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Supplementary Figures
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Figure S1: Dilution series to test the probe efficiencies.

To ascertain the relative differences between vvd, wc-1 and frq RNA levels and thus be able to compare them with

each other, we tested the efficiency of their respective primers and probes in a qRT-PCR using a dilution series

of wildtype gDNA as template. Calculating the delta CT with vvd at the lowest DNA template concentration as

reference, we determined the fold difference in the probe efficiencies: vvd = 1; frq = 2.086 and wc-1 = 1.552. The

values of the experiment (Fig. 1) were then corrected accordingly, with reference to vvd. qRT-PCR with a dilution

series (6.25, 25 and 100 ng) of wild type gDNA as template probing for frq (diamonds), wc-1 (triangles) and vvd

(squares). Threshold cycles (CT) are plotted against the amount of DNA in the samples (n=3; ±SD)
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Figure S2
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Figure S2: VVD stabilizes WCC protein levels

(A) WC-1 protein levels depend on light intensity. Mycelia from wt74 and vvdSS692 were grown for 48 hours at the

indicated light intensities and western blots were probed for WC-1. Short and long exposures are shown. (B) Western

blots were quantified showing that WC-1 levels in the vvdSS692 strain are approximately one-tenth of the wildtype

levels. Note the scale on the vertical axes.
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Figure S3
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Figure S3: Transfer from light to dark results in the onset of oscillations. Continued on the following page.

4



Figure S3: Transfer from light to dark results in the onset of oscillations.

Self-sustained oscillations in constant darkness are thought to arise through delayed negative feedback of the WCC

target FRQ on the activity of the WCC (Brunner and Káldi, 2008; Baker et al , 2012). These delays are included in

the form of a series of intermediate steps between FRQ synthesis and FRQ-dependent inhibition of the WCC:

frq mRNA
k15
−−→ FRQ

1

kp1

−−→ FRQ
2

kp2

−−→ FRQn

kpn
−−→ FRQ

k19
−−→ ∅,

where the final FRQ mediates phosphorylation of the WCC. The additional parameters are: kp1 = 0.375 hr−1; kp2

= 0.375 hr−1; kpn = 0.375 hr−1 A small set of modifications had to be made to the other parameters to ensure that

adaptation to light is retained. Modified parameter values: k3=10.0 hr−1; K3 = 6.0 au; n3 = 5.0; K4 = 61.0 au;

k
−4 = 0.3 hr−1; k11 = 43.0 hr−1; K11 = 0.07 au; k19 = 0.24 hr−1; q6 = 750.0 hr−1; Q6 = 0.07 au. The modification

of parameter values and the introduction of time-delayed FRQ kinetics do not affect the adaptation behavior of the

system. In all cases, the blue curves correspond to the wild type, the red curves to the vvd- mutant. Solid curves

represent the model simulation results; dashed lines, the experimental results.

(A) Simulation of light induction of frq mRNA followed by transfer to darkness shows the characteristic adaptation

to light before the onset of oscillations in the dark. In the vvd-, frq mRNA levels decrease slower than in the wild

type after the transfer from light to dark (cf Figure 6) resulting in a delay in onset of oscillations. Apart from this,

the period and amplitude of the oscillations are the same between the wild type and the vvd- mutant, confirming

that oscillations in free-running conditions are independent of VVD.

(B) frq mRNA levels oscillate in the dark with oscillations phase-shifted in the vvd- by approximately 4 hours, an

observation that has previously been noted (Heintzen et al , 2001; Elvin et al , 2005; Hunt et al , 2007).

(C)-(D) Responsiveness and adaptation to increasing light steps show that the wild type remains responsive and

adapts within 4 hours, while the vvd- mutant requires longer for adaptation to be achieved.

(E)-(F) A light to dark transfer shows that transcriptional activity for vvd and frq mRNA are unregulated for up to

4 hours in the vvd- mutant, while activity drops within 1 hour in the wild type.

(G)-(H) Steady-state vvd mRNA levels are shown experimentally to increase with increasing light intensity, while the

levels remain constant in the vvd- mutant. Model simulations agree with the experimental results.
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Supplementary Text 1

Mathematical model

Based on time-resolved experimental data we constructed a mathematical model to understand the role of
VVD as both a negative and positive regulator in light adaptation.

We outline below, some of the model features describing the interaction between the circadian tran-
scription factor the White Collar Complex (WCC) and its negative regulators VIVD (VVD) and Frequency
(FRQ). Saturation terms have been used for enzymatic reactions: induction of gene expression and phospho-
rylation steps by FRQ. Photoactivation, complex formation, dissociation and (non-enzymatic) photoadduct
have been modeled by mass action terms.

1. Light-activation of WCC and VVD

WC-1 and VVD contain a flavin-binding light-oxygen-voltage (LOV) domain, the blue-light sensors in
the light receptors of plants and fungi. Light triggers a LOV-mediated homodimerization of the WCC,
which induces expression of a large number of genes.

We model the light activation of both the WCC and VVD by a two-step process describing first
activation by light (to give the light-activated form of the WCC, WCC*) followed by homodimerizaton
of WCC*. Both steps are modeled using mass action kinetics.

The effect of light is modeled through a direct change to the activation rates of the dark forms of
unphosphorylated and phosphorylated WCC (WCC, WCCp), k1, and VVD (VVD), q1, to form the
corresponding light-activated forms, WCC*, WCC*p and VVD*.

Values for the activation rate are estimated from Malzahn et al , 2010 and given in Table S1.

Light intensity Value (k1, q1)
2 µmol m−2s−1 1.2 hr−1

20 µmol m−2s−1 5 hr−1

200 µmol m−2s−1 40 hr−1

Table S1: Light-activation rates, k1, q1, for each of the experimental light intensities used.

2. Transcription

The WCC drives transcription of many genes, including vvd, frq and wc-1.

In the dark, the inactive, dark form of the WCC can drive expression of frq by binding to the clock-
box (C-box) element of the frq promoter (Froehlich et al , 2003). This is given by the second term

in the equation for d[FRQ]
dt

, where WCC binds with affinity K14. Additionally, light-activated WCC
(in the form of the homodimer, WCC*-WCC*) can also bind to the C-box and to the proximal light-
responsive element (LRE) of frq. Binding affinity of WCC*-WCC* to the C-box is given by K14′ , while
WCC*-WCC* binds to the LRE with affinity K13.

vvd transcription is driven only by the light-activated homodimer (WCC*-WCC*) with a maximal
transcription rate of q6.

Transcription of wc-1 in the dark is independent of the WCC, given by the basal rate k12. In light,
transcription of the WCC is driven by the homodimer.

3. WCC-VVD heterodimerization

As suggested by previous experimental works, the VVD protein is key to the light regulation pro-
cess through the competitive formation of WCC-VVD heterodimers through interaction of their LOV
domains (Chen et al , 2010; Malzahn et al , 2010). In the model, we assume that the light-active
forms of the WCC and VVD (WCC* and VVD*) can form a heterodimer (WCC*VVD*) and that the
light-active, phosphorylated WCC (WCC*p and VVD*) can also form a heterodimer (WCC*pVVD*).
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The lifetime of the heterodimer is governed by: (1) degradation of the complex (l2, l3), (2) dissociation
of the complex (l−1) and (3) degradation of the photoadduct, with the WCC* or VVD* component
reverting to their dark form. For (3), the following combinations can occur:

• WCC*-VVD*
l4−→ WCC* + VVD

• WCC*-VVD*
l5−→ WCC + VVD*

• WCC∗
p-VVD*

l6−→ WCC∗
p + VVD

• WCC∗
p-VVD*

l7−→ WCC + VVD*

4. VVD homodimerization

VVD dimerizes in a light-dependent manner, forming a rapidly exchanging equilibrium between the
monomer and the dimer (Zoltowski and Crane, 2008). Dimerization of VVD competes with het-
erodimerization, thereby allowing formation of the transcriptionally-active WCC homodimer. We
model this in the same way as light-activation of the WCC and homodimerization of the activated
WCC, by a two-step process that involves first activation of the VVD protein and then homodimer-
ization of the activated species.

5. FRQ-mediated phosphorylation of the WCC

The WCC-FRQ negative feedback loop forms the core of the circadian clock. Phosphorylation of the
WCC by FRQ inactivates the WCC and therefore, its own transcription.

Experimental evidence has shown that the FRQ level is much lower than that of the WCC (Schafmeier
et al , 2005, 2006) leading to the conclusion that FRQ modulates phosphorylation of WCC, rather than
binding to WCC in a 1:1 stoichiometry.

Model equations

Based on the above details, we developed a system of 14 ordinary differential equations describing changes
in protein and mRNA concentrations of WCC, VVD and FRQ. The variables are listed in Table S2. Note
that we denote WCC by W and VVD by V. An asterix indicates the light-activated form of the protein.
wcc, vvd and frq mRNA concentrations are denoted by mWCC, mVVD and mFRQ, respectively.

Model variables
inactive (dark form) WCC protein W
light-activated WCC protein W∗

WCC-WCC protein homodimer W∗W∗

inactive phosphorylated WCC protein Wp

light-activated phosphorylated WCC protein W∗
p

inactive VVD protein V
light-activated VVD protein V∗

VVD-VVD protein homodimer V∗V∗

WCC-VVD heterodimer W∗V∗

phosphorylated WCC-VVD heterodimer W∗
pV∗

FRQ protein FRQ
wcc mRNA mWCC
vvd mRNA mVVD
frq mRNA mFRQ

Table S2: Model variables.
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d[W]

dt
= −k1[W] + k−1[W

∗]+2l8[W
∗W∗] + k−3[Wp] − [W]

k3[FRQ]n3

[FRQ]n3 + Kn3

3

+
k16[mWCC]n16

Kn16

16 + [mWCC]n16

− k6[W] + l5[W
∗V∗],

d[W∗]

dt
= k1[W] − k−1[W

∗]+2k−2[W
∗W∗] − 2k2[W

∗]2−[W∗]
k4[FRQ]n4

([FRQ]n4 + Kn4

4 )
+ k−4[W

∗
p]

+ −k7[W
∗] + l−1[W

∗V∗] − l1[W
∗][V∗] + l4[W

∗V∗],

d[W∗W∗]

dt
= k2[W

∗]2 − k−2[W
∗W∗] − l8[W

∗W∗] − k8[W
∗W∗],

d[Wp]

dt
= −k1[Wp] + k−1[W

∗
p]−k−3[Wp] + [W]

k3[FRQ]n3

[FRQ]n3 + Kn3

3

− k9[Wp] + l7[W
∗
pV∗],

d[W∗
p]

dt
= +k1[Wp] − k−1[W

∗
p]+[W∗]

k4[FRQ]n4

([FRQ]n4 + Kn4

4 )
− k−4[W

∗
p] − k10[W

∗
p] + l−1[W

∗
pV∗] − l1[W

∗
p][V∗]

+ l6[W
∗
pV∗],

d[V]

dt
= q−1[V

∗] − q1[V]+q7[mVVD] − q3[V] + 2l9[V
∗V∗]+l4[W

∗V∗] + l6[W
∗
pV∗],

d[V∗]

dt
= −q−1[V

∗] + q1[V]−2q2[V
∗]2 + 2q−2[V

∗V∗] − l1[W
∗][V∗] + l−1[W

∗V∗]−l1[W
∗
p][V∗] + l−1[W

∗
pV∗]

+ l5[W
∗V∗] + l7[W

∗
pV∗]−q4[V

∗],

d[V∗V∗]

dt
= q2[V

∗]2 − q−2[V
∗V∗] − l9[V

∗V∗] − q5[V
∗V∗],

d[W∗V∗]

dt
= l1[W

∗][V∗] − l−1[W
∗V∗] − l2[W

∗V∗]−k5[W
∗V∗]

[FRQ]n5

([FRQ]n5 + Kn5

5 )
+ k−5[W

∗
pV∗]

− (l4 + l5)[W
∗V∗],

d[W∗
pV∗]

dt
= l1[W

∗
p][V∗] − l−1[W

∗
pV∗] − l3[W

∗
pV∗] + k5[W

∗V∗]
[FRQ]n5

([FRQ]n5 + Kn5

5 )
− k−5[W

∗
pV∗]

− (l6 + l7)[W
∗
pV∗],

d[FRQ]

dt
= k15[mFRQ] − k19[FRQ],

d[mWCC]

dt
=

k11[W
∗W∗]n11

([W∗W∗]n11 + Kn11

11 )
+ k12 − k17[mWCC],

d[mVVD]

dt
=

q6[W
∗W∗]n6

([W∗W∗]n6 + Qn6

6 )
− q8[mVVD],

d[mFRQ]

dt
=

k13[W
∗W∗]n13

([W∗W∗]n13 + Kn13

13 )
+

k14[W]n14

([W]n14 + Kn14

14 )
+

k14[W
∗W∗]n14

([W∗W∗]n14 + Kn14

14′ )
− k18[mFRQ].
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Parameter estimation

To estimate the parameters of the model, we fitted the light-induction data (Fig. 1) using two different
methods: a Bayesian technique and a frequentist inference approach.

Bayesian inference and MCMC

In the Bayesian approach, the parameters are assumed to be random variables that follow a particular
distribution. Inferences are made based on the posterior distribution of the parameters, given the data and
prior information about the parameters.

We first construct the posterior probability distribution

p(q|d) ∝ p(q)p(d|q), (1)

where p(·|·) denotes a conditional probability, d is the data and q the parameters to be determined. The left
hand of Eq. (1) is the quantity in which we are interested.

The right hand side of Eq. (1) are quantities that we can calculate:

p(q): The prior, p(q) summarizes any prior information we have on the possible values of the parameters.
Here we use an uninformative prior for each of the parameters.

p(d|q): We assume that the error at each data point is Gaussian distributed to give

p(d|q) ∝ exp

(

|d̃i − di|

2σ2

)

, (2)

where the di are the experimental values at each ith time and d̃i are the estimated values obtained
from the set of parameters, q.

A Markov chain with equilibrium distribution p(q|d) is then generated using the Metropolis-Hastings
algorithm (Metropolis et al , 1953; Hastings, 1970). New parameter values, q′, are randomly drawn from the
uniform distribution U(q − δ, q + δ), where δ is the size of the random walk. The new candidate parameters
are accepted with probability

α = min{1,
p(d|q′)p(q′)

p(d|q)p(q)
}.

If the sampling procedure converges for a particular parameter, then the parameter is well-determined
by the data and statistics such as the mean and variance of the parameter distribution can be obtained.

We adopted a two-step procedure by first fitting the vvdSS692 light-induction data (Fig. 1). We fixed
the fitted parameters and determined the remaining parameters involving VVD by fitting to the wild type
data. A subset of parameters was fixed within the range of biochemically reasonable values. Hill coefficients
were also restricted. The other parameters for which no such estimates were available were fitted. For our
fits, 1 ×104 iterations were performed with a burn-in period of usually half the total number of iterations.
Samples were collected every tenth iteration thereafter. Parameter values are listed in Tables S3-S7 with
their standard deviations. These parameters have been used to simulate the results in the main paper.

9



Parameter Description Value σ
k−1 Photoadduct decay of W∗, W∗

p 0.17 hr−1 *
k2 W∗ homodimerization 5093.08 hr−1 au−1 115.66
k−2 W∗W∗ → W∗ + W∗ dissociation 3637.79 hr−1 36.17
l8 W∗W∗ → W + W photoadduct decay 0.17 hr−1 *
k6 W degradation rate 0.0601 hr−1 8.6 ×10−4

k7 W∗ degradation rate 0.15 hr−1 0.0017
k8 W∗W∗ degradation rate 0.67 hr−1 0.0091
k16 W translation rate 0.9 hr−1 –
K16 Half-maximal rate W translation rate 0.20 au 0.0012
n16 Hill coefficient W translation 0.96 0.015
k11 (1) Max. rate wc-1 transcription 308 hr−1 –
K11 (1) Half-maximal rate wc-1 transcription 1.37 au 0.016
n11 (1) Hill coefficient wc-1 transcription 0.97 0.0080
k12 Basal wc-1 transcription 13.49 hr−1 0.19
k17 wc-1 degradation 8.2 hr−1 –

Table S3: Transcription module parameters for WCC. (1) W*W*-driven transcription. * indicate parameters which

were not fitted. – non identifiable parameters. Standard deviation σ are derived from the MCMC fitting.

Parameter Description Value σ
k15 FRQ translation rate 1.33 hr−1 0.032
k19 FRQ degradation rate 0.036 hr−1 0.019
k13 (1) Max. rate frq transcription 250 hr−1 –
K13 (1) Half-maximal rate frq transcription 0.09 a.u –
n13 (1) Hill coefficient frq transcription 1.56 –
k14 (1),(2) Max.rate frq transcription 56.0 hr−1 –
K14 (2) Half-maximal rate frq transcription 14.61 au 0.21
K14′ (1) Half-maximal rate frq transcription 0.0026 au 0.000016
n14 (1),(2) Hill coefficient frq transcription 1.92 –
k18 frq degradation 9.8 hr−1

Table S4: Transcription module parameters for FRQ. (1) W*W*-driven transcription. (2) W-driven transcription.

– non identifiable parameters.

Parameter Description Value σ
q−1 Photoadduct decay of V∗ 0.17 hr−1 *
q2 V∗ homodimerization 2732.45 hr−1 au−1 69.80
q−2 V∗V∗ → V∗ + V∗ dissociation 3034.19 hr−1 73.74
l9 V∗V∗ → V + V photoadduct decay 0.17 hr−1 *
q3 V degradation rate 0.63 hr−1 0.058
q4 V∗ degradation rate 0.60 hr−1 0.031
q5 V∗V∗ degradation rate 1.41 hr−1 0.022
q7 V translation rate 12.36 hr−1 0.39
q8 vvd degradation rate 6.40 hr−1 –
q6 (1) Max.rate vvd transcription 1595 hr−1 –
Q6 (1) Half-maximal rate vvd transcription 0.42 au –
n6 (1) Hill coefficient vvd transcription 1.4 –

Table S5: Transcription module parameters for VVD. * indicate parameters which were not fitted. – non identifiable

parameters. (1) W*W*-driven transcription.
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Parameter Description Value σ
l1 heterodimerization 1.95 hr−1 au−1 0.050
l−1 heterodimer dissociation 0.016 hr−1 0.0022
l2 W∗V∗ degradation 0.057 hr−1 0.0016
l3 W∗

pV∗ degradation 0.023 hr−1 0.0056
l4 W∗V∗ → W∗ + V 0.02 hr−1 –
l5 W∗V∗ → W + V∗ 0.8 hr−1 *
l6 W∗

pV∗ → W∗
p + V 0.15 hr−1 0.0024

l7 W∗
pV∗ → Wp + V∗ 0.09 hr−1 –

Table S6: Heterodimerization and photoadduct decay module parameters. – non identifiable parameters.

Parameter Description Value σ
k3 Max. rate W phosphorylation 1.89 hr−1 –
K3 Half-maximal rate W phosphorylation 12.34 au 0.13
k−3 Wp dephosphorylation rate W 1.26 hr−1 0.015
n3 Hill coefficient W phosphorylation 1.0 –
k4 Max. rate W∗ phosphorylation 20.69 hr−1 –
K4 Half-maximal rate W∗ phosphorylation 177.08 hr−1 7.73
k−4 W∗

p dephosphorylation rate 0.52 hr−1 0.016
n4 Hill coefficient W∗ phosphorylation 1.78 0.070
k5 Max.rate W∗V∗ phosphorylation 0.16 hr−1 –
K5 Half-maximal rate W∗V∗ phosphorylation 10.73 au 0.23
k−5 W∗

pV∗ dephosphorylation rate 1.15 hr−1 0.70
n5 Hill coefficient W∗V∗ phosphorylation 1 –
k9 Wp degradation 0.16 hr−1 –
k10 W∗

p degradation 0.15 hr−1 –

Table S7: Phosphorylation module parameters. – non identifiable parameters.
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Maximum likelihood estimation and profile likelihood analysis

A more traditional approach to parameter fitting is that of maximum likelihood estimation. Here, one first
describes an objective function which defines the agreement of the experimental data with the predictions
of the model. Commonly, this is the weighted sum of squared residuals:

χ2(θ) =
m
∑

k=1

d
∑

l=1

(

yD
kl − yk(θ, tl)

σD
kl

)2

,

where yD
kl denotes d-data points for each variable k at time points tl. The σD

kl are the corresponding mea-
surement errors. The model predictions for a set of parameters θ are given by yk(θ, tl). The parameters are
then estimated by

θ̂ = min
θ

[χ2(θ)],

giving a point estimate of the parameters that give the best fit of the model to the data. For normally
distributed noise, this is also the negative log likelihood of the data being observed for a given set of
parameters θ:

χ2(θ) = constant − 2 log(L(θ).

Given that there are usually a large number of parameters that are to be determined by a much smaller
number of experiments, it is important to infer how well the parameters can be identified. The problem of
identifiability can be addressed by use of the profile likelihood which can be used to distinguish between
structural and practically non-identifiable parameters as well as calculating confidence intervals for the
parameters (Raue et al , 2009, 2011; Steiert et al , 2012). The profile likelihood is calculated for each parameter
by

χ2
PL(θ) = min

θj 6=i

[χ2(θ)],

which means χ2(θ) is re-optimized with respect to all remaining parameters θj 6=i for each parameter θi in
turn. The shape of the profile likelihood then distinguishes between the different types of identifiability.

A threshold, ∆α can be derived from the log-likelihood of the best fit and the α quantile of the χ2

distribution to define a confidence interval. A confidence interval of parameter θi, [σ−
i , σ+

i ], to a confidence
level α implies that the true value of θi lies within this interval with probability α. A parameter is defined
as identifiable if the confidence interval [σ−

i , σ+
i ] is finite. For a parameter which is identifiable, the χ2 stays

below the threshold ∆α for a desired confidence level α but then exceeds this threshold at finite values (Raue
et al , 2009). If χ2(θ) is constant then the parameter is said to exhibit structural non-identifiabiity and its
value cannot be determined. Practical non-identifiability occurs if, in one direction, the increase in χ2(θ)
stays below the threshold ∆α (Raue et al , 2009). In this case, the confidence interval of the parameter can
be finitely bounded in one direction and in the other, it is infinite. An algorithm that can be used as a
starting point for calculating the profile likelihood is given in Raue et al (2009). Using this framework, we
re-fitted the light-induction data (Fig S4).
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Figure S4: Fitting of the light adaptation data using a maximum likelihood optimization approach

Fitting shows that the key features of the experimental results can be reproduced (blue curves: wild type; red curves:

vvd- mutant). The wild type maintains its responsiveness to the subsequent increases in light intensity, while the

successive peaks of the mRNA levels decrease in the vvd- mutant.

13



The profile likelihoods for the parameters related to VVD (q6, q7, q8), heterodimerization (l1, l−1) and the
rate of replenishment of the inactive WCC pool, l5 are shown in Fig. S5. The dashed red line indicates the
confidence interval for a confidence level of α = 0.95. The parameters could not be fully identified, although
upper and lower bounds could be obtained for some of the parameters. Parameter values of the best fit are
listed with corresponding upper or lower limits on their values found from the profile likelihood analysis in
the Tables S8-S12. The fitted values using the MCMC algorithm lie within these limits.
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Figure S5: Profile likelihoods for parameters fitted using the method of Raue et al.

The profile likelihoods for the parameters related to VVD (q6, q7, q8), heterodimerization (l1, l
−1) and the rate of

replenishment of the inactive WCC pool, l5. Red circles indicate the best fit. The dashed line indicates the 95%

confidence intervals based on the χ2 distribution; described in Raue et al (2009).

Of particular interest is that the rate of replenishment, l5, is bounded below and the best fit is found at
the upper range of the parameter space explored. The parameter space for l5 as well as other photoadduct
decay variables (l4, l6 and l7) was truncated above at 0.8 hr−1. This was done because better fits were
found with increasing values of l5, giving photoadduct decay times of less than an hour, while experimental
measurements suggest that the rate of photoadduct decay occurs on the order of hours (Zoltowski et al ,
2009).
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Parameter Description Value Range
k−1 Photoadduct decay of W∗, W∗

p 0.17 hr−1 –
k2 W∗ homodimerization 165.67 hr−1 au−1 –
k−2 W∗W∗ → W∗ + W∗ dissociation 1478.11 hr−1 –
l8 W∗W∗ → W + W photoadduct decay 0.17 hr−1 *
k6 W degradation rate 0.0635 hr−1 –
k7 W∗ degradation rate 0.125 hr−1 –
k8 W∗W∗ degradation rate 9.99 hr−1 –
k16 W translation rate 1.68 hr−1 –
K16 Half-maximal rate W translation rate 0.0011 au <100
n16 Hill coefficient W translation 4.56 –
k11 (1) Max. rate wc-1 transcription 49.55 hr−1 >10
K11 (1) Half-maximal rate wc-1 transcription 0.060 au
n11 (1) Hill coefficient wc-1 transcription 2.4 –
k12 Basal wc-1 transcription 10.31 hr−1 <5
k17 wc-1 degradation 6.42 hr−1 >1

Table S8: Transcription module parameters for WCC. (1) W*W*-driven transcription. * indicate parameters which

were not fitted. – non identifiable parameters.

Parameter Description Value Range
k15 FRQ translation rate 1.35 hr−1 –
k19 FRQ degradation rate 0.32 hr−1 –
k13 (1) Max. rate frq transcription 329.34 hr−1 –
K13 (1) Half-maximal rate frq transcription 0.29 a.u –
n13 (1) Hill coefficient frq transcription 1.5 –
k14 (1),(2) Max.rate frq transcription 68.35 hr−1 >5
K14 (2) Half-maximal rate frq transcription 78.20 au –
K14′ (1) Half-maximal rate frq transcription 0.0010 au –
n14 (1),(2) Hill coefficient frq transcription 1.00 –
k18 frq degradation 7.44 hr−1 >1

Table S9: Transcription module parameters for FRQ. (1) W*W*-driven transcription. (2) W-driven transcription.

– non identifiable parameters.
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Parameter Description Value Range
q−1 Photoadduct decay of V∗ 0.17 hr−1 *
q2 V∗ homodimerization 1343.21 hr−1 au−1 –
q−2 V∗V∗ → V∗ + V∗ dissociation 100.04 hr−1 –
l9 V∗V∗ → V + V photoadduct decay 0.17 hr−1 *
q3 V degradation rate 0.10 hr−1 –
q4 V∗ degradation rate 0.20 hr−1 –
q5 V∗V∗ degradation rate 1.13 hr−1 –
q7 V translation rate 9.97 hr−1 >0.02
q8 vvd degradation rate 2.26 hr−1 >0.6
q6 (1) Max.rate vvd transcription 997.59 hr−1 >300
Q6 (1) Half-maximal rate vvd transcription 0.27 au 0.02, 60
n6 (1) Hill coefficient vvd transcription 1.7 <3

Table S10: Transcription module parameters for VVD. * indicate parameters which were not fitted. – non identifiable

parameters. (1) W*W*-driven transcription.

Parameter Description Value Range
l1 heterodimerization 3.67 hr−1 au−1 >0.5
l−1 heterodimer dissociation 0.021 hr−1 –
l2 W∗V∗ degradation 0.01 hr−1 <0.2
l3 W∗

pV∗ degradation 0.01 hr−1 <2
l4 W∗V∗ → W∗ + V 0.049 hr−1 –
l5 W∗V∗ → W + V∗ 0.78 hr−1 >0.2
l6 W∗

pV∗ → W∗
p + V 0.001 hr−1 –

l7 W∗
pV∗ → Wp + V∗ 0.79 hr−1 –

Table S11: Heterodimerization and photoadduct decay module parameters. – non identifiable parameters.

Parameter Description Value Range
k3 Max. rate W phosphorylation 0.64 hr−1 –
K3 Half-maximal rate W phosphorylation 7.25 au –
k−3 Wp dephosphorylation rate W 3.11 hr−1 –
n3 Hill coefficient W phosphorylation 5 –
k4 Max. rate W∗ phosphorylation 9.71 hr−1 –
K4 Half-maximal rate W∗ phosphorylation 8.35 hr−1 –
k−4 W∗

p dephosphorylation rate 0.84 hr−1 –
n4 Hill coefficient W∗ phosphorylation 3.92 –
k5 Max.rate W∗V∗ phosphorylation 0.016 hr−1 –
K5 Half-maximal rate W∗V∗ phosphorylation 266.10 au –
k−5 W∗

pV∗ dephosphorylation rate 6.11 hr−1 –
n5 Hill coefficient W∗V∗ phosphorylation 1 –
k9 Wp degradation 0.032 hr−1 –
k10 W∗

p degradation 0.14 hr−1 <0.8

Table S12: Phosphorylation module parameters. – non identifiable parameters.
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Supplementary Text 2

Futile cycling provides the means for repeated induction

In order to demonstrate that futile cycling provides a mechanism that could account for repeated sensitivity
to increasing step changes in stimuli levels, we constructed a simplified model that represents the core
features of adaptation in the Neurospora model (Fig. S6A). Here the inactive species X is activated by an
external stimulus to give X*, the activated species which in turn synthesizes its inhibitor I. The activated
species is able to form a complex with the the inhibitor. This complex C, (corresponding to the WCC-VVD
heterodimer in Neurospora) is able to either dissociate to its two components or dissociate with the activated
component X* reverting to its inactivated state, X. The parameter krepl describes the rate of replenishment.
We first fitted the vvd mRNA data to this model and showed that this reduced model contains the elements
necessary to reproduce the wild type and vvd- mutant behavior: adaptation is achieved in both the wild type
and mutant case, with the mutant peaks decreasing in increasing stimulus levels (Fig. S6).
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Figure S6: Futile cycling mediates repeated responsiveness.

(A): Simplified network to highlight the role of futile cycling. Upon stimulation, X is activated to state X*, which then

synthesizes the inhibiting species, I. X* and I interact to form the complex C. C can reversibly dissociate but can also

dissociate such that the active X* reverts back to its inactive form X. This constitutes the futile cycling component.

The parameters ksynx and kdegx (marked red) are fixed at 10 a.u hr −1 and 0.01 hr−1 respectively. (B)-(D): The key

features of adaptation and the differences between the wild type and the vvd- mutant are reproduced by the reduced

model.

We performed a profile likelihood analysis and found that similar to fitting the full Neurospora model,
not all parameters can be uniquely determined. However, in contrast, the parameter values are restricted
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either on an upper or a lower boundary (Fig. S7). Of note is that the parameter crucial to the futile cycle,
krepl , is clearly identifiable (Fig. S7A). If the value krepl lies to the right of the confidence interval, then the
replenishment rate is too fast and the replenished X is reactivated and therefore, effective adaptation cannot
be achieved. On the other hand, if it is too slow, then the wild type tends to the vvd- mutant behavior with
diminishing responses to increased stimuli levels.

210

208

206

204

202

-2
lo

g(
L)

1 10 100
krepl

260

250

240

230

220

210

1 10 100 1000
ksyni

250

240

230

220

210

-2
lo

g(
L)

10-5  10-3  10-1  101  103

kdegi

205

204

203

202

201

200

10-5  10-3  10-1  101  103

kdiss

350

300

250

200

10-5  10-3  10-1  101  103

kdega

260

250

240

230

220

210

10-5  10-3  10-1  101  103

kcomp

250

240

230

220

210

10-6  10-4  10-2  100  102  
kdegc

A B

D E F

G

C

Figure S7: Profile likelihood for parameters of the reduced model, fitted to the experimental vvd

mRNA data.

Red circles indicate the best fit. The dashed line indicates the 95% confidence interval based on the χ2 distribution.

Parameters (A) - (F) belong to the futile cycle part of the model corresponding to the synthesis and degradation of

the inhibitor, I, complex formation and dissociation, and replenishment of the inactive species. Degradation of the

activated state X* is shown in (G).
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To generalize the result that futile cycling is a method that can be used to achieve repeated responsive-
ness, we optimized the parameters of the model (Fig. S6) by defining an objective function expressing the
qualitative features of adaptation, rather than fitting directly to data. The characteristics of the peak of the
responses of a wild type and a mutant system were used to place constraints on the parameters, giving us a
constrained optimization problem.

The two key features of adaptation - the ability of a system to respond to step inputs and then to return
to the pre stimulus level in the continued presence of the stimulus - can be defined as the sensitivity and
precision of a network (Ma et al , 2009). The features that are required to determine the sensitivity and
precision are the peak height Pi, the adapted level, Oi and the input levels, Ii (Fig. S8).
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Figure S8: Adaptation and repeated sensitivity.

An input I is stepped up successively and at each step increase, the system should respond giving a significant peak,

Pi, but then return to its pre-stimulus level, Oi in the continued presence of the input.

Sensitivity is the relative change in the system peak (P2) compared to the steady-state value before the
stimulus (O1) with reference to the change in input levels I1 and I2:
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(3)

Precision is given by the difference between the pre-stimulus and post-stimulus steady-state values (de-
fined as the inverse of the relative error by Ma et al (2009)):
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In contrast to other studies of adaptation, we are interested in the repeated response of a system to
further step increases in the stimulus level. Therefore we phrase the sensitivity and precision with respect
to n = 4 increasing stimulus levels (Fig. S8). For the objective function, we used the definition of precision:

P =

n
∑

i=2

∣
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∣

∣

(Oi − O1)/O1

(Ii − I1)/I1

∣

∣

∣

∣

−1

, (5)

where the precision is defined with respect to the pre-stimulus steady-state value, O1.
A key difference between the wild type and the vvd- mutant lies in the magnitude of the responses elicited

at each successive, increasing stimulus level. We utilize this fact to define the following constraints to the
optimization problem. In the case of the wild type, successive peaks heights should not be diminished:

P3

P2
≥ Pwildtype, (6)

P4

P2
≥ Pwildtype,
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where we set Pwildtype = 0.8.
In the case of the mutant behavior, the system should no longer be sensitive and the successive peak

heights should decrease:

P3

P2
≤ Pmutant, (7)

P4

P2
≤ Pmutant,

where Pmutant = 0.1. For both constraints we specify P3 and P4 with respect to the first peak, P2.
We used the Matlab function fmincon with the interior-point algorithm to determine the parameters

that solves:

min
q

F (q) =

n
∑

i=2

∣

∣

∣

∣

(Oi − O1)/O1

(Ii − I1)/I1

∣

∣

∣

∣

. (8)

subject to the constraints (7) and (8) for the network shown in Fig. S6, where F is the relative error (Eq. (4))
The input levels are: I1 = 10−6; I2 = 1; I3 = 10 and I4 = 100. The optimization was run for 300 sets of
randomly-selected initial parameter values in the interval [10−4 10].

Similar to constructing a profile likelihood by recalculation of the χ2, we also investigated each parameter
in turn, starting from the parameter set of the best fit and re-optimizing the system subject to the constraints.
While fitting to data provides a natural measure of a good fit (for example, the χ2), here we utilize the fact
that the constraints, defining a wild type and vvd- mutant network, must be met and thus sets the criteria for
a successful fit. The best fit of the 300 parameter estimation runs is marked by a red circle, while the dashed,
vertical lines indicate the boundary at which the constraints are no longer met (Fig. S9). Panels A-C show
the parameters related to the futile cycle motif: replenishment of X, and the formation and dissociation of
the complex C. While there is no significant change in the minimum value over the range of the parameter
search, the rate of replenishment krepl, is bounded below giving a critical value where the constraints are no
longer met. The same is also true of the synthesis rate of the inhibitor I, ksyni (D). The degradation rate
of C, kdegc (F), is also a factor in ensuring the constraints are met, as is the degradation of the activated
species, X* (G). The constraints specifically distinguish between a wild type and a mutant situation. The
boundaries of these constraints show that these parameters must be non-zero, and support the idea that the
futile cycling motif is capable of producing adaptation and maintaining responsiveness.
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Figure S9: Defined constraints on the peak heights specify bounds on the parameter values.

(A) - (C): Parameters for replenishment of the pool of X, complex formation and complex dissociation (‘wild type’

mode parameters). Red circles mark the best fit. The dashed red lines indicate the threshold at which the constraints

are no longer satisfied.

(D) - (F): Parameters describing the synthesis and degradation of the inhibitor I and the rate of complex degradation.

(G): Degradation rate of the activated species X*.
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