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SUPPLEMENTARY NOTE 1: PRUNING THE MSR 

The MSR of a genomic signal can be used to detect segments enriched (or depleted) in signal 
across all genomic length scales. Since enrichment of signal intensity is inherited between scales, 
pruning strategies are necessary to filter out only the most interesting segments. Here, we present a 
simple pruning strategy that enables the MSR to be used as a multiscale ‘peak-calling’ algorithm.  

 

 
 
Each segment in the MSR is subjected to a test to decide whether the segment will be pruned 

or not. This test is based on comparing the (SFC) score of the segment with that of its children and 
its parents. More specifically, a segment at scale n (blue in figure above) is compared to all children 
at scales 1 to n-1 (orange segments in figure above) and all its parents at scales n+1 to N, where N is 
the largest scale in the MSR (green segments in the figure above. The segment is only kept (i.e. not 
pruned) when it has a score higher that all of its children and all of its parents.  

To be able to detect segments at different scales a size constraint is introduced: The segment 
under investigation is not compared to all its children and parents, but only to those children with 
segment lengths larger than S∙R and parents with length smaller than S/R. Here, S is the length of the 
segment under investigation and R is parameter between 0 and 1. The default setting for R is 0.2, 
which means that children 5 times smaller than the segment and parents 5 times larger than the 
segment are not considered. There is one exception: when all children at scales 1 to n-1 have a 
lower score than the segment under investigation, all children are pruned, also those smaller than 
S∙R. When R is 0, there is effectively no size constraint, i.e. the segment under investigation is 
compared to all its children and parents. In that case, a genomic position is part of at most one 
segment that is not pruned.  

Further, a slack parameter, T, is introduced, which prevents higher-scale segments from 
breaking up into smaller ones, i.e. it prevents segments from being pruned, because one of the 
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children has a slightly better score. Specifically, the segment under investigation is kept (i.e. not 
pruned) when its score (denoted by X) multiplied by T, (i.e. X∙T) is larger than the scores of all its 
children, and its (unadjusted) score X is larger than the scores of all its parents. The default setting 
for T is 1.05. 

Parameters R and T were selected manually after visual comparison of the genomic signal 
and the pruned segments. It is possible to optimize these parameters: for example, for Pol II ChIP-
seq R and T can be optimized such that the selected segments maximally cover genes and minimally 
cover non-genic regions. We have not explored these options here. 

Supplementary Fig. X1 depicts an example genomic signal with the results of this pruning 
scenario for different parameter settings. Also see Supplementary Fig. X2, X3 and X4 which depict 
pruned versions of Fig. 1 and Fig. 2 from the main text. The code for these pruning algorithms is 
available at https://github.com/tknijnen/MSR. 

SUPPLEMENTARY NOTE 2: A COMPARISON WITH THE PEAK 
CALLER MACS AND SICER 

The widely used peak calling algorithm MACS1 was applied to the BMM ChIP-seq data 
described in the main text. MACS (version macs14 1.4.2 20120305) was run with standard settings. 
Specifically, MACS used the appropriate control ChIP-seq signal, i.e. the signal obtained from three 
IPs of BMMs with immunoglobulin G derived from rabbits that were not immunized with specific 
target antigens (same as for MSR), a P-value threshold of 10-6 (same as for MSR), and the (standard) 
effective genome size of 1870 Mb. 

Additionally, SICER2, the widely used algorithm to detect broad histone modifications was 
also applied to the BMM ChIP-seq data. SICER (version 1.1) was run with standard settings. 
Specifically, SICER used the appropriate control ChIP-seq signal, i.e. the signal obtained from three 
IPs of BMMs with immunoglobulin G derived from rabbits that were not immunized with specific 
target antigens (same as for MSR), a FDR threshold of 0.01, the (standard) effective genome fraction 
of 1870 Mb / 2655 Mb, a window size of 200 and a gap size of 600. 

The detected peaks of MACS and segments of SICER were compared to the pruned MSR with 
standard settings (T=1.05, R=0.2). Supplementary Fig. 1 depicts the distribution of the sizes of the 
detected MACS peaks, the SICER segments and of the enriched segments of the pruned MSR for the 
six different ChIP targets. It is clear that the MACS peaks are very constrained in their size: The 
MACS TF peaks are between 100 bp and 1 kb, whereas the MACS peaks for Pol II and the histone 
modification marks are around 1 kb and not longer than 5 kb. Although, the SICER segments are 
larger than the peaks from MACS they remain limited to a certain range of segment sizes, 
approximately between 1 and 10 kb. Because of the window size setting, the size of any SICER 
segment is a multiple of 200. Thus, SICER segments are granular by design and have a low 
resolution, which explains the sparsity of small segment sizes in the SICER histograms. Whereas 
MACS and SICER parameters can be changed (we used the default parameters), it remains the case 
that the range of the sizes of detected segments is limited by the underlying methodology, which is 
not based on a multiscale framework. 
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In contrast, the enriched segments from the pruned MSR show much larger variation in their 
size. This is because the MSR captures information across all scales, thereby allowing for discovery 
of segments of all sizes. For Pol II, MSR segments varied from 100 bp to 100 kb, which fits well with 
the variation of gene sizes throughout the mouse genome. We posit that the pruned MSR resulted in 
a larger and more reasonable variation in the size of the detected peaks than MACS and SICER. 
However, we do not make the hard claim that the pruned MSR is ‘better’ than MACS or SICER, 
especially when the algorithm in question is used for the appropriate data, such as MACS for TF 
ChIP-seq. This analysis simply demonstrates the power of the multiscale framework to detect 
interesting segments at different scales. 

Supplementary Fig. 2 depicts the distribution of the MSR segment sizes, not only for the 
standard pruning settings (T=1.05, R=0.2), but also for different settings discussed in the pruning 
section above. Additionally, the distribution of segment sizes is shown in the scenario, where SFC 
scores were computed without the unique mappability map, i.e. assuming a uniform background. 
This figure shows that the size distribution of the pruned MSR segments does not heavily rely on the 
parameter settings or the use of the unique mappability map. 

SUPPLEMENTARY NOTE 3: EFFECT OF PRUNING PARAMETERS R  
AND T  

We investigated the effect of R and T on the enriched segments in the pruned MSR. 
Supplementary Fig. X5 depicts the results of this analysis, from which we made the following 
observations: 

• Effect of slack parameter T 
Setting T slightly higher than 1 ensures that segments are not dismissed (i.e. pruned) 

because one (or more) of its children have a slightly higher score. Segments detected without 
slack (T=1) can be affected in three different ways when slack is applied (T=1.05). First, the 
detected segment remains unchanged. Second, the segment is dismissed in favor of a larger 
segment. In this case the original segment (in red) is a child segment of the new segment (in 
blue). The original segment only has a slightly higher score than the parent segment and is 
therefore dismissed. Third, multiple original segments are dismissed in favor of one larger 
segment that covers all of them and which has a score only slightly lower than all of the original 
segments.  

The original segments detected for the three transcription factors, P65, P50 and ATF3, 
remain mostly unchanged; i.e. 90-95% of the original segments are unaffected. Between 5-10% 
of the original segments are replaced by a larger segment. The average size increase of these 
new segments is approximately 20%. For example, segments of 100 bp are replaced by 
segments of 120 bp. There are only a handful of cases where multiple original segments are 
replaced by one larger segment. In almost all of these cases, two original segments were merged 
into one larger segment, the average size of which is only slightly larger than the boundaries of 
the two original segments.  

The two histone modification marks, H3K27me3 and H4ac, and Pol II show a larger number 
of affected original segments, i.e. between 40-50%. For the two histone modification marks, 
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approximately 30% of the original segments are replaced by a larger segment, which is, on 
average, about 20% larger than the original segment. The remaining original segments (~15%) 
are merged into larger segments. The average number of original segments merged into one 
larger one is 3. For Pol II, 20% of the original segments are replaced by a larger one, which is, on 
average 15%, larger than the original segment. The remaining original segments (~30%) are 
merged into larger segments. Between 3 and 8 original segments are merged into one larger 
segment, the boundaries of which are only slightly wider than the boundaries encapsulating the 
original segments. 
• Effect of size constraint parameter R 

Setting R larger than 0 enables segments to be detected, i.e. not pruned, even when one of its 
child or parent segments have a higher score. Setting R to 0.2 makes these segments candidates 
to be detected if their size is at least 5 (1/0.2) times larger or smaller than the higher scoring 
segment. Thus, the consequence of loosening the size constraint by setting R to 0.2 is the 
detection of additional segments. 

The number of segments detected for the three transcription factors increased by about 3% 
relative to the number of original segments, and by 6% for H3K27me3, H4ac, and Pol II. In all 
cases the sizes of the additional segments are much larger than the original segment sizes for 
these ChIP targets. 
• Effect of changing R and T simultaneously  

In this analysis, we observed that the influence of T and R are virtually independent of each 
other. That is, the effect of changing R and T at the same time can be derived from their 
individual influences. 
• Summary of observations 

Slack (parameter T) favors slightly larger segments or merges multiple segments into one 
bigger one. The large majority of segments detected without slack remains unchanged or 
becomes slightly bigger when slack is applied. Merging segments into larger ones is similar to 
the post processing step of many peak callers, where nearby peaks are clustered. For example, 
SICER2 uses the (user defined) gap parameter to merge nearby peaks and ZINBA3 uses the (user 
defined) peak refinement threshold to accomplish this.  

Loosening the size constraint (parameter R) leads to the detection of a moderate number of 
additional segments. These segments are in general much larger than the original segments and 
thus point to enrichment of the signal at a much larger scale.  
• Discussion 

Pruning parameters R and T can be said to control the extent to which a "true" ChIP-seq 
binding event at some position in the genome will be part of (potentially multiple) enriched 
segments (containing that position) across multiple scales in the multiscale segmentation.  If we 
select the most aggressive pruning strategy (R=0), then our method will call no overlapping 
peaks at a given location. If instead we select a more minimal pruning strategy (R>0), at the 
genomic location of a "true" ChIP-seq binding event, our method could detect several 
overlapping segments of different scales, at that location. Whether the user would select an 
aggressive or minimal pruning strategy depends on how the data will be used.  For "traditional" 
peak-calling, (R=0, T=1.05) are sensible choices, but for correlative analyses of the pruned MSR 
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with another genomic signal, a minimal pruning strategy (R>0) would preserve more multiscale 
information. 

Finally, we note that the pruning parameters R and T do not control the genome-wide 
stringency of peak identification. The stringency (across the genome) for peak identification is 
controlled by the SFC cutoff. The SFC has a clear statistical interpretation by definition, and is 
directly related to a P-value, which can be set by the user. 

SUPPLEMENTARY NOTE 4: DETAILED ANALYSIS THE 
CORRELATIONS BETWEEN THE MSRS OF GC CONTENT AND 

REPEAT ELEMENTS 

We detected a significant overlap of SINE repeats with GC-enriched segments with 
approximate sizes from 10 kb to 10 Mb (scale 20 to 40, Fig. 3b), consistent with longstanding 
observations that SINEs are enriched in large-scale GC rich regions in the mouse and other 
mammalian genomes4,5. Surprisingly however, smaller GC-rich regions (scale 10–15, segment sizes 
around 1 kb) do not seem to overlap with the SINE repeats at all (Fig. 3b). Subsequent analysis 
indicated that at scale 14 (median segment size: 1.2 kb), 60% of the 8,600 GC-enriched regions 
overlap with the transcription start site (TSS) of a gene, and 85% of the regions are within 1 kb of a 
TSS. Furthermore, 78% of the GC-rich regions overlap with one of the 16,020 annotated CpG islands 
in the mouse genome6. Therefore, a possible explanation of the paucity of SINEs within small GC-
rich regions is that the integration of SINEs within the functionally important CpG islands is under 
negative selection pressure. This observation, however, cannot be complete story, because there is 
still a significant lack of overlap between these small GC-rich regions and SINEs even if the GC-rich 
regions that overlap with CpG islands are removed from the analysis. 

In contrast, younger long interspersed elements (LINEs) are under-represented both in 
small and large GC-rich regions. While the small-scale observation may have the same origin as the 
SINE underrepresentation, the large-scale observation is consistent with reports that LINEs tend to 
accumulate in AT-rich sections of the genome4. The preference of younger LINEs for large-scale AT-
rich regions is however not observed for the older LINEs. This may be because the large-scale 
deletion rate in AT-rich regions is higher than in GC rich regions so that old elements have 
disappeared faster from AT-rich DNA7 (Supplementary Figs. 9 and 10).  

SUPPLEMENTARY NOTE 5: THE DEGREE OF CORRELATION 
BETWEEN GENOMIC SIGNALS VARIES WITH SCALE 

Having observed that the overlap between functional genomic regions (i.e. genomic 
annotations, such as genes, exons, LADs and repetitive elements) and genomic signals greatly varies 
with scale, we asked ourselves whether the correlation between genomic signals themselves would 
also depend on the length scale. The degree of correlation between a pair of genomic signals was 
determined as follows. First, enriched segments for both genomic signals at each scale were found 
by using the score threshold SFC > 1. Second, we computed the overlap between the enriched 
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segments of the two genomic signals at all combinations of scales. Based on the randomly expected 
overlap, we derived an SFC score that represents the degree of correlation. Heatmaps were used to 
depict this correlation across scales for two pairs of genomic signals, of H4ac and Pol II 
(Supplementary Fig. 11a) and H4ac and H3K27me3 (Supplementary Fig. 11b). H4ac, which is a 
mark of open chromatin, and Pol II, which is involved in transcription, are correlated with each 
other at all scales, except for the very small and very large scales, where no enriched segments are 
found for these signals (Supplementary Fig. 11a,c,e). In contrast, H4ac and H3K27me3, the latter 
being a repressive mark involved in gene silencing, are anti-correlated at a smaller scale (scale 20), 
while they are positively correlated at a larger scale (scale 35) (Supplementary Fig. 11b,d,f). The 
negative correlation (lack of overlap) at the smaller scale is consistent with current understanding 
that H3K27me3 is associated with silenced genes, while H4ac is associated with activated genes. 
Close observation of the significant segments indeed reveals that these epigenetic marks are largely 
mutually exclusive within a given intergenic region (Supplementary Fig. 11f). The positive 
correlation at the larger scale, 35 (approx. segment size, 1 Mb), was initially more surprising. 
However, we observed that enriched segments of both H4ac and H3K27me3 at scale 35 show a 
large overlap with genes (Supplementary Fig. 4a and 5a), indicating that both chromatin marks 
are primarily found in gene-rich regions, which explains their overlap at this large scale. 

SUPPLEMENTARY NOTE 6: PREDICTING GENE EXPRESSION USING 
MULTIPLE GENOMIC SIGNALS 

Next, we set out to exploit the fact that genomic signals contain specific information at 
different scales by formulating predictive models based on the MSR of a genomic signal. Based upon 
current understanding that covalent histone modifications and polymerase II activity are essential 
to controlling transcription, we tested whether a multiscale representation of histone acetylation 
ChIP-seq or polymerase II ChIP-seq data can be used to predict mRNA gene expression levels, for all 
genes, within murine macrophages.  

We created gene-specific MSRs in the genomic region from 1kb upstream to 1kb 
downstream of each individual gene (Supplementary Fig. 12a). Given that scale s  is the smallest 
scale at which the region is spanned by one segment, the MSR is sampled at 10 equidistant steps 
from scale 1 to scale s  to create a normalized gene-specific MSR with 10 scales. This normalization 
accounts for differences in gene size. Next, for each gene, 50 features were derived for H4ac and Pol 
II from unstimulated macrophages. These 50 features consisted of the SFC scores of the gene-
specific MSR at scale 1 to 10 for five distinct positions within the gene, i.e. 1 kb upstream of the gene 
(U), the TSS, the middle of the gene (GM), the end of the gene (GE) and 1 kb downstream of the gene 
(D).  

These gene-specific features based on the MSRs of H4ac or Pol II served as input data for a 
model to predict microarray-derived gene expression data from identical experimental conditions 
as the ChIP-seq experiments8. We employed the Random Forest regression algorithm9 to predict the 
gene expression measurements of all non-overlapping genes that are represented on the Affymetrix 
Mouse Genome 430 2.0 GeneChip. A ten-fold cross-validation scheme was used for model training 
and evaluation.  
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  Prediction accuracy was assessed using the Pearson correlation coefficient between 
measured and model-predicted expression levels, for four different models: model T, which used 
the total signal integrated over the gene plus its 1 kb flanks (i.e., feature data at  scale 10); model S, 
which is based on the original signal (equivalent to the feature data at scale 1);  model B, containing 
features from the best predicting single scale; and model M, which included the multiscale signal 
levels as features. The multiscale approach (M) outperformed these three single-scale approaches 
(Supplementary Fig. 12). This means that the ‘shape’ of the genomic signal across the gene, as 
captured by the MSR, is indicative of the underlying transcriptional state. Pol II outperforms H4ac 
data most likely because the presence of Pol II on genomic DNA is a more direct indication of active 
transcription than an acetylation mark on histone proteins associated with “active” chromatin. 
Analysis of the feature importance scores assigned by the model shows that in addition to the total 
signal (the multiscale representation at scale 10), feature values derived from segments spanning 
the TSS between scales 5 and 8 carry information about the expression of the gene (Supplementary 
Fig. 12c).  

In a further experiment, 11 genomic signals, including 4 from ENCODE10, were used 
independently and jointly in the predictive model. Specifically, we generated gene-specific MSRs (as 
described in the Methods section) for eleven different genomic signals. Seven of these are 
previously described, namely our BMM ChIP-seq signals of ATF3, p50, p65, H4ac and H3K27me3, 
and the GC content and conservation signal. Additionally, we used murine BMM ChIP-seq data from 
ENCODE.  

Specifically, we downloaded the raw ChIP-seq data in bigWig format from the ENCODE 
project at UCSC for the CTCF transcription factor and three histone modifications. The table below 
lists the accession numbers for these signals. 

Antibody or target protein UCSC Accession GEO sample accession 

CTCF  wgEncodeEM002663 GSM918726 
H3K27ac  wgEncodeEM002657 GSM1000074 
H3K4me1  wgEncodeEM002658 GSM1000066 
H3K4me3  wgEncodeEM002659 GSM1000065 

 
The bigwig files were transformed into wig files using UCSC’s BigWigToWig binary utility. 

The wig files were imported and transformed into genomic signals at 10 bp resolution. The standard 
workflow was applied to these genomic signals to create the MSRs from which we derived the gene 
specific MSRs. 

The random forest prediction model was run for each of the eleven feature sets as described 
in the main text. Additionally, the model was run on the combined feature sets. For the multiscale 
model (M), this means that the model was run with 550 features (11 genomic signals, 5 sampling 
positions in the gene, 10 scales), whereas model T contained 11 features and model S 55 features. 

Supplementary Fig. 13 depicts the results of this experiment. From (a) it is clear that the 
multiscale representations are superior in terms of prediction performance for all of the individual 
genomic signals compared to feature sets based on either the total signal (T) or the original signal 
(S). The combined model outperforms the single models, indicating that integrating multiple 
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genomic signals is beneficial in predicting gene expression. This is in line with previous studies11,12. 
Also for the combined model the multiscale representations have the highest performance, although 
this is less dramatic than for the individual models. From the importance scores (b) it is clear that 
the predictive features were selected from a range of different scales. 

Noteworthy is the fact that, H3K27ac (from ENCODE) was the best individual signal (a) and 
also had the highest importance scores in the combined model (b). This histone modification also 
ranked highly in the approach of Karlic et al.11, although they focused on human CD4+ cells instead 
of murine BMMs. 

Conclusively, in agreement with previous studies11,13,14, this experiment showed that gene 
expression can be predicted by histone modifications with reasonable accuracy, and that certain 
histone modifications are more important than others. Interestingly, the MSR approach not only 
identifies which histone modification marks are important, but also at which scales they are most 
informative, as predictive features were found across the range of scales. 

SUPPLEMENTARY NOTE 7: OVERLAP BETWEEN PMDS, MPS AND 
MSR SEGMENTS 

Berman et al.15 used a sliding window approach to find differentially methylated segments. 
Specifically, the focal methylation prone segments (MPs) were identified using windows of five 
adjacent CpGs with an average methylation level less than 5% in the adjacent normal tissue and 
greater than 35% in the tumor. On the other hand, the broad partially methylated domains (PMDs) 
were identified by scanning all windows of at least 10 kb, where windows with an average 
methylation between 20-60% were merged into single partially methylated domains of at least 100 
kb in length. 

We compared the MPs and PMDs from Berman et al.15 with the differentially methylated 
segments of the MSR. For this we the employed the MSR at P-value threshold 610−=thp . Further, 
the MSR was pruned (using default settings) to identify:  

• The hypermethylated segments (positive differential methylation score) 
• The hypomethylated segments (negative differential methylation score) 

The hypermethylated MSR segments were compared with the MPs and the hypomethylated 
MSR segments were compared with the PMDs. Supplementary Fig. 14 depicts the results of this 
analysis. There is a large concordance in the sizes of segments found; both when comparing the MPs 
with the hypermethylated MSR segments and when comparing the PMDs with the hypomethylated 
MSR segments (Supplementary Fig. 14a,b). Additionally, the number of segments identified is 
comparable and the large majority of MPs and PMDs overlap with at least one of the MSR segments 
(Supplementary Fig. 14c,d). Also, when analyzing the actual genomic overlap between the 
segments (in basepairs), they largely agree.  

Note on the data: The MPs and PMDs were downloaded from 
http://epigenome.usc.edu/publicationdata/berman20101101/ , and were called: 

• Berman2011-shortDomainsTumorHyper.gtf 
• PMDsTumorHypo.methylCGsRich_tumorM030510_.wind10000.minOutput100000.m

inCpg10.meth0.20-0.60.gtf 
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PMDs that overlapped with the regions in: 
• PMDsNormalHypo.methylCGsRich_normalM030510_.wind10000.minOutput100000.

minCpg10.meth0.20-0.60.gtf  
were discarded. 

SUPPLEMENTARY NOTE 8: DETAILED ANALYSIS OF SCALE-
DEPENDENT RELATIONSHIP BETWEEN GENE EXPRESSION AND 

DNA METHYLATION 

We compared the differential gene expression between the colon tumor sample and the 
matched normal tissue with the differential DNA methylation captured by the MSR. Specifically, for 
all (9111) genes with CpG islands overlapping their TSS, we recorded the differential methylation in 
the segment overlapping with the TSS for all 50 scales. At each scale, we selected the 20% of the 
genes with the highest differential DNA methylation and called these hypermethylated. We 
similarly, created a group of hypomethylated genes for each scale.  

Next, four groups of genes were created based on the differential expression between tumor 
and normal: 1) the strongly upregulated set of genes have at least 1 unit more expression in the 
tumor than in the normal tissue; 2) strongly downregulated genes have at least 1 unit less 
expression in tumor; 3) moderately upregulated genes have between 0.1 and 1 higher expression in 
tumor; and 4) moderately downregulated genes have between 0.1 and 1 lower expression. (The 
absolute expression levels used for this analysis are from ref16 and are log2 transformed, i.e. a 
difference of 1 unit corresponds to a doubling or halving of the gene expression.) 

For sets of strongly and moderately up- or downregulated genes (based on the expression 
data) we examined their membership in the hyper- and hypomethylated groups, the results of 
which are shown in Fig. 4b. The set of 166 genes strongly upregulated in the tumor show a 
significant depletion for hypermethylated genes at small scales, but enrichment for 
hypomethylation at these scales. Conversely, the 186 strongly downregulated genes were highly 
enriched for hypermethylation at the small scales, but not associated with hypomethylation. These 
observations fit with current understanding of an inverse correlation between promoter 
methylation and expression16. The moderately up- and downregulated genes show an unexpected 
pattern. Here, differential methylation occurs across scales including the large scales, which extend 
far beyond the size of individual genes. Particularly, the 2503 moderately upregulated genes were 
characterized by an enrichment of hypermethylation at large scales and hypomethylation at small 
scales. The 2458 moderately downregulated genes were enriched in hypermethylation at large 
scales. This analysis clearly demonstrates the scale-dependent relationship between DNA 
methylation around the TSS and gene expression. 

The role of cancer-associated methylation changes at gene bodies is unclear. A number of 
groups have reported a positive association between methylation state at gene bodies and 
expression level17,18, while complete methylome studies have shown that expression corresponds 
more strongly to LADs, which do not always correspond to gene boundaries and often span multiple 
genes16,19. In order to gain insight into this problem, we repeated the MSR analysis focused on the 
methylation pattern at the middle of genes (GM) rather than the promoter (Fig. 4c) We did not 
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observe significant hyper- and hypomethylation of strongly up- or down regulated genes. For the 
moderately differentially expressed genes, we observed the same pattern as for the TSS analysis 
when investigating the larger scales, i.e. 30 and above. This is not surprising, since at these large 
scales the segments are far beyond the individual gene scale, and thus virtually all GM segments are 
identical to the TSS segments. On the smaller scales, 20 and below, where the segments are smaller 
than 10 kb, there is no pronounced pattern. 

SUPPLEMENTARY NOTE 9: CHIP-SEQ PROTOCOL 

Sample Preparation 
For ChIP–Seq analysis, formaldehyde-fixed cells were sonicated and processed for 

immunoprecipitation. In brief, 3 × 107 BMMs were fixed for 10 min in 1% formaldehyde in PBS, 
washed in PBS, and harvested by scraping in PBS. Cells were lysed by resuspending cell pellets in 
RIPA buffer (10mM Tris-HCl, pH8.0, 140 mM NaCl, 1% Triton X-100, 0.1% SDS, 1% Deoxcholic acid 
sodium salt) and drawing the cell suspensions three times through a 30 gauge needle.  Chromatin 
was sheared using a probe sonicator (130 W Ultrasonic Processor with a 3mm tip, 5 × 60s at 30% 
maximum setting). Sonication quality was checked by gel electrophoresis.  Protein concentrations in 
the extracts were determined (BioRad DC Protein Assay Kit I # 500-111) and sonicated cell extracts 
containing 0.5 mg protein were incubated with antibodies overnight at 4oC. Immune complexes 
were recovered by incubation with a 50%-50% mix of magnetic beads coated with Protein A or 
Protein G (Dynabeads Protein A Invitrogen # 100.02D, Dynabeads Protein G Invitrogen # 100.04D). 
The magnetic beads were washed with RIPA buffer and the chromatin was eluted with 1% SDS in 
TE buffer (10 mM Tris-HCl pH8.0, 1 mM EDTA pH8.0) at 65oC for 15 min. Eluted chromatin was 
reverse-cross-linked by adding 226 mM NaCl and incubating at 65oC for > 5 hr. Then 36 mM Tris–
HCl pH8.0, 9 mM EDTA, and 1.5 U of Proteinase K (Fermentas # EO0491) was added to the samples 
and they were incubated at 42oC for > 1 hr.  DNA was purified using phenol/chloroform/isoamyl 
alcohol (25:24:1, v:v:v) extraction. The purified immunoprecipitated DNA was prepared for 
sequencing with the Illumina ChIP-Seq Sample Prep Kit and processed according to the 
manufacturer’s instructions (Illumina Part # 11257047 Rev. A). 

 
Antibodies 
Antibodies used for ChIP-Seq were purchased from the indicated suppliers: ATF3 (Santa 

Cruz Biotechnology Inc. #sc-188), p50 (eBioscience #14-6732-81), p65 (Santa Cruz Biotechnology 
Inc. #sc-372), RNA polymerase II (Upstate # 05-623B Anti-RNA polymerase II, clone CTD4H8), 
Acetylated Histone H4 (Millipore #06-598), Methylated Histone H3K27me3 (Millipore #07-449). 

 
Sequencing 
A sequencing library for the Illumina Genome Analyzer was derived from the IP using the 

Illumina reagent kit (see systemsimmunology.org). Single-ended, 36-cycle sequencing was 
performed on an Illumina Genome Analyzer, and the raw image data were processed using the 
Illumina Genome Analysis Pipeline Software on a dedicated sequence data processing system (see 
Genome Analyzer Pipeline Software User Guide, Illumina, San Diego, CA, USA, v0.3). Reads were 
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aligned to the mouse genome using eland extended with an ELAND SEED LENGTH value of 25 and 
an ELAND MAX MATCHES value of 15, and with the 3′-most base excluded. Reads aligned to the 
same position and strand were counted only once to eliminate duplicates from PCR amplification 
(consistent with the approach of 20). For all ChIP-Seq samples, aligned reads were processed into 
extended fragments (consistent with the approach of 21) of length 158 bp, the estimated typical 
insert size in the sequencing library. This estimated size was determined by assaying representative 
ChIP-Seq samples (after the PCR amplification step) using the Agilent Bioanalyzer to determine the 
typical fragment size in the sequencing library, and subtracting the combined size of the two 
Illumina adaptor molecules.  

 
Additional details 

The extensive protocols are available at 
http://portal.systemsimmunology.org/portal/web/guest/chipseq_protocol. All BMM ChIP-seq data 
used in this project can be found under GEO accession number GSE54414, which can be accessed at 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54414. 

SUPPLEMENTARY NOTE 10: SFC AND OTHER SCORES FOR THE 
OVERLAP BETWEEN ENRICHED SEGMENTS AND GENOMIC 

ANNOTATION 

Based on the following four numbers, we have computed SFC overlap scores for the  overlap 
(or lack thereof) between enriched segments and genomic annotation (as explained in the Methods 
section).   
 
I  Total length of the genomic regions 
B  Length of the genomic signal 
n  Total length of the enriched segments 
X  Total length of the overlapping parts of the genomic regions and enriched segments 

 
A standard test for significance of overlap is the hypergeometric test. However, the 

hypergeometric test is problematic in this case, because these numbers are often very big (as they 
represent the length of genomic regions and segments). This leads to astronomically small P-values 
when the null hypothesis is violated (Supplementary Fig. X6a). (The rationale behind this is that 
the segment lengths can be seen as the number of samples in the statistical test, which is easy to 
understand if one approximates the hypergeometric test (without replacement) by the binomial test 
(with replacement). This means there is a lot of statistical power to reject the null hypothesis if it is 
not true, leading to very low P-values.)  

An alternative approach is to simply use the fold change between the expected and observed 
overlap (Supplementary Fig. X6b). As explained in the Methods, the SFC can be interpreted as the 
conservative estimate of the fold change. This is important, because for small sample sizes (and thus 
for small segments), the fold change can take on large or small values without being statistically 
significant. 
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Supplementary Fig. X6c depicts the SFC using a very stringent P-value cut-off. In 
comparison to the simple fold change, the SFC scores at the smaller scales (smaller segments) are 
more conservative, i.e. closer to 0, as they have to meet a very stringent statistical cutoff. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1 | Cross-validation results for the random forest regression model.  
MSRs were created for all (9111) genes with CpG islands overlapping their TSS by recording the 
differential methylation in the segment overlapping with the TSS for all (50) scales. MSRs were also 
created for the genes for segments overlapping with the middle of the gene (GM). From these MSRs 
three different feature sets were created: 

1. TSS. The MSR around the TSS from scale 1 to scale 17, since at least 50% of the genes have 
segments smaller than 2 kb in this range  

2. GB (gene body). The MSR around the GM from scale 1 to scale 22, since at least 50% of the 
genes have segments within the gene boundaries in this range 

3. LR (long range). The MSR around the GM from scale 26 to scale 50, since at least 50% of the 
genes have segments larger than 100 kb in this range.   

The random forest regression model was used to predict the differential expression between tumor 
and normal using different combinations of these feature sets. In every case, the expression of the 
genes in normal tissue (denoted by E) was added into the model. This table states the Pearson 
correlation between the actual differential expression and the predicted differential expression. The 
numbers (mean ± standard deviation) are based on 3 repeats of a 10-fold cross-validation scheme. 
The model was run for different feature sets (rows) and different P-value thresholds used to 
compute the MSR (columns).  
 

 MSR P-value 

Feature set 0.5 0.05 10-6 

E (expression only) 0 . 0583 ± 0 . 0054 0 . 0562 ± 0 . 002 0 . 056 ± 0 . 0024 

E + TSS 0 . 253 ± 0 . 0053 0 . 237 ± 0 . 0014 0 . 214 ± 0 . 0016 

E + GB 0 . 176 ± 0 . 0017 0 . 158 ± 0 . 0018 0 . 903 ± 0 . 00085 

E + LR 0 . 217 ± 0 . 0012 0 . 214 ± 0 . 003 0 . 217 ± 0 . 0036 

E + TSS + GB 0 . 264 ± 0 . 0038 0 . 244 ± 0 . 0019 0 . 213 ± 0 . 00081 

E + TSS + LR 0 . 296 ± 0 . 002 0 . 279 ± 0 . 0024 0 . 266 ± 0 . 0025 

E + GB + LR 0 . 237 ± 0 . 0014 0 . 222 ± 0 . 0018 0 . 211 ± 0 . 0036 

All 0 . 298 ± 0 . 0013 0 . 282 ± 0 . 002 0 . 264 ± 0 . 0024 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1 | Comparison between the pruned MSR, peak caller MACS and SICER 
 

 
 
(a-f) Distribution of the size of MACS peaks (red), SICER segments (magenta) and pruned MSR 
segments (blue) for six different ChIP targets. (f) also depicts the size distribution of the genes 
(black). (g-i) Three cases that exemplify the relation between MACS peaks, SICER segments and 
MSR segments. Each case is focused on one MSR segment (blue). The MACS peaks found in the 
vicinity are depicted in red; SICER segments in magenta. Genes in the vicinity are depicted in black. 
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Supplementary Figure 2 | Comparison between the pruned MSR, peak caller MACS and SICER 
using different settings to prune the MSR 
 

 
 
(a-f) Distribution of the size of MACS peaks (red), SICER segments (magenta) and pruned MSR 
segments (blue) for six different ChIP targets. MSR segment size distributions are depicted for 
different pruning scenarios indicated by the different settings for R and T. Additionally, a size 
distribution is shown for the case, where SFC scores were computed without using the unique 
mappability map, indicate by ‘no u.m.’. In the latter case, the standard pruning settings (T=1.05, 
R=0.2) were used. 
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Supplementary Figures 3-10 | Overlap between functional genomic regions and the segments 
comprising the MSRs of genomic signals. 
  
The heatmaps on the following pages depict the degree of overlap between genomic regions and 
significant segments of a genomic signal. Each figure represents one of the eight genomic signals.  
The type of genomic signal and whether the significant segments are enriched or depleted is 
indicated above the heatmap. The genomic regions are printed to the left of the heatmap. The color 
within the heatmaps represents the SFC between the observed and randomly expected overlap. A 
grey color indicates that less than ten significant segments at that scale were found. In that case it is 
not possible to reliably compute the SFC. The top panel depicts the median (black line) and 
interquartile range (grey fill) of the segment sizes across the 50 scales. The SFC scores for the exon 
genomic regions were computed with respect to genes, i.e. not with respect to the whole genome as 
is the case for the other genomic regions. 
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 6
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Supplementary Figure 7
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Supplementary Figure 8
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Supplementary Figure 9
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Supplementary Figure 10 
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Supplementary Figure 11 | Overlap between the enriched segments of two pairs of ChIP targets.  
 

 

(a,b) The heatmaps depict the overlap between the enriched segments of H4ac and Pol II and of 
H4ac and K3K27me3, respectively, across the 50 scales. A grey color indicates that less than ten 
signi�icant segments were found for one or both signals. (c) A genome browser view of the genomic 
signals (GS) of H4ac and Pol II for Chromosome 2 including the enriched segments (ES) of these 
signals at scale 20 and 35 as well as their overlap (OL) at both these scales. (e) A zoom-in of (c). (d,f) 
Similar to (c,e), but for the pair of H4ac and H3K27me3. 
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Supplementary Figure 12 | Predicting expression using gene speci�ic multiscale representations. 
 
 

 
(a) The original genomic signal (top-panel) and MSR (bottom-panel, heatmap) of Pol II ChIP-seq 
data, from unstimulated macrophages, in the vicinity of the gene Skil. Feature values for the 
predictive model were derived from �ive positions (indicated by the black dashed lines): 1 kb 
upstream of the gene (U), the transcription start site (TSS), the middle of the gene (GM), the end of 
the gene (GE) and 1 kb downstream of the gene (D). (b) Mean ± standard deviation of the Pearson 
correlation of the test sets in the 10- fold cross-validation between the microarray expression and 
the predicted expression based on the total signal (T), the original signal (S), the MSR (M) and the 
best individual scale in the MSR (B) for genomic signals H4ac and Pol II. The best individual scale is 
7 for H4ac and 10 for Pol II. (c) Importance of the MSR features for H4ac and Pol II in the random 
forest regression models. 
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Supplementary Figure 13 | Predicting expression using gene speci�ic multiscale representations 
derived from multiple genomic signals. 
 

 
 
(a) Mean ± standard deviation of the Pearson correlation of the test sets in the 10- fold cross-
validation between the microarray expression and the predicted expression based on the total 
signal (T), the original signal (S) and the MSR (M) for 11 different genomic signals and for the joint 
model of all 11 signals, called ‘All’. The models are ranked based on performance. Genomic signals 
obtained from ENCODE are labeled correspondingly. (b) Importance scores of the MSR features for 
the 11 genomic signals in the joint (‘All’) model.  
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Supplementary Figure 14 | Comparing methylation prone segments (MPs) and partially 
methylated domains (PMDs) with the MSR segments  
 
 

 
(a) Distribution of the sizes of the MPs and the hypermethylated MSR segments.  (b) Distribution of 
the sizes of the PMDs and the hypomethylated MSR segments. (c,d) Number of identi�ied segments 
as well as the overlap. (e,f) Overlap between the segment sets in base pairs.  
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Supplementary Figure 15 | Random forest model predicts differential expression of genes 
between tumor and normal based on their DNA methylation MSR  
 
 

 
(a) Three feature sets were created based on the MSRs that capture the differential methylation of 
segments overlapping with the TSS or the GM across all (50) scales for all (9111) genes:  

4. TSS. The MSR around the TSS from scale 1 to scale 17, since at least 50% of the genes have 
segments smaller than 2 kb in this range  

5. GB (gene body). The MSR around the GM from scale 1 to scale 22, since at least 50% of the 
genes have segments within the gene boundaries in this range 

6. LR (long range). The MSR around the GM from scale 26 to scale 50, since at least 50% of the 
genes have segments larger than 100 kb in this range.  

(b) Visual representation of the feature sets used in the random forest regression model to predict 
the differential expression between tumor and normal. E: the gene expression of normal tissue (1 
feature); TSS (17 features); GB (22 features); and LR (25 features). (c) Pearson correlation of the 
test sets in the 10- fold cross-validation between the differential expression and the predicted 
differential expression based on combinations of different feature sets. The numbers (mean ± 
standard deviation) are based on 3 repeats of the 10-fold cross-validation scheme.  
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Supplementary Figure 16 | Visual explanation of SFC for enrichment or depletion of signal 
intensity 
 
 

 
This �igure depicts the three different scenarios from equation (3) in the main text to compute the 
SFC. In all cases, the expected mean background intensity, np , is 40. The actual observed intensity 

X  is 65, 36 and 20 for the top, middle and bottom panel, respectively. Probabilities ep  and dp  are 

computed as in equations (1) and (2) in the main text. enp  represents the mean observed intensity, 

such that X  is the upper bound of the normal distribution with mean enp  at the P-value threshold. 

This normal distribution is depicted in red. The black area to the right of X  is equal to thp , the user 

de�ined P-value threshold. If enpnp <  there is signi�icant enrichment, i.e. SFC>0 (top panel).  dnp  
represents the mean observed intensity, such that X  is the upper bound of the normal distribution 
with mean dnp  at the P-value threshold. This normal distribution is depicted in green. The black 

area to the left of X  is equal to thp . If npnpd <  there is signi�icant depletion, i.e. SFC<0 (lower 
panel). 
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SUPPLEMENTARY FIGURE X LEGENDS (ONLY REFERENCED IN 
SUPPLEMENT) 

Supplementary Figure X1 | Effect of pruning on example genomic signal 
 
 

 
(a) An example genomic signal. (b) The MSR of the genomic signal. Segments with a non-zero SFC 
score are depicted in blue (SFC<0) and red (SFC>0). The SFC score is printed in the segments. (c) 
Segments removed by pruning using default settings (T=1.05, R=0.2) are depicted in grey. Note that 
the size of the remaining segments agrees well with the genomic signal. Further, the �ive little peaks 
on the right of the signal lead to �ive little segments on scale 6 and a larger segment on scale 12. (d) 
Segments removed by pruning without size constraint (R=0) are depicted in grey. With these 
settings the larger segment on scale 12 is pruned, because the smaller segments corresponding to 
the �ive little peaks have a higher score. When R=0 a genomic location can only belong to at most 
one signi�icant segment.  
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Supplementary Figure X2 | Pruned MSR of genomic signal from Fig. 1 
 
 

 
(top-left) Pruning with default settings (T=1.05, R=0.2); pruned segments are depicted in grey. 
(top-right) Pruning without size constraints (T=1.05, R=0). (bottom-left) Pruning without slack 
(T=1, R=0.2). (bottom-right) Pruning without size constraints and without slack (T=1, R=0). The 
genomic signal in this region was selected speci�ically to explain the MSR and the effect of pruning 
parameters R and T. In this region, these parameters have a large effect on which segments are 
pruned. This is, however, not representative for these genomic signals in general, where the changes 
are typically much smaller. See also Supplementary Fig. X5. 
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Supplementary Figure X3 | Pruned version of the MSR signatures from Fig. 2 
 
 

 
The heat map diagrams show the two-dimensional histograms created by binning the segments 
based on their scale and on their SFC. Before creating these histograms, pruning with default 
settings (T=1.05, R=0.2) was applied to the MSRs. This means that segments that were pruned are 
not used in creating the histograms. Note that the pruning strategy was only applied to detect 
enriched segments, i.e. depleted segments (SFC<0) were all pruned. 
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Supplementary Figure X4 | Stringently pruned version of the MSR signatures from Fig. 2 
 
 

 
Same as Suppl. Fig. X3 except pruning without size constraints (T=1.05, R=0) was used to create the 
histograms. 
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Supplementary Figure X5 | Breakdown of the effect of pruning parameters R and T on the MSR 
segments. 
 
 

 
This �igure lists for each of 6 different ChIP targets the number and size of enriched segments when 
no slack (T=1) and size constraints (R=0) are applied (left), how these segments change when slack 
is applied (T=1.05) (middle), and how many additional segments are detected when the size 
constraint is applied (R=0.2) (right). All these numbers are averages across the multiple 
experimental conditions under which these targets were measured. IQR stands for interquartile 
range. 
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Supplementary Figure X6 | Overlap between functional genomic regions and the segments using 
the SFC and other scores. 
 
 

 
(a) The heatmap depicts the –log10 hypergeometric test P-value for enrichment of overlap (positive 
scores) and lack of overlap (negative scores). The data used for this �igure are the same as in Fig. 3b 
in the main text. (b) The heatmap depicts the log2 of the fold change (FC) between the observed and 
expected overlap. (c) The heatmap depicts the SFC score between the observed and expected 
overlap. This is the same heatmap as Fig. 3b, except that a much lower P-value was used to compute 
SFC score.  
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