
	
  

Supplementary Figure S1: Impact of unevenly distributed resistance mechanisms between training and test sets on signature 

performance. 

           Optimal (2.0-fold)         Weak (1.4-fold)           Strong (2.8-fold)	
  

       

 
Comparative impact of multiple unevenly distributed optimal (2.0-fold), weak (1.4-fold) and strong (2.8-fold) resistance mechanisms with 
identical prevalence in training and test sets on the performance of predictive gene signatures. Perturbed datasets in which s% (s%=5%, 
10%, 20%, 30%, 40% or 50%) of the cases were designated to be therapy sensitive were generated. Within the resistant 1-s% cases, the 
cases were allocated randomly into n (n=2, 3, 4, 5) groups of resistance mechanisms. For each nth resistance mechanism, 100 genes were 
randomly selected as the “true” gene expression changes and were spiked-in by v (v=1, left; v=0.5, middle; v=1.5, right). Classification was 
performed using diagonal linear discriminant analysis (DLDA). For each combination of s and n, we repeated the spiking and classification 
200 times. The performance of the predictive gene signature for each of the 200 repeats where each data point represents the median of 50 
Monte-Carlo Cross Validation (MCCV) repeats is shown. The performance of the predictive gene signature was measured by the area under 
curve (AUC) of receiver operating characteristic (ROC) curves, sensitivity, specificity, accuracy, positive predictive value (PPV), negative 
predictive value (NPV), and the proportion of spiked-in genes recovered in the inferred signatures. (A) Within each row, the performance of 
the predictive gene signature is plotted against deviation of the sizes of the subgroups from 1/n, calculated as |𝑓! −

!
!
|!

!!! , where fi is the 
size of the ith subgroup, for (from left) n=2 (labeled “2 groups”), n=3 (labeled “3 groups”), n=4 (labeled “4 groups”) and n=5 (labeled “5 
groups”). (B) Within each row, the performance of the predictive gene signature is plotted against deviation of the sizes of the subgroups 
from 1/n, calculated as |𝑓! −

!
!
|!

!!! , where fi is the size of the ith subgroup, for (from left) 1-s%=0.9, 1-s%=0.7 and 1-s%=0.5. 
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Supplementary Figure S2: Impact of different distributions of resistance mechanisms in training and test sets on signature 

performance. 
           Optimal (2.0-fold)         Weak (1.4-fold)           Strong (2.8-fold)	
  

       

Comparative impact of multiple unevenly distributed optimal (2.0-fold), weak (1.4-fold) and strong (2.8-fold) resistance mechanisms with 
random and independent prevalence in training and test sets on the performance of the predictive gene signatures. In both, test and training 
set, the total proportion of resistant cases is identical. Perturbed datasets in which s% (s%=5%, 10%, 20%, 30%, 40% or 50%) of the cases 
were designated to be therapy sensitive were generated. Within the resistant 1-s% cases, the cases were allocated randomly into n (n=2, 3, 
4, 5) groups of resistance mechanisms and the case allocation for training and test datasets was performed independently. Furthermore, for 
each nth resistance mechanism, 100 genes were randomly selected as the “true” gene expression changes and were spiked-in by v (v=1, 
left; v=0.5, middle; v=1.5, right). Classification was performed using diagonal linear discriminant analysis (DLDA). For each combination of s 
and n, we repeated the spiking and classification 200 times. The performance of the predictive gene signature for each of the 200 repeats 
where each data point represents the median of 50 Monte-Carlo Cross Validation (MCCV) repeats is shown. The performance of the 
predictive gene signature was measured by the area under curve (AUC) of receiver operating characteristic (ROC) curves, sensitivity, 
specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and the proportion of spiked-in genes recovered in the 
inferred signatures. (A) Within each row, the performance of the predictive gene signature is plotted against deviation of the sizes of the 
distinct resistance mechanism groups in the test dataset from those in the training dataset, calculated as |𝑓!,!"#! − 𝑓!,!"#$%|!

!!! , where fi,test is 
the size of the ith subgroup in the test set and fi,train is the size of the ith subgroup in the training set, for (from left) n=2 (labeled “2 groups”), 
n=3 (labeled “3 groups”), n=4 (labeled “4 groups”) and n=5 (labeled “5 groups”). (B) Within each row, the performance of the predictive gene 
signature is plotted against deviation of the sizes of the distinct resistance mechanism groups in the test dataset from those in the training 
dataset, calculated as |𝑓!,!"#! − 𝑓!,!"#$%|!

!!! , where fi,test is the size of the ith subgroup in the test set and fi,train is the size of the ith subgroup in 
the training set, for (from left) 1-s%=0.9, 1-s%=0.7 and 1-s%=0.5. 
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Supplementary Figure S3: Impact of cohort sub-stratification on signature performance. 

 

 
 
         

 
 
Impact of sub-stratification of chemotherapy-resistant ER-negative breast cancers, based on the expression of outliers or on gene 
expression patterns associated with established clinical parameters, on predictive signature performance in actual (non-bioinformatically 
manipulated) breast cancer datasets. Predictive signatures were generated using a standard linear t-test (‘standard t-tests’), a modified 
Cancer Outlier Profiling Analysis (mCOPA), a mixed mCOPA (20%) and t-test approach (80%; ‘Mixed (20% mCOPA)’), or a mixed approach 
for clinical parameters, including a mixed standard t-test (80%) and age at diagnosis-related signatures (20%; ‘Mixed (20% age)’), a mixed 
standard t-test (80%) and nodal status-related signatures (20%; ‘Mixed (20% nodal status)’), or a mixed standard t-test (80%) and tumor 
size-related signatures (20%; ‘Mixed (20% tumor size)’) for feature selection in a training set of 129 taxane-anthracycline-based 
chemotherapy-resistant ER-negative breast cancers. Validation of the predictive signatures generated was performed by leave-one-out 
cross-validation (LOOCV) of the training set (n=129), and the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV) are shown. Predictive signatures generated in the training set were validated in an independent dataset of taxane-
anthracycline-resistant ER-negative breast cancers (n=68), and the accuracy, sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV) of these signatures are shown.  
 

Performance 
measure

Standard 
t-test

mCOPA 
only

Mixed (20% 
mCOPA)

Mixed 
(20% age)

Mixed (20% 
nodal status)

Mixed (20% 
tumor size)

Standard 
t-test

mCOPA 
only

Mixed (20% 
mCOPA)

Mixed 
(20% age)

Mixed (20% 
nodal status)

Mixed (20% 
tumor size)

Accuracy 0.643 0.659 0.705 0.659 0.659 0.659 0.647 0.618 0.676 0.647 0.647 0.632
Sensitivity 0.633 0.644 0.667 0.644 0.644 0.644 0.644 0.644 0.711 0.667 0.622 0.622
Specificity 0.667 0.692 0.795 0.692 0.692 0.692 0.652 0.565 0.609 0.609 0.696 0.652
PPV 0.814 0.829 0.882 0.829 0.829 0.829 0.784 0.744 0.780 0.769 0.800 0.778
NPV 0.441 0.458 0.508 0.458 0.458 0.458 0.484 0.448 0.519 0.483 0.485 0.469

Validation set (n=68)LOOCV of training set (n=129)
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