Supporting Information

Sysoeva et al. 10.1073/pnas.1322200111

SI Materials and Methods

Construction of Strains and Growth Conditions. Plasmids were constructed and maintained using standard molecular cloning protocols and *Escherichia coli* strain DH5 α (1). All changes to the YukE substrate were introduced by site-directed mutagenesis of either Bacillus subtilis integration or E. coli expression vectors and confirmed by sequencing. Strains are listed in Table S1, and oligonucleotides used in this work are summarized in Table S2. For secretion assays and analyses of cellular content, B. subtilis strains were grown in LB medium supplemented with an inducer at specified concentrations when needed. The antibiotics ampicillin (100 µg/mL), kanamycin (5 or 50 µg/mL for B. subtilis and E. coli, respectively), spectinomycin (100 µg/mL), and erythromycin (MLS) (1 μ g/mL) plus lincomycin (25 μ g/mL) were included when appropriate. B. subtilis strains were created by transforming domesticated strain PY79 by natural competence with the listed plasmid for double crossover (2).

Cloning, Expression, and Purification of the Modified YukE Variants. The coding sequence of YukE was cloned into pET28b+ vector

 Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY). (Novagen) and B. subtilis into integration vector pDR111 [gift of D. Rudner (Harvard Medical School, Boston)]. Recombinant protein for purification was produced by overexpression in E. coli strain BL21(DE3) upon induction in LB medium with 0.5-1 mM isopropyl β -D-1-thiogalactopyranoside at an OD₆₀₀ of ~0.6 for 16 h at 30 °C. The cells were lysed using a TS series Cell Disruptor (Pressure Biosciences Inc.) at 17,000 psi in lysis buffer [50 mM Hepes pH 7.5, 250 mM NaCl, 5% (wt/vol) glycerol] supplemented with a complete protease inhibitor mixture tablet (Roche). Protein was purified from the cell lysate using nickel affinity chromatography in lysis buffer and elution into the same buffer supplemented with 0.5 M imidazole. Eluted YukE protein was then dialyzed into 25 mM Hepes pH 7.5, 20 mM NaCl, 5% (wt/vol) glycerol. When required, hexahistidine tag was cleaved with thrombin overnight at 25 °C during dialysis (3 MWCO tubing, Pall) into an appropriate buffer, leaving extra Gly-Ser-His residues. The thrombin was captured by incubating the preparation with p-Aminobenzamidine–Agarose (Sigma-Aldrich) in the same buffer.

2. Harwood CR, Cutting SM, eds (1990) Molecular Biological Methods for Bacillus (Wiley, New York).

Fig. S1. Substrates of the ESX secretion systems–WXG100 proteins. (A) Sequence alignment of YukE substrate of *B. subtilis* and other WXG proteins including prototypical ESX substrates EsxA (ESAT-6) and EsxB (CFP-10) of *Mycobacterium tuberculosis*. (*B*) WXG proteins possess a conserved helix-turn-helix fold and form stable dimers. The 3D model of YukE monomer in cartoon representation with the defining WXG motif is given in black stick representation. The model was built in Swiss-PDBViewer (1, 2) via threading of the YukE sequence to the structure of EsxA from *Geobacillus thermodenitrificans* [Protein Data Bank (PDB) ID code 3ZBH]. Structural illustrations in this and other figures are prepared using PyMOL software (The PyMOL Molecular Graphics System, Version 1.5.0.4, Schrödinger, LLC).

1. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18(15):2714–2723.

2. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. *Electrophoresis* 30(Suppl 1): S162–S173.

Fig. S3. In vitro dimerization of recombinant YukE protein under different pH and salt conditions. (*A*) Estimating molecular weights of YukE variants using SEC. YukE remains in the dimeric form in the tested pH range from 5.5 to 7.5 (buffer is indicated; NaCl is 20 mM or 150 mM). At low-salt conditions, YukE species shifts to a higher apparent molecular weight, indicating that it either is forming complexes with more than just two subunits or is interacting non-specifically with the Superdex resin. (*B*) Estimating Stokes radii of YukE variants via SEC. Theoretical Stokes radii were estimated from the 3D models of YukE threaded on the crystal structure of *G. thermodenitrificans* EsxA (PDB ID code 3ZBH) in SOMO software (UltraScan Program Suite) (1–3). (*C*) Summary of the SEC parameters.

1. Brookes E, Demeler B, Rocco M (2010) Developments in the US-SOMO bead modeling suite: New features in the direct residue-to-bead method, improved grid routines, and influence of accessible surface area screening. *Macromol Biosci* 10(7):746–753.

2. Brookes E, Demeler B, Rosano C, Rocco M (2010) The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: Enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. *Eur Biophys J* 39(3):423–435.

3. Rai N, et al. (2005) SOMO (SOlution MOdeler) differences between X-ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics. Structure 13(5):723–734.

Table S1. Summary of tested variants of WXG proteins from different organisms

Substitution	YukE mutant	EsxA	EsxB	YukE	Other effects for YukE homologs
EsxA M. tuberculosis					
W43R (1)	W44	+	+	_	Does not pull down FsxB
G45T (1)	G46	+	+	_	
T2H (1)	610	+	+	n/t	
O_{4} (1)		+	+	n/t	
F8I (1)		+	+	n/t	
$\Delta 14R(1)$		+	, +	n/t	
		+	- -	n/t	
055/0564 (1)		1 	- -	n/t	
N66I/N67A (1)		+	т 	n/t	
		т 1	т 1	n/t	
		т 1	т 1	n/t	
		+	+	n/t	
		+	+	n/t	
(1)	CA12	+	+	170	
	CATZ	+ n/t	+ n/t	- n/t	Door not hotorodimorizo
(2, 3)		n/t	n/t	n/t	Heterodimerizes
		n/t	n/t	n/t	Heterodimerizes
		n/t	n/t	n/t	Recercodimenzes
L65D (2, 3)		n/t	n/t	n/t	Does not neterodimerize
$C\Delta 76-95$ (4)		-	_	n/t	Not detectable in cells
N∆3–24 (4)		-	-	n/t	Not detectable in cells
EsxB M. tuberculosis					
S96A (5)		+	+	n/t	Heterodimerizes
F100A (5)		_	_	n/t	Heterodimerizes
M98A (5)		_	_	n/t	Heterodimerizes
$C \wedge 7$ (5)		_	_	_	
$C_{\Lambda 25}(5)$		_	_	n/t	Not detectable in cells
194A (5)				n/t	Heterodimerizes
S95A (5)				n/t	Heterodimerizes
097A (5)				n/t	Heterodimerizes
G99A (5)				n/t	Heterodimerizes
V834 (6)	1844	_	_	n/t	neterodimenzes
F87A (6)		_	_	n/t	
V830/F870 (6)			_	n/t	
105A(E0)A(0)		n/t	n/t	n/t	Hotorodimorizos
1218 (2)	VV-+-+	n/t	n/t	n/t	Heterodimerizes
		n/t	n/t	n/t	
		n/t	n/t	n/t	Does not heterodimerize
roor (5)		n/t	n/t	Π/L	Does not neterodimenze
EspA M. tuberculosis					
W55R (7)	W44R	-	-	_	EspA itself is not secreted
G57R (7)	G46R	_	_	_	EspA itself is not secreted
F5R (7)		_	_		Unstable EspA
K41A (7)		-	_		Unstable EspA
F50R (7)	D39R	-	_	n/t	Unstable EspA; no proper equivalent in YukE
K62A (7)	A51A	-	-	n/t	Unstable EspA; no proper equivalent in YukE
EsxB Bacillus anthracis					
	a a				
$C\Delta 85-90$ (8)	CA12	n/a	+	-	
C∆81–90 (8)	CΔ16	n/a	-	n/t	Not stable
N∆1–6 (8)	n/a	n/a	+	n/t	
N∆1–11 (8)	N∆1–4	n/a	-	n/t	Not stable
EsxD Staphylococcus aureus					
C∆6 (9)	n/a	-	+	-	Secretion of EsxD and EsxB is not affected; EsxA
					and EsxC—not secreted
Y100A, E104A (9)	n/a	+	+	n/t	Esx secretion is not disrupted

n/a, not applicable; n/t, not tested.

PNAS PNAS

1. Brodin P, et al. (2005) Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. J Biol Chem 280(40):33953–33959.

- 2. Meher AK, Bal NC, Chary KV, Arora A (2006) Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability. FEBS J 273(7): 1445-1462.
- 3. Meher AK, Lella RK, Sharma C, Arora A (2007) Analysis of complex formation and immune response of CFP-10 and ESAT-6 mutants. Vaccine 25(32):6098-6106.
- 4. Brodin P, et al. (2006) Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun 74(1):88–98. 5. Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS (2006) C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313(5793):
- . 1632–1636.
- 6. Daleke MH, et al. (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci USA 109(28):11342–11347.
- 7. Chen JM, et al. (2013) Phenotypic profiling of Mycobacterium tuberculosis EspA point mutants reveals that blockage of ESAT-6 and CFP-10 secretion in vitro does not always correlate with attenuation of virulence. J Bacteriol 195(24):5421–5430.

SANG SAN

8. Garuff G, Butler E, Missiakas D (2008) ESAT-6-like protein scretion in Bacillus anthracis. J Bacteriol 190(21):7004–7011.
9. Anderson M, Aly KA, Chen YH, Missiakas D (2013) Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol Microbiol 90(4):734–743.

Table S2. Strains used in this study

PNAS PNAS

Name	Genotype	Source	
B. subtilis			
PY79	Laboratory strain that was used as wild-type background for all other strains in this work	B.M.B. laboratory	
bLH015	yukE::erm-Pyuk	(1)	
bLH045	yukE::erm-Pyuk; amyE::kan	(1)	
bLH533	yukE::erm-Pyuk; amyE::Phyperspank-yukE (spec)	(1)	
bLH530	amyE::Phyperspank-yukE (spec)	(1)	
bTS033	yukE::erm-Pyuk; amyE::Phyperspank-yukEW44A (spec)	This work	
bTS040	yukE::erm-Pyuk; amyE::Phyperspank-yukEW44G (spec)	This work	
bTS041	<i>yukE::erm-</i> Pyuk;	This work	
bTS034	yukE::erm-Pyuk; amyE::Phyperspank-yukEW44F (spec)	This work	
bTS035	<i>yukE::erm</i> -Pyuk;	This work	
bTS036	yukE::erm-Pyuk;	This work	
bTS037	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEW44P (spec)</pre>	This work	
bTS042	yukE::erm-Pyuk; amyE::Phyperspank-yukEE45A (spec)	This work	
bTS043	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEE45G (spec)</pre>	This work	
bTS038	yukE::erm-Pyuk;	This work	
bTS044	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEE45R (spec)</pre>	This work	
bTS047	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEE45D (spec)</pre>	This work	
bTS045	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEE45Q (spec)</pre>	This work	
bTS039	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEG46A (spec)</pre>	This work	
bTS049	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEG46P (spec)</pre>	This work	
bTS048	<i>yukE::erm</i> -Pyuk;	This work	
bTS125	<i>yukE::erm</i> -Pyuk;	This work	
bTS126	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEK17C (spec)</pre>	This work	
bTS127	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEV21C (spec)</pre>	This work	
bTS129	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukES62C (spec)</pre>	This work	
bTS131	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEQ75C (spec)</pre>	This work	
bTS130	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEN82C (spec)</pre>	This work	
bTS133	yukE::erm-Pyuk; amyE::Phyperspank-yukET8C/Q75C (spec)	This work	
bTS134	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEK17C/N82C (spec)</pre>	This work	
bTS135	<pre>yukE::erm-Pyuk; amyE::Phyperspank-yukEK17C/S62C (spec)</pre>	This work	
bTS136	yukE::erm-Pyuk; amyE::Phyperspank-yukEV21C/S62C (spec)	This work	
bTS188	yukE::erm-Pyuk; amyE::Phyperspank-yukEC Δ 1 (spec)	This work	
bTS189	yukE::erm-Pyuk; amyE::Phyperspank-yukEC∆2 (spec)	This work	
bTS058	yukE::erm-Pyuk; amyE::Phyperspank-yukEC Δ 3 (spec)	This work	
b15059	yuke::erm-Pyuk; amye::Phyperspank-yukeCd5 (spec)	This work	
b15060	yuke::erm-Pyuk; amye::Phyperspank-yukeC Δ 7 (spec)	This work	
DISU61	yuke::erm-Pyuk; amye::Phyperspank-yukeC Δ 10 (spec)	This work	
D15062	yuke::erm-Pyuk; amye::Phyperspank-yukeC Δ 12 (spec)	This work	
DIS064	yuke::erm-Pyuk; amye::Phyperspank-yukeC Δ 15 (spec)	I his work	
	annyePhyperspark-yukeCA3 (spec)		
DISTIU http://www.bisilianu.com	anye:Phyperspark-yukeCA10 (spec)	This work	
bTS112	annyePhyperspark-yukeCA10 (spec)		
bTS112	annyeFiyperspark-yukeCA12 (spec)	This work	
bTS2/11	annyEringperspank-yukecd is (spec)	This work	
b13241 bTS242	$yuke:.em_Pyuk; amyE::Phyperspank-yuke(\Delta 3/302C (spec)$	This work	
b15242 bT52/13	yukEerm-Pyuk: amyEPhyperspank-yukECA10/S62C (spec)	This work	
b15245	yukE::erm-Pyuk: amyE::Phyperspank-yukE(A15/562C (spec)	This work	
hT\$282	yukE::erm-Pyuk: amyE::Phyperspank-yukEW444/S62C (spec)	This work	
hT\$283	yukE::erm-Pyuk: amyE::Phyperspank-yukEE454/S62C (spec)	This work	
bTS284	yukE::erm-Pyuk; amyE::Phyperspank-yukEG46A/S62C (spec)	This work	
E. coli			
DH5a	F– Φ 80lacZ Δ M15 Δ (lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ – thi-1 gyrA96 relA1	Invitrogen	
BL21(DE3)	F– ompT hsdSB(rB–, mB–) gal dcm (DE3)	EMD	
eTS026	BL21(DE3) pET28-his-yukE	This work	
eTS279	BL21(DE3) pET28-his-yukEC∆5	This work	
eTS283	BL21(DE3) pET28-his-yukEC∆15	This work	

Table S2. Cont.

NAS

DNAS

Name	Genotype	Source
eTS420	BL21(DE3) pET28-his-yukEW44A	This work
eTS421	BL21(DE3) pET28-his-yukEE45A	This work
eTS422	BL21(DE3) pET28-his-yukEG46A	This work

1. Huppert LA, et al. (2014) The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE, 10.1371/journal.pone.0096267.

Table S3. Oligonucleotides used in this study

Name	Sequence $5' \rightarrow 3'$	Description	Source
Cloning yuk	<i>E</i> into pET28b(+) vector (Novagen)		
oTS010	agataacatatggcaggattaattcgtgtcac	Forward, Ndel	This work
oTS012	attggatccatactgttatccgcggatttg	Reverse, BamHI	This work
Mutagenesi	s of B. subtilis integration vector		
oTS130	cgcaaatcaaatccgctaaggataagctagccgca	yukEC∆1	This work
oTS131	caagacatcgcaaatcaaatctaacgcggataagctag	yukEC∆2	This work
oTS075	ccaagacatcgcaaatcaataagctagccgcatgcaag	yukEC∆3	This work
oTS076	cttgcatgcggctagcttattgatttgcgatgtcttgg	yukEC∆3	This work
oTS077	tgaccaagacatcgcataagctagccgcatgc	yukEC∆5	This work
oTS078	gcatgcggctagcttatgcgatgtcttggtca	yukEC∆5	This work
oTS079	gtctactgaccaagactaagctagccgcatgc	yukEC∆7	This work
oTS080	gcatgcggctagcttagtcttggtcagtagac	yukEC∆7	This work
oTS081	caaatacacttgagtctacttaagctagccgcatgcaagc	yukEC∆10	This work
oTS082	gcttgcatgcggctagcttaagtagactcaagtgtatttg	yukEC∆10	This work
oTS083	aacagcaaatacacttgagtaagctagccgcatgcaag	yukEC∆12	This work
oTS084	cttgcatgcggctagcttactcaagtgtatttgctgtt	yukEC∆12	This work
oTS087	tcagcagcttgatcaaacagcaaattaagctagccgcat	yukEC∆15	This work
oTS088	atgcggctagcttaatttgctgtttgatcaagctgctga	yukEC∆15	This work
oTS037	ctctgatttgaaaagcatggcggaaggtgcttcaagcgaa	yukEW44A	This work
oTS038	ctctgatttgaaaagcatgggcgaaggtgcttcaagcgaag	yukEW44G	This work
oTS039	ctctgatttgaaaagcatgtatgaaggtgcttcaagcgaag	yukEW44Y	This work
oTS040	ctctgatttgaaaagcatgttcgaaggtgcttcaagcgaag	yukEW44F	This work
oTS041	gatctctgatttgaaaagcatggaagaaggtgcttcaagcgaagcgt	yukEW44E	This work
oTS042	ctctgatttgaaaagcatgcgtgaaggtgcttcaagcgaag	yukEW44R	This work
oTS043	ctctgatttgaaaagcatgccggaaggtgcttcaagcgaa	yukEW44P	This work
oTS052	gatttgaaaagcatgtgggcgggtgcttcaagcgaagcg	yukEE45A	This work
oTS053	gatttgaaaagcatgtggggggggggtgcttcaagcgaagcgt	yukEE45G	This work
oTS054	gatttgaaaagcatgtggaaaggtgcttcaagcgaag	yukEE45K	This work
oTS055	tctgatttgaaaagcatgtggcgtggtgcttcaagcgaagcgttc	yukEE45R	This work
oTS056	gatttgaaaagcatgtggcagggtgcttcaagcgaagcg	yukEE45Q	This work
oTS057	gatttgaaaagcatgtgggatggtgcttcaagcg	yukEE45D	This work
oTS058	tgaaaagcatgtgggaagcggcttcaagcgaagcgttc	yukEG46A	This work
oTS059	tgatttgaaaagcatgtgggaaccggcttcaagcgaagcgttcg	vukEG46P	This work
oTS044	ggcaggattaattcgtgtctgccccgaagagctaagagcga	yukET8C	This work
oTS045	gagctaagagcgatggcgtgccaatacggcgttgaaagc	vukEK17C	This work
oTS046	agcgatggcgaagcaatacggctgcgaaagccaagaagtattaaatc	yukEV21C	This work
oTS049	gatcaatacgagcagctcaaaccttgctttatcaaaatgtcagatttgcttc	vukES62C	This work
oTS050	atatcagatttgcttcaagatgtgaattgccagcttgatcaaacagcaaatacac	vukEO75C	This work
oTS051	aatcagcagcttgatcaaacagcatgcacacttgagtctactgaccaag	yukEN82C	This work
Mutagenesi	s of <i>E. coli</i> expression vector		
oTS137	ctgaccaagacatcgcataaaatcaaatccgcggata	vukEC∆5	This work
oTS141	aatcagcagcttgatcaaacagcaaattaaacacttgagtctac	yukEC∆15	This work