrix and core, ρs, ρ0 and ρc, respectively. Notice

that in this model the user can also declare the cylinder volume V as a free parameter:

in this case one of the other three geometric parameters L, R or δ should be defined

as “constrained parameter”, by using Flag=3.

Hollow cylinder with two coatings of different scattering length density (7)

I7(q) =

∫ π/2

0
dβ sinβ







2πL
sin
(

1
2qL cosβ

)

1
2qL cosβ

×
4
∑

k=1

(ρk − ρk−1)R
2
k

J1(q(Rk sinβ)

qRk sinβ

}2

(S10)

The model parameters are: the cylinder height L; the radius of the cylindrical hole Rh;

the internal, the core and the external shell thicknesses δin, δcore, δout, respectively;

the scattering length densities of external, core and internal shell ρk (corresponding

to k = 1, 2, 3); the matrix scattering length density ρ0 = ρ4. The summation is over

the four radii Rk defined as R1 = Rh + δin + δcore + δout, R2 = Rh + δin + δcore,

R3 = Rh + δin, R4 = Rh.
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Two-density-level three-axial ellipsoid (23)

I23(q) =
2

π

∫ π/2

0

∫ π/2

0
sinβ dβ dα [A23(q)]

2 (S11)

A23(q) =
4π

3

1
∑

k=0

(A+ kδ)(B + kδ)(C + kδ)(ρk+1 − ρk)

×Φ(q{[(A+ kδ)2 sin2 α+ (B + kδ)2 cos2 α] sin2 β

+(C + kδ)2 cos2 β}1/2) (S12)

The model parameters are: the semiaxes of the inner ellipsoid, A, B and C; the

shell thickness δ; the scattering length densities of matrix, ellipsoidal shell and inner

ellipsoid, ρ0, ρ1 and ρ2, respectively.

Two-density-level three-axial ellipsoid and DLVO potential under RMSA approxima-

tion (29) The form factor is the same as in model (23). The structure factor S(q) is

calculated in the framework of the rescaled mean spherical approximation (RMSA)

with the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction potential. Details

can be found in (Hayter & Penfold, 1981) and (Hansen & Hayter, 1982). The scat-

tering intensity is the product of the form factor and the so-called “measured” (or

“effective”) structure factor SM (q) according to

I29(q) = I23(q)SM (q) (S13)

SM (q) = 1 +
[I ′23(q)]

2

I23(q)
[S(q)− 1] (S14)

I ′23(q) =
2

π

∫ π/2

0

∫ π/2

0
sinβ dβ dαA23(q) (S15)

Two-density level cylinder and DLVO potential under RPA approximation (56) In

this model the form factor reported in Eq. S9 is combined with the structure factor

calculated using the DLVO potential within the random phase approximation (RPA).

Details of the model can be found in (Ortore et al., 2009). The scattering intensity is
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expressed as:

I56(q) = I6(q)SM (q) (S16)

SM (q) = 1 +
[I ′6(q)]

2

I6(q)
[S(q)− 1] (S17)

I ′6(q) =

∫ π/2

0
dβ sinβ A6(q) (S18)

Two-density-level sphere and DLVO potential under RMSA approximation (59) The

form factor is the same as in the model (19). The “measured” structure factor SM (q)

is same as in the model (29) (see Eq. S14).

Two-density level tri-axial ellipsoid and DLVO potential under RPA approximation

(61) The form factor is the same as in the model (23). The structure factor is calcu-

lated using the DLVO potential within the RPA.

Two-density level spherocylinder and DLVO potential under RPA approximation (63)

The form factor of the spherocylinder is

I63(q) = P63(q)SM (q) (S19)

SM (q) = 1 +
[P ′

63(q)]
2

P63(q)
[S(q)− 1] (S20)

P63(q) =

∫ π/2

0
dβ sinβ [A63(q)]

2 (S21)

P ′
63(q) =

∫ π/2

0
dβ sinβ A63(q) (S22)

A63(q) = 4π
2
∑

k=1

(ρk − ρk+1)R
2
k

×
∫ 1

0
X[R+Rk(1−X2)1/2]J0(qRkX sinβ)

× sin[q(R+Rk(1−X2)1/2) cosβ]

q
(

R+Rk(1−X2)1/2
)

cosβ
dX (S23)

IUCr macros version 2.1.5: 2012/03/07



7

where J0(x) is the 0th order Bessel function of the first kind, R = L/2, L is the

length of the cylinder, R1 is the inner cylinder radius and the inner radius of the

two hemispherical caps, R2 = R1 + δ, δ is the shell thickness. The scattering length

densities of core, shell and matrix are ρ1, ρ2 and ρ3, respectively. The structure factor

S(q) is calculated using the DLVO potential within the random phase approximation

(RPA).

S1.3. Disordered chains

Gaussian chain (1) The form factor is described by Debye’s law (Eq. S3). The model

is applied to the full experimental q-range. The only free parameter is Rg.

Gaussian chain with finite cross section (2) This model is obtained by multiplying

the form factor of the model (1) by the cylindrical cross section,

Ssc(q) =

[

2
J1(Rq)

Rq

]2

(S24)

Parameters of the model are Rg and the radius of the chain cross section, R.

Worm-like model without excluded volume effect (3) This model was developed by

(Pedersen & Schurtenberger, 1996). The reader is referred to the original article for

details. Model parameters are: the statistical segment (Kuhn) length b, and the contour

length, L.

Worm-like model without excluded volume effect and finite cross-section (4) This

model is obtained by multiplying the form factor of the previous model (3) by the

cylindrical cross section (Eq. S24).
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Worm-like model without excluded volume effect and finite two-density level cross-

section (10) This model results from the product of the form factor of model (3)

times a cylindrical two-density level cross section:

Ssc,2(q) = 4π2
[

(ρs − ρ0)(R+ δ)2
J1(q(R+ δ))

q(R+ δ)
+ (ρc − ρs)R

2J1(qR)

qR

]2

(S25)

The symbols in Eq. S25 have the same meanings as in the previous formulas.

Worm-like model with excluded volume effect and finite cross-section (11) This is like

model (4) but allows for the effect of excluded volume, as described in (Pedersen &

Schurtenberger, 1996). The related Fortran subroutines were kindly made available by

J. Skov Pedersen.

Worm-like model with excluded volume effect and finite two-density level cross-section

(12) This is similar to model (11), but using the cross section of Eq. S25.

Sphere with attached gaussian chains (5) This model (by J. Skov Pedersen) is reported

in (Pedersen, 2002).

Worm-like model with excluded volume effect and finite two-density level cross-section

and DLVO potential under RPA approximation (47) In this model the form factor

of model (12) is combined with the structure factor of model (58). See (Barbosa

et al., 2010) for further details.

S1.4. PDB structures

Monte Carlo form factor of a PDB structure with a Gaussian hydration shell (9) The

shape of the particle, considered homogeneous, is evaluated by the envelope of all

the van der Waals spheres centrered on the atomic coordinates. The Monte Carlo
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method is used to determine the distance distribution histogram. A Gaussian tran-

sition layer is introduced to smooth out the particle border. Details are reported

in (Cinelli et al., 2001) and (Spinozzi et al., 2002). Model parameters are the ordi-

nal number of the PDB file and the standard deviation of the Gaussian transition

layer, σ. “Preliminary parameters” of the model are: Random Points Number (used

in the Monte Carlo sampling) and Radial grid amplitude (used to calculate the

distance distribution histograms). Distance distribution histograms are saved in the

file gen<code><pp>pdb.pr (see Sect. S4) and can be re-used in other GENFIT runs.

Monte Carlo form factor of a PDB structure with a solvation shell of different scat-

tering length density (13) This is akin to model (9). The shape of the solvation shell

around the protein is calculated by adding a constant thickness δ to the envelope

function. Three pair distance distribution histograms pij(r), corresponding to core-core

(pcc(r)), shell-shell (pss(r)) and core-shell (pcs(r)) terms and two single distance distri-

bution histograms p′i(r) corresponding to centre-core (p′c(r)) and centre-shell (p′s(r))

are evaluated by a Monte Carlo sampling method. Shell and core volumes, Vs and

Vc estimated through the Monte Carlo method, can be isotropically expanded or con-

tracted. The details of the model are described in (Sinibaldi et al., 2007) and (Spinozzi

et al., 2007). Model parameters are: the ordinal number of the PDB file; the thick-

ness o δ f the shell; core, shell and matrix scattering length densities, ρc, ρs and ρ0,

respectively; core and shell volumes, Vc and Vs. “Preliminary parameters” of the model

are: Random Points Number (used in the Monte Carlo sampling) and Radial grid

amplitude (used to calculate the distance distribution histograms). Distance distri-

bution histograms are saved in the file gen<code><pp>pdb.pr and can be re-used for

IUCr macros version 2.1.5: 2012/03/07
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other GENFIT runs. The scattering intensity is calculated according to

I13(q) = (ρc − ρ0)
2V 2

c Pcc(q) + (ρs − ρ0)
2V 2

s Pss(q)

+2(ρc − ρ0)(ρs − ρ0)VcVsPcs(q) (S26)

where Pij(q) are the isotropic Fourier transforms of the corresponding pair distribution

histograms,

Pij(q) =

∫ ∞

0
pij(r)

sin(qr)

qr
dr (S27)

Monte Carlo form factor of a PDB structure with a solvation shell of different scat-

tering length density and DLVO potential under RPA approximation (28) The form

factor of interacting proteins is calculated as in model (13). The structure factor is

built with the DLVO potential in the frame of RPA. Distance distribution histograms

are saved in the file gen<code><pp>pdb.pr and can be re-used in other runs of GEN-

FIT. The scattering intensity is calculated as

I28(q) = I13(q)SM (q) (S28)

SM (q) = 1 +
[I ′13(q)]

2

I13(q)
[S(q)− 1] (S29)

I ′13(q) = (ρc − ρ0)VcP
′
c(q) + (ρs − ρ0)VsP

′
s(q) (S30)

where P ′
i (q) are the isotropic Fourier transforms of the corresponding single distribu-

tion histograms,

P ′
i (q) =

∫ ∞

0
p′i(r)

sin(qr)

qr
dr (S31)

All-atoms form factor of a PDB structure with solvation shell of dummy atoms and

multipole expansion average (15) A full description of the method is given in Ref. (Ortore

et al., 2009). The contribution of each atom present in the PDB file is taken into
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account through its atomic structure factor. The displaced solvent contribution is cal-

culated considering Gaussian dummy spheres centrered on the PDB atomic positions.

Solvent molecules in contact with the macromolecule are also described by dummy

Gaussian spheres: their number and their geometrical coordinates are found by bury-

ing the macromolecule in a tetrahedrally close packed assembly of dummy spheres.

Fourier transforms of partial amplitudes are saved in the file gen<code><pp>pdb.pr

and can be re-used for other GENFIT computational tasks.

Interacting PDB structures: all-atoms form factor of a PDB structure with solvation

shell of dummy atoms and multipole expansion average and first order density expan-

sion of uij(r) (25) The form factor of interacting proteins is calculated according to

model (15). The Ashcroft-Langreth partial structure factors are obtained by a first-

order power series expansion of the protein-protein correlation functions, gij(r) in

terms of the total particles’ concentration. All details of the method are described in

(Spinozzi et al., 2002). The Fourier transforms of the partial amplitudes are saved in

the file gen<code><pp>pdb.pr and can be re-used for other runs of GENFIT.

Interacting PDB structures: all-atoms form factor of a PDB structure with solvation

shell of dummy atoms, multipole expansion average and DLVO potential under RPA

approximation (46) The form factor of interacting proteins is calculated according to

model (15). The “measured” structure factor is computed using the DLVO potential

in the RPA framework and combined into the form factor by an equation similar

to Eq. S29. The Fourier transforms of the partial amplitudes are saved in the file

gen<code><pp>pdb.pr and can be re-used in other runs of GENFIT.
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S1.5. Self-assembled amphiphilic systems

These models have been developed to analyse SAS data of amphiphilic molecules,

such as lipids or detergents.

Multilamellar vesicle (24) The amphiphilic spherical layer is simulated by three domains,

each of constant scattering length density. Parameters characterising this model are:

the inner radius of the vesicle R0; the thicknesses of polar head, alkyl chains and termi-

nal groups R1, R2 and R3, respectively; the corresponding scattering length densities

ρ1, ρ2 and ρ3; the thickness of the water layer between two amphiphilic bilayers Rw;

the scattering length density ρ0 of water; the number n of bilayers. The form factor

expression is:

I24(q) =
4

3
π

n
∑

i=1

(ρ0 − ρ1){[R0 + (i− 1)A]3Φ(q[R0 + (i− 1)A])

−[R0 −Rw + iA]3Φ(q[R0 −Rw + iA])}

+(ρ1 − ρ2){[R0 +R1 + (i− 1)A]3Φ(q[R0 +R1 + (i− 1)A])

−[R0 −Rw −R1 + iA]3Φ(q[R0 −Rw −R1 + iA])}

+(ρ2 − ρ3){[R0 +R1 +R2 + (i− 1)A]3Φ(q[R0 +R1 +R2 + (i− 1)A])

−[R0 −Rw −R1 −R2 + iA]3Φ(q[R0 −Rw −R1 −R2 + iA])} (S32)

where A = Rw + 2(R1 +R2 +R3).

Multilamellar vesicle with smoothed scattering length density profile (34) Akin to

model (24). The scattering length density profile is modelled by a four-level function

(corresponding to solvent, headgroup, alkyl chain and terminal group domains) with

transitions between levels described by the error function (z) (Spinozzi et al., 2010),

ρ(z) = ρ0 +
1

2

3
∑

i=1

(ρi−1 − ρi)

[(

z − zi
21/2σi

)

−
(

z + zi
21/2σi

)]

(S33)
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where zi and σi represent position and standard deviation of the i-th step of the error

function, respectively, and z3 = R3, z2 = R3 + R2, z1 = R3 + R2 + R1. For the other

symbols, see above. The scattering intensity reads

I34(q) = [A34(q)]
2 (S34)

A34(q) =
n
∑

j=1

V (q,R0 + (j − 1)(Rw + 2z1)) (S35)

V (q,R) =
4

3
π

3
∑

i=1

(ρi − ρi−1)e
−(qσi)

2/2

×{(R+ zi)
3Φ(q(R+ zi))− (R− zi)

3Φ(q(R− zi)) (S36)

+3σ2
i [(R+ zi)j0(q(R+ zi))− (R− zi)j0(q(R− zi))]} (S37)

where j0(x) is the 0th Bessel functions of fractional order.

Infinite multilamella with smoothed scattering length density profile and MCT theory

(35) Each multilamella is formed by M ≥ 1 flat, infinitely extended bilayers, the

scattering length density profile of each bilayer being described by the smooth function

in Eq. S33. The structure factor of a stack of parallel multilamellae is described by

the modified Caillé theory (MCT), which exhibits three varying parameters: the mean

number of coherently scattering multilamellae, N ; the repeat distance c and the Caillé

parameter η1 to quantify stack fluctuations. For details see Ref. (Zhang et al., 1994)

and Ref. (Frühwirth et al., 2004). The scattering intensity is

I35(q) =
2π

q2
|A35(q)|2SMCT (q) (S38)

A35(q) =
M
∑

j=1

eıq(j−1)(Rw+2z1)F (q) (S39)

F (q) = 2
3
∑

i=1

zi(ρi − ρi−1)j0(qzi)e
−(qσi)

2/2 (S40)

SMCT (q) = 1 +
2

N

N−1
∑

m=1

(N −m) cos(mqc)

×(πm)−(c/(2π))2q2η1e−γ(c/(2π))2q2η1 (S41)
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where γ is Euler’s constant.

Bicelle model with two smoothed scattering length density profiles and 2D and 1D

finite paracrystal (48) A bicelle is a flat bilayer in the form of a disk with radius R

surrounded by a rim, modeled as the external part of a torus with major radius R.

The two scattering length density profiles, one in the direction perpendicular to the

flat bilayer and the other in the radial direction of the circular section of the torus,

are described by Eq. S33. Bicelles can be correlated in the direction perpendicular

to their plane (stacking interaction) or in their plane, assuming a two-dimensional

hexagonal lattice. The two correlations are described by the structure factor of a

finite paracrystal (Matsuoka et al., 1987), in one or two dimensions. The number

Nc of vertically interacting bicelles, their repeat distance, c, and the perpendicular

distortion parameter, gc are the parameters of the one-dimensional structure factor.

For the horizontal order, the parameters are: the number Na of bicelles in one direction

of the hexagonal lattice; the lattice parameter a; the parallel distortion parameter, ga.

The resulting scattering intensity writes

I48(q) =
2

π

∫ π/2

0
sinβq|A(q, βq)|2

∫ π/2

0
dαqSPT (q) (S42)

A(q, βq) = 2πR2J1(qR sinβq)

qR sinβq
F (q cosβq)− 4π

∫ ∞

0
u2 du

dρe(u)

du

×
∫ π/2

0
dβ sin2 β j0(qu sinβ cosβq)(R+ u cosβ)

×J0(q[R+ u cosβ] sinβq) (S43)

F (q) and dρe(u)
du are the scattering amplitude of the flat part of the bicelle and the

first derivative of the scattering length density in the radial direction u of the circular
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section of the torus:

F (q) = 2
3
∑

i=1

zi(ρi,f − ρi−1,f )e
−(qσi,f )

2/2 sin(qzi,f )

qzi,f
(S44)

dρe(z)

dz
= (2π)−1/2

3
∑

i=1

(ρi−1,e − ρi,e)
1

σi,e

×
[

e−{(z−zi,e)/σi,e}
2/2 − e−{(z+zi,e)/σi,e}

2/2
]

(S45)

(S46)

For the flat (k = f) and the rim (k = e) region of the bicelle zi,k and σi,k stand for

position and standard deviation, respectively, of the i-th step of the error function

and z3,k = R3,k, z2,k = R3,k + R2,k, z1,k = R3,k + R2,k + R1,k. R1,k, R2,k and R3,k

are the thicknesses of polar head, alkyl chains and terminal groups, respectively. The

corresponding scattering length densities are ρ1,k, ρ2,k and ρ3,k. The scattering length

density of water is ρ0,k ≡ ρ0. SPT (q) is the paracrystal structure factor:

SPT (q) =
3
∏

k=1

Re

[

1 + Fk

1− Fk
− 2Fk(1− FNk

k )

Nk(1− Fk)2

]

(S47)

Fk = e−(q·∆k)
2/2eiq·ak (S48)

where: N1 = N2 = Na and N3 = Nc. q = (q sinβq cosαq, q sinβq sinαq, q cosβq) is the

scattering vector. a1 = (a, 0, 0), a2 = (a/2, a
√
3/2, 0) and a3 = (0, 0, c) are the unit cell

vectors of the hexagonal Bravais lattice. ∆1 = ∆2 = a(ga, ga, 0) and ∆3 = c(0, 0, gc)

are the vectors of the semiaxes of the lattice distorsion ellipsoids.

S2. List of polydispersity models

In the following, the expressions and the parameters of the seven polydispersity models

are reported.

1. Normalized Gaussian distribution (Kind=1),

f1(X) =
[

(2π)1/2 <X> ξ
]−1

exp

{

− [X− <X>]2

2 <X>2 ξ2

}

(S49)
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where the two parameters < X > and ξ ≡ [(< X2 > − < X >2)/ < X >2]1/2

are the average value of X and its dispersion, respectively. The normalization

condition reads

∫ ∞

−∞
dXf1(X) = 1. (S50)

2. Normalized log-normal distribution (Kind=2),

f2(X) = X−1
[

2π log(1 + ξ2)
]−1/2

× exp







−
log2

[

X <X>−1 (1 + ξ2)1/2
]

2 log(1 + ξ2)







. (S51)

The normalization condition is

∫ ∞

0
dXf2(X) = 1. (S52)

3. Normalized Lorentzian distribution (Kind=3),

f3(X) = [π <X> ξ]−1

[

1 +
[X− <X>]2

<X>2 ξ2

]−1

. (S53)

The normalization condition is

∫ ∞

−∞
dXf3(X) = 1. (S54)

4. Normalized double log-normal distribution (Kind=4).

f4(X) = αX−1
[

2π log(1 + ξ21)
]−1/2

exp







−
log2

[

X <X>−1
1 (1 + ξ21)

1/2
]

2 log(1 + ξ21)







+(1− α)X−1
[

2π log(1 + ξ22)
]−1/2

× exp







−
log2

[

X <X>−1
2 (1 + ξ22)

1/2
]

2 log(1 + ξ22)







, (S55)

with five parameters: two averages < X >1 and < X >2 , two associated dis-

persions, ξ1 and ξ2 and the relative weight α, comprised between 0 and 1. The

normalization condition is

∫ ∞

0
dXf4(X) = 1. (S56)

IUCr macros version 2.1.5: 2012/03/07



17

5. Eight cubic B-splines normalized distribution (Kind=5),

f5(X) =
11

Xc,m,k,max
∑8

n=1 cn

8
∑

n=1

cnB3,n(X), (S57)

where B3,n(X) are bell-shaped third degree polynomials defined in the range

[0, Xc,m,k,max], Xc,m,k,max being both the value at which the distribution func-

tion becomes zero and the first of the nine parameters that characterize the

distribution, together with the eight unknown weights cn. Notice the normaliza-

tion condition:

∫ Xc,m,k,max

0
dXf5(X) = 1. (S58)

6. Ten cubic B-splines normalized distribution over a logarithmic scale (Kind=6),

f6(X) =
13

(Xc,m,k,up −Xc,m,k,low)
∑10

n=1 cn

10
∑

n=1

cnB3,n(logX), (S59)

where B3,n(logX) are defined in the fixed interval [Xc,m,k,low, Xc,m,k,up] so that

the model parameters are the ten weights cn. The normalization condition is:

∫ Xc,m,k,up

Xc,m,k,low

dXf6(X) = 1. (S60)

7. Eight cubic B-splines normalized distribution over a logarithmic scale (Kind=7),

f7(X) =
11

(Xc,m,k,max −Xc,m,k,min)
∑8

n=1 cn

8
∑

n=1

cnB3,n(logX), (S61)

where B3,n(logX) are defined in the interval [Xc,m,k,min, Xc,m,k,max], with both

limits taken as model parameters together with the eight weights cn. The nor-

malization condition is:

∫ Xc,m,k,max

Xc,m,k,min

dXf7(X) = 1. (S62)
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S3. Minimisation methods

(i) Monkey is a simple-minded method, where each parameter is randomly moved

within its validity range; the final set of parameters is the one that, after the

selected maximum number of iterations, has provided the minimum value of χ2.

(ii) The simulated annealing method is particularly suitable when several local min-

ima of the functional coexist. Parameters of the method are the starting and final

values of the generalized temperature (T ∗
i and T ∗

f , respectively) as well as the

number of sub-runs (Ns) and the number of cycles (Nc) per sub-run (Kirkpatrick

et al., 1983). The starting generalized temperature is typically set to T ∗
i = χ2

0/2,

being χ2
0 the value of χ2 corresponding to the initial guess of the parameters. T ∗

is decreased in Ns steps down to T ∗
f (which should be as large as the presumed

final χ2 value), according to a geometric series behaviour. Typical values of Ns

and Nc are comprised between 10 and 50.

(iii) The simplex method is based on a popular algorithm for solving numerically

linear programming problems (Murty, 1983). The user is requested to enter the

maximum number of iterations.

(iv) The quasi-Newton method is implemented using the zxmin subroutine from the

IMSL library (Aird, 1984). The only parameter that the user is requested to

enter is the maximum number of iterations. Since in this method the Hessian

matrix is evaluated, GENFIT calculates the correlation matrix among the fitting

parameters and report it in the file gen<code>.out.

The minimisation methods are applied by GENFIT in the order from (i) to (iv).

These methods that have not been selected by the user are skipped.
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S4. List of GENFIT input and output files

gen<code>.dat: the input file of the program, created and uploaded by the GUI.

gen<code>.out: the main output of the program. It is an ASCII file in which

all the results of the optimisation, including fitting parameters, are reported.

gen<code>.par: the ASCII file of the fitting parameters. It can be used to define

the validity ranges of f -type parameters, as described in Sec. 2.9.

gen<code>.log: an ASCII file that reports the final values of all parameters

(κc, Bc, wc,m, Xc,m,k together with p- and f -type parameters, written as a list

of statements of the type <varname>=value and e <varname>=value, where

<varname> is the internal name of the variable used by GENFIT in the calcu-

lation and e <varname> is the name of the corresponding standard deviation.

This file can be easily included in a script.

gen<code><nn>.fit: a six-column ASCII file that contains the c-curve best

fit. <nn> is the two-digit numeric code of the c-curve. In the columns 1-6 the

following values are written: q, Iexp,c(q), log[Iexp,c(q)], Îc(q), log[Îc(q)], σc(q) and

SM,c(q) (see Sec. S1 for the meaning of the last value).

gen<code><nn>.pq: a multi-column ASCII file comprising all the calculated

curves (Eq. 2). Curves are calculated over the q-range [0, 100π/Rmax], Rmax

being the anticipated maximum value of the intra-particle distance, introduced

as input parameter by the user. The columns are formed by the following values:

q, Ic(q), Ic,1(q), wc,1Ic,1(q), Ic,2(q), wc,2Ic,2(q), . . . Ic,Mc(q), wc,McIc,Mc(q).

gen<code><nn>.abs: an ASCII file with the three columns: q, Îc(q), 1.0. This

file can be used as an experimental data file for other GENFIT calculations.

gen<code><nn>.sim: a three-column ASCII file, where the columns are: q, Îc(q)

randomly moved within its error bar, k[Îc(q)]
α. This file can be used as an

experimental data file for other calculations with GENFIT.
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gen<code><nn>.pr: a two-column ASCII file reporting the normalized isotropic

Fourier transform of the fitting curve Ic(q),

pc(r) =
2r

π

∫ 100π/Rmax

0
dq

Ic(q)

Ic(0)
q sin qr. (S63)

gen<code>fit.gnu: a script to plot the best fit results of all the Nc SAS curves

and the related Fourier transforms pc(r).

gen<code>pq.gnu: a script to plot the best fit results reported in the files

gen<code><nn>.pq.

gen<code><pp>pdb.pr: an ASCII file that reports the Fourier transforms of the

partial amplitudes, calculated for the models making use of the pp-th PDB file.

gen<code><nn><mm><varname>.dis: a multicolumn ASCII file including the

polydispersity function fc,m,k(Xc,m,k) (Eq. 3) of the parameter named <varname>

by GENFIT and used in them-th model of the c-curve (tagged with the two-digit

codes <mm> and <nn>, respectively). The function is calculated for the values of

Xc,m,k used in the numerical integration carried out with the trapezoidal rule

(see Sec. 2.7) and normalized to unit,

f̂c,m,k(Xc,m,k) =
fc,m,k(Xc,m,k)

∫Xc,m,k,up

Xc,m,k,low
dXc,m,kfc,m,k(Xc,m,k)

. (S64)

In the columns are arranged the following values: Xc,m,k, 10
−8κcf̂c,m,k(Xc,m,k),

f̂c,m,k(Xc,m,k), 10
−8κcσ[f̂c,m,k], σ[f̂c,m,k], fc,m,k(Xc,m,k),σ[fc,m,k], where σ(x) indi-

cates the standard deviation of x. Notice that 10−8 is the conversion factor from

cm−1 to Å−1.

gen<code><nn><mm><varname>l.dis: a multicolumn ASCII file similar to the

previous one, but calculated over a grid of 28 values in the range [Xc,m,k,low, Xc,m,k,up].

gen<code><nn><mm>.ps: is a PostScript file generated by GENFIT for some

models and featuring a representation of the particle obtained with the optimised

parameters. The meaning of the two-digit codes <nn> and <mm> is the same as
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above.
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