
 
SI Appendix 
 
Supplementary Experimental Procedures 

Preparation of positive and negative training sets 

Positive training set 

We selected the set of enhancer-promoter (EP) pairs based on a recently published ChIA-PET 

data set. Using an anti-RNA polymerase II antibody (1), Li et al. identified chromatin 

interactions involving promoters in human K562 and MCF-7 cells. Not all of these interactions 

are between promoters and enhancers. Thus, we first identified enhancers in these two cell types 

using the CSI-ANN algorithm (2) and three histone modifications that together uniquely mark 

active enhancers (H3K4me1, H3K4me3, and H3K27ac). Our current knowledge about chromatin 

marks for enhancers is incomplete. There are additional chromatin marks such as H4K16ac and 

H2A.Z. However, it is generally believed the combination of above three marks is by far the 

minimal combination that give accurate prediction of active enhancers (3). Next, we used the 

following stringent criteria to select enhancers that overlap with reported ChIA-PET interactions: 

1) cis interactions with ≥5 PET counts (more stringent than the 3 counts used by the authors); 2) 

one interacting site contains p300 site (enhancer marker) but not promoter, and the other 

interacting site contains promoter but not p300 site; 3) promoters need to be expressed based on 

matching RNA-Seq data (i.e. RPKM value > 0). The inventors of ChIA-PET developed a 

statistical analysis framework to account for the random formation of any inter-ligation PETs 

between two anchors such that both inter-ligation PET frequency and ChIP enrichment of the 

anchors are taken into account (4).  Based on this model, predicted interactions with three or 

more inter-ligation PETs between anchors have a false discovery rate < 0.05. Thus, PET >= 3 

was used as the cutoff for calling interactions.  Here, we chose a more stringent cutoff of >=5 



PETs to ensure the better quality of our training data.  

 Using the above set of stringent criteria, we extracted 1124 and 1110 enhancer and 

promoter pairs for K562 and MCF7 cells, respectively. The selected enhancers have higher 

levels of histone marks and the selected target promoters have higher expression levels in the 

corresponding cell types (Fig. S2), further supporting the quality of these interactions.   

Negative training set 

A naïve approach to selecting negative training pairs is to randomly select a promoter for a given 

enhancer. However, the contact frequency between two non-interacting genomic loci in a 

chromatin fiber does not follow a uniform distribution. Instead, it is a function of the site 

separation distance in the following form (5): 

𝒇 𝐬 = 𝒌×𝒔!𝟑/𝟐×𝒆!𝟏𝟒𝟎𝟎/𝒔𝟐 

where s denotes the sites separation distance, and the proportionality constant k reflects the 

efficiency of the cross-linking reaction. In our analysis, to generate a set of non-interacting EP 

pairs, for each enhancer, we first randomly selected a site based on the contact frequency 

distribution described above. Then we selected the closest promoter to that site as the candidate 

target. We also ensured that the selected promoter was not detected by ChIA-PET (i.e. < 3 PET). 

Otherwise, we would use the next closest promoter to the site until it met our criteria. As a result, 

we selected a non-interacting promoter for each of all 2234 enhancers in the positive training set.  

Histone modification ChIP-Seq and RNA-Seq data 

The ENCODE consortium has generated genome-wide histone modification maps and gene 

expression profiles for multiple human cell lines. In this analysis, we collected histone 

modification and RNA-Seq data from ENCODE for the following eleven cell lines: GM12878, 

H1 ES, HepG2, HMEC, HSMM, HUVEC, IMR90, K562, MCF-7, NHEK, and NHLF. In 



addition, we collected previous published histone modification and RNA-Seq data for CD4+ T 

cell (6, 7).  

Annotation of known transcripts and promoters 

We defined promoter region as upstream 2 kbp to downstream 0.5 kbp of annotated transcription 

start site as defined by GENCODE (8). Enhancer region is defined as a 2 kbp window predicted 

by CSI-ANN (2). 

Compendium of transcription factor motifs 

Transcription factor motifs were obtained from the Jaspar (9), TRANSFAC (10), and Uniprobe 

(11) databases. Redundant motifs were removed by manual inspection.   

Construction of Receiver Operating Characteristic (ROC) Curve. 

ROC curves were used to evaluate the performance of the methods based on training set (Fig. 

1E) and external data sets (Fig. 2B-D). Given a set of predictions and a gold-standard set (either 

training set or external data sets), the following quantities were defined: True Positives (TP), 

predicted EP pairs that were supported by interactions in the gold-standard set; A predicted EP 

pair is considered to be true positive if the center of the enhancer in the predicted pair falls within 

one of the genomic regions of the gold-standard pair and the TSS in the predicted pair falls 

within the other genomic region of the gold-standard pair; False Positives (FP), predicted EP 

pairs that were not supported by interactions in the gold-standard set; False Negatives (FN), EP 

pairs that were not predicted but are found in the gold-standard set; and True Negatives (TN), EP 

pairs that were not predicted and are not found in the gold-standard set. True positive rate (TPR) 

was defined as TP/(TP+FN) and false positive rate (FPR) was defined as FP/(FP+TN). The curve 

is generated by computing TPR and FPR values on prediction sets derived by varying classifier 

decision threshold.  



Genome-wide prediction of EP pairs 

We first predicted enhancers genome-wide across in 12 cell types using CSI-ANN and the 

following 3 histone modifications: H3K4me1, H3K4me3, and H3K27ac. These histone marks 

are reported to be associated with active enhancers and commonly used to predict enhancers (12-

14). Next, for each enhancer, we extracted all promoters within the 2 Mbp window centered at 

the enhancer. For each candidate EP pair within the window, we computed the feature scores of 

EPC, TPC, COEV, and DIS. Feature scores were combined in the RF model and a linkage score 

was computed for each candidate EP pair. We used False Discovery Rate (FDR) to set cutoff for 

making predictions. We computed the FDR using the training set. Specifically, FDR was defined 

as the fraction of training set pairs above a given linkage score threshold that are from the 

negative training set. We examined published ChIA-PET, 5C and high-resolution Hi-C datasets 

and found that the average number of target promoters per enhancer reported in the literature 

ranges from 2 to 6. Based on this observation, we set the final FDR cutoff to 1%, which yields on 

average 2.92 targets per enhancer across the 12 cell types.  

 
Overlap of predicted enhancers with other genomic marks 

Three types of genomic features were used to evaluate the predicted enhancers: DHS sites, p300 

sites, and evolutionary conservation. For p300 and DHS sites, the data are in the form of ChIP-

Seq peaks. They were downloaded from ENCODE. An enhancer prediction is considered to be 

supported by a given genomic feature if the center of a feature peak is located within the 2 kbp 

enhancer region. For sequence conservation, an enhancer prediction is considered to be 

conserved if 10% of its sequence (200 bp) has a phastCons conservation score > 0.5. By using 

0.5 as the cutoff, approximately 5% of the human genome is conserved across the set of 35 

placental mammalian genomes. 



Calculation of transcript expression specificity rank 

To calculate the expression specificity of a transcript, we compiled a compendium of RNA-Seq 

expression profiles from eleven human cell types. Following (15, 16), we calculated a specificity 

score for each transcript using an entropy-based measure that quantifies the skewness of 

expression level toward a given cell type. Briefly, given 𝑵 cell types, we define the relative 

expression of transcript 𝒈 in cell type 𝒕 as: 

𝒑𝒕|𝒈 = 𝒘𝒈,𝒕/ 𝒘𝒈,𝒕

𝑵

𝒕!𝟏

 

where 𝒘𝒈,𝒕 is the expression level of transcript 𝒈 in cell type 𝒕. The entropy of a transcript’s 

expression distribution is  

𝑯𝒈 = −𝒑𝒕|𝒈𝒍𝒐𝒈𝟐(𝒑𝒕|𝒈)
𝑵

𝒕!𝟏

 

To measure the expression specificity of a transcript, we first computed  

𝑸𝒈|𝒕 = 𝑯𝒈 − 𝒍𝒐𝒈𝟐(𝒑𝒕|𝒈) 

A small 𝑸𝒈|𝒕 indicates high expression specificty of transcript g in cell type t. Using this 

measure, we then ranked all transcripts in given cell type and computed a normalized expression 

specificity (referred as expression specificity rank in the manuscript) by dividing the rank with 

the total number of transcripts in the given cell type. 

Comments on random forest model complexity and its relationship to training set size 
 
Training of a Random Forest classifier involves building a set of decision trees, each of which is 

trained on a different random subset of the training dataset and a random subset of the available 

features is used to choose how best to partition the dataset at each node. Commonly used rule for 

deciding on the number of random features used for building each tree is the square root of the 



number of features available. Thus we used 2 randomly selected features for training each 

component tree of the forest. But for training the overall RF model, all four features were used.  

 The randomness introduced by the random forest model builder in the dataset selection 

and in the feature selection delivers considerable robustness to noise, outliers, and over-fitting, 

when compared to a single tree classifier. Because many trees are built and there are two levels 

of randomness and each tree is effectively an independent model, the model builder tends not to 

overfit to the training dataset. It is also proven that Random Forest classifier performance does 

not degrade as the number of trees increases (17).   

 The specific RF model in this study consists of a thousand trees. However, we also have a 

lot of training data, i.e. 4 types of features and each feature has more than 4000 training data 

points (~1000 positive EP pairs each from K562 and MCF-7 cells and matched number of 

negative training pairs). Thus, we do not think there is an overfitting issue. To further rule out 

this possibility, we also tested models with a range of RF parameter settings, including the 

number of trees, number of features in each tree, and maximum depth of the trees. For each RF 

parameter setting, we also test three 5 cross validation schemes: 5-fold, 10-fold, Train-K and 

Test-M, Train-M and Test-K, and randomized positive set. Here “Train-K and Test-M” means 

training with K562 positive and negative EP pairs and testing MCF-7 positive and negative pairs. 

“Train-M and Test-K” means the other way around. By using training and testing from different 

cell types, we rule out the possibility that the classifier’s good performance is not due to its 

“memory” of training data. For “randomized positive set” approach, the correct EP links in the 

positive set was destroyed/randomized, i.e. pairing the same set of promoters in the original 

positive set with a set of random enhancers with matched spatial distribution and histone marks. 

We then used the trained RF classifiers to predict the real positive set of EP pairs. In this scheme, 



because the classifier is deliberately fed with scrambled training data, we expect that the 

performance will be low. Please see Fig. S4 and S5, and Table S2. 

 
External ChIA-PET, Hi-C, and eQTL-gene pair datasets for evaluate genome-wide EP 

predictions 

We downloaded reported eQTL-gene associations from the University of Chicago eQTL browser 

(http://eqtl.uchicago.edu/cgibin/gbrowse/eqtl/). There are 4970 non-redundant pairs in liver cells 

from 2 studies (18, 19), and 87570 non-redundant pairs in lymphoblastoid cells from 8 studies 

(20-26).  

 We downloaded reported ChIA-PET interactions in K562 and MCF-7 cells from (1) and 

CD4+ T cell from (27).  

 We downloaded reported Hi-C interactions in IMR90 cell from (28).  

Performance comparison to methods by Ernst et al., Thurman et al. and PreSTIGE  

Since predicted EP pairs were not provided by the authors, following the description in Ernst et 

al. (12), we implemented a logistic regression classifier using distance and EPC as features. For a 

given enhancer, when making predictions, we only considered promoters within 125 kbp of the 

enhancer as candidate targets as done in Ernst et al.  

 Thurman et al. (29) predicted EP pairs based on their DHS signal correlation. We 

downloaded the set of predicted EP pairs provided by the authors. The authors used 0.7 as the 

cutoff for predictions in their study. For performance comparison, we examined predictions 

using different DHS correlation thresholds, 0.7, 0.8, and 0.9.   

 PreSTIGE predicted EP pairs by pairing cell type-specific H3K4me1 signals with genes 

that are specifically expressed in each cell type across a panel of diverse cell types. The authors 

made two sets of predictions, high- and low-confidence sets. We downloaded the set of predicted 



EP pairs provided by the authors. For EP pairs in IMR90 cell, we used the web interface to the 

PreSTIGE method to make prediction, using H3K4me1 ChIP-Seq and RNA-Seq data from 

ENCODE. 

 We benchmarked the performance of various methods on predicting genome-wide EP 

pairs using the three external datasets described above. We used each of the three external 

datasets as the gold-standard to construct ROC curves and compute F1 scores.  

Assumptions of statistical tests 

All statistical tests were performed using large sample sizes. Sample sizes were reported in 

figure legends. Other assumptions of specific tests such as normal distribution for t-test were 

tested to be satisfied before conducting the real tests. Therefore, the test results are robust with 

regard to underlying assumptions of the statistical tests. 

Identification of CNC and CAC sites overlapping the predicted EP pairs 

We downloaded genome-wide peaks of CTCF and cohesin subunits (SMC3, RAD21, and 

STAG1) identified by ENCODE for five cell types (GM12878, H1 ESC, HepG2, K562, and 

MCF-7). We defined SMC3/STAG1 peaks or RAD21 peaks that do not overlap with a CTCF 

peak as CNC sites, otherwise CAC sites. The overlapping criterion is peak center-to-center 

distance less than half of the length of the longer peak. Afterwards, we overlapped the CNC and 

CAC sites with the predicted EP elements to determine the role of CNC and CAC sites in 

mediating EP interaction. 

Cell culture 
 
GM12878 (cat. no. GM12878) and K562 (cat. no. GM05372) cells were purchased from Coriell 

Institute for Medical Research. Cell lines were tested for mycoplasma contamination using ABI 

MycoSEQ mycoplasma detection assay (Applied Biosystems). GM12878 cells were grown in 



RPMI 1640 medium (Gibco) supplemented with 15% Fetal Bovine Serum (FBS) (Gibco), 

penicillin (Invitrogen), streptomycin (Invitrogen). K562 cells were grown in RPMI 1640 medium 

(Gibco) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco), penicillin (Invitrogen), 

streptomycin (Invitrogen). Cultures were seeded at a concentration of between 200,000 and 

500,000 viable cells per mL. Medium was changed every 2-3 days depending on cell density. 

Cells were harvested at log phase for 3C-qPCR experiments. 

 
Supplementary Figures 
 
 
Fig. S1. Flow chart for the selection of training set of EP pairs and training of the Random 
Forest classifier. 
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Fig. S2. (A) Boxplot of transcript levels of K562 promoters of the training set EP pairs. In 
comparison, expression levels of the same set of promoters in ten other cell types are shown. (B) 
Boxplots of transcript levels of selected MCF-7 promoters of training set EP pairs and the same 
set of promoters in ten other cell types are shown. (C) Boxplot of CSI-ANN prediction scores of 
selected K562 enhancers of the training set EP pairs. In comparison, CSI-ANN scores of the 
same set of enhancer sequences in ten other cell types are shown. (D) CSI-ANN prediction score 
of selected MCF-7 enhancers of the training set EP pairs. In comparison, CSI-ANN scores of the 
same set of enhancer sequences in ten other cell types are shown. 
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Fig. S3. Distance distribution of positive training set EP pairs in (A) K562 cell and (B) MCF-
7 cell. Red lines are fitted probability density functions of geometric distributions. Goodness-of-
fit p-values are shown in the figure. 
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Fig. S4. Receiver operating characteristic curves for IM-PET trained using scrambled 
training data. Correct EP links in the positive set was destroyed/randomized, i.e. pairing the 
same set of promoters in the original positive set with a set of random enhancers with matched 
spatial distribution and histone marks. We then used the trained RF classifiers to predict the real 
positive set of EP pairs. We used three types of training-testing schemes, 5-fold cross validation, 
train using K562 data and test using MCF-7 data, train using MCF-7 data and test using K562 
data. By The AUC for all three experiments are around 0.5, suggesting that the true positive set 
pairs cannot be correctly predicted using randomized training data. 
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Fig. S5. Receiver operating characteristic curves for IM-PET using different classifiers and 
human data. RF4, random forest classifier using four features; RF2, random forest classifier 
using two features EPC and DIS; LR4, logistic regression classifier using four features; SVM4, 
support vector machine classifier using four features. 
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Fig. S6. Discriminative features and performance evaluation of the IM-PET algorithm 
applied to fruit fly datasets. (A) Enhancer and target promoter activity profile correlation 
(EPC); (B) TF and target promoter expression correlation (TPC); (C) Co-evolution of enhancer 
and target promoter (COEV); (D) Distance constraint between enhancer and target promoter 
(DIS); (E) Receiver operating characteristic curve. P-values are based on one-sided Student’s t-
test. N= 831 for all tests. RF4, random forest classifier using four features; LR2, logistic 
regression classifier using two features as used in Ernst et al.; Nearest-promoter, the approach of 
assigning the promoter(s) nearest to an enhancer as its target(s). 
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Fig. S7. 3C-qPCR validation at the DDX39B locus in GM12878 cell. (A) Genome browser 
view of predicted EP pair. The following tracks are shown from top to bottom: 3C-qPCR primer 
positions for negative controls (blue) and test (red) interactions; Refseq gene and transcript IDs 
(black) of the locus being tested; p300 ChIP-Seq peak; DHS ChIP-Seq peak; H3K4me1 ChIP-
Seq peak; H3K27me3 ChIP-Seq peak. (B) Calibrations to identify the linear range for qPCR on 
BAC clone DNA control; (C) Calibrations to identify the linear range for qPCR on 3C DNA 
template; (D) The 3C result confirms the interaction at DDX39B. The EP pair is predicted in both 
K562 cell and GM12878 cell. 
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Fig. S8. 3C-qPCR validation at the CD53 locus in GM12878 cell. The EP pair is predicted in 
GM12878 cell but not K562 cell. 
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Fig. S9. 3C-qPCR validation at the POU2AF1 locus in GM12878 cell. The EP pair is 
predicted in GM12878 cell but not K562 cell. 
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Fig. S10. 3C-qPCR validation at the DDX39B locus in K562 cell. The EP pair is predicted in 
both K562 cell and GM12878 cell. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Re
lat

ive
 A

m
ou

nt

0

0.2

0.4

0.6

0.8

1.0
1.2

Input DNA (ng)
0 10 20 30 40 50

Test
Negative Control

Re
lat

ive
 A

m
ou

nt

0

0.2

0.4

0.6

0.8

1.0
1.2

Input DNA (ng)
0 10 20 30 40 50

Test
Negative Control

A

B C

D

20 kb hg19
31,445,000 31,450,000 31,455,000 31,460,000 31,465,000 31,470,000 31,475,000 31,480,000 31,485,000 31,490,000 31,495,000 31,500,000 31,505,000 31,510,000 31,515,000

Ctrl Ctrl Test Ctrl Ctrl
MICB MCCD1

DDX39B
SNORD117 SNORD84 NFKBIL1

NFKBIL1

Scale
chr6:

200

0
200

0 
200

0 
200

0 

p300

DHS

H3K4me1

H3K27ac

DDX39B
ENST00000431098

20 40 60 800

0.01

0.02

0.03

No
rm

ali
ze

d
Re

lat
ive

 In
te

ra
cti

on

Distance from DDX39B Promoter (Kb)



Figure S11. 3C-qPCR validation at the GTSF1 locus in K562 cell. The EP pair is predicted in 
K562 cell but not GM12878 cell. 
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Fig. S12. 3C-qPCR validation at the PEAR1 locus in K562 cell. The EP pair is predicted in 
K562 cell but not GM12878 cell. 
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Fig. S13. Cumulative distributions of enhancers and EP pairs with decreasing degree of 
cell-type specificity. Enhancers are predicted with 1% FDR cutoff. Given this set of enhancers, 
EP pairs were predicted at varied FDR cutoffs. P-values are for comparing EP pair and enhancer 
curves using KS test. 
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Fig. S14. Example shadow enhancers. (A) K562 cell; (B) MCF-7 cell. Interactions detected by 
ChIA-PET are depicted by pairs of boxes connected by a thin line. Boxes with darker shade 
indicate interactions with higher confidence.  
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Fig. S15. Gene expression specificity of transcription factors with binding sites at mirrored 
CNC and CAC sites. P-value is based on one-sided Student’s t-test. N(CNC) = 60,306, N(CAC) 
= 13,320. 
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Fig. S16. Relative importance of features used in the IM-PET model.  Features were 
removed one at a time. Random Forest model was trained with the rest of the features and 
evaluated using different cross validation schemes. Train-K, Test-M: train with K562 positive 
and negative EP pairs and test MCF-7 positive and negative pairs. Train-M, Test-K, vice versa. 
AUC, area under the curve. 
 

 
 
 
Supplementary Tables 
 
Table S1. Overlap of predicted enhancers with other genomic marks for enhancers. NA, 
ChIP-Seq data not available. 
 

Cell 
Type 

# of 
Enhancers 

# DHS  
(%) 

# Conserved 
(%) 

# p300 
(%) 

# with at 
least one 

(%) 
GM12878 12696 8530 (67) 4945 (39) 8232 (65) 11233(88) 

H1ESC 13906 11843 (85) 6755 (49) 7088 (51) 13066(93) 
HepG2 19648 14770 (75) 7235 (37) 13907 (71) 17825(90) 
HMEC 18689 11784 (63) 7951 (43) NA 14580(78) 
HSMM 14049 12206 (87) 6258 (45) NA 12990(92) 
HUVEC 19445 15404 (80) 8611 (44) NA 17288(87) 
IMR90 16825 13292 (79) 7908 (47) 9590 (57) 15479 (92) 
K562 15987 13720 (86) 6214 (39) 6606 (41) 14945(93) 

MCF-7 16940 9726 (57) 5744 (34) 1427 (8) 12127(72) 
NHEK 19111 15131 (79) 7919 (41) NA 16700(87) 
NHLF 15650 11843 (76) 6967 (45) NA 14110(90) 

CD4+ T 21796 10983 (50) 7401 (34) 1818 (8) 14703(67) 
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Table S2. Performance of Random Forest models trained using different RF parameters 
and evaluated using different cross validation schemes. Train-K, Test-M: train with K562 
positive and negative EP pairs and test MCF-7 positive and negative pairs. Train-M, Test-K, vice 
versa. AUC, area under the curve. 
  

Num of 
trees in 
model 

Num of 
features 
in each 
tree 

Maximum 
depth of 
trees 

AUC 

Train-K, 
Test-M 

Train-M, 
Test-K 

5-fold Cross 
Validation 

10-fold Cross 
Validation 

1000 2 ∞ 0.92 0.90 0.94 0.94 
500 2 ∞ 0.92 0.90 0.94 0.94 
200 2 ∞ 0.92 0.90 0.93 0.94 
100 2 ∞ 0.92 0.90 0.93 0.94 
50 2 ∞ 0.92 0.90 0.93 0.94 
10 2 ∞ 0.90 0.88 0.93 0.92 
1000 1 ∞ 0.92 0.90 0.94 0.94 
1000 3 ∞ 0.92 0.90 0.93 0.93 
1000 2 50 0.92 0.90 0.94 0.94 
1000 2 10 0.92 0.90 0.92 0.92 

 
 
 
 
Table S3. List of qPCR primers used in the 3C-qPCR experiments. Genomic coordinates for 
the center of enhancer and transcription start site are shown after the name of each test 
interaction, which is in the format of “cell type-target gene”. 
 
 
Primer Type Sequence Start End 

GM12878-DDX39B (chr6: 31462622- 31509758) 
Bait CCTGCTCAAAGAATCTGGTTAGT 31511074 31511096 
Test GGGCAACAAGAGCGAAACT 31462581 31462600 
Negative control 1 AGGAAAGCACAGTGGAAGGT 31441775 31441795 
Negative control 2 GTGGGACTCTCTGTCATCTTCA 31448998 31449019 
Negative control 3 GGATGGTCTCTTCACTTTGTTTA 31469157 

 
 

31469180 
Negative control 4 ATTCTCTAAGTGAATCATGTAACCA 31484531 31484556 

GM12878-HLA-DQA1 (chr6:  32633823-32605208) 
Bait GTGTCACCTCACAAGTAATCAAAT   32605906 32605929 
Test TGGAAAGGACCTACACCTCTGA     32633379 32633400 
Negative control ATACTCTACAAACACAAGCAACCA   32662529 32662552 

GM12878-BATF (chr14: 76009248-75988784) 
Bait GGGCAGCGAACACTGATAGA 75986985 75987004 
Test CGTACAGGGGCTGGTAACTG     76006267 76006286 
Negative control TCCTCATTTCCATCTGACACCT   76060503 76060524 

GM12878-CD53 (chr1: 112136278-111440292) 
Bait ACATTGATGTCCTCACTAAGAAAA 111433293 111433316 
Test TACTAACTGCTGAACATCCCTCT     112131281 112131303 
Negative control 1 CAGATTTGGCTCAGGAGTCATA 112083793 112083816 



Negative control 2 AAGGTGAACACTCAGAACAAAGA 112101159 112101182 
Negative control 3 TTCCTGAGTGAAGGGATGGT 112156935 112156955 
Negative control 4 GATAGAACCCTTAGTAAATGACCAG   112188814 112188838 

GM12878-POU2AF1 (chr11: 111287791-111250417) 
Bait TGCCCACCCACTGATAACA 111250747 111250766 
Test CTACAGCCAATCAGTTCAGGA 111290009 111290029 
Negative control 1 CGGTTGAAACTGGAGTGGTA 111262606 111262626 
Negative control 2 CAAAACTGACCCTCTTTATCGT 111276220 111276242 
Negative control 3 CCCTTTTCAGATTTTTGTTCAC 111311377 111311398 
Negative control 4 TAAGTCTCAGCAACGAATGGTA 111349354 111349376 

K562-MYCL3 (chr8: 129569619-128748477) 
Bait CCCCAATAAATCCAGTGTCTT 128745915 128745935 
Test GCAGAAAATAAATTGTCCAAGTT 129568748 129568770 
Negative control TGCTGAATACTTGAGGTTAGACTT 129149376 129149399 

K562-DDX39B (chr6:  31509758-31462422) 
Bait CCTGCTCAAAGAATCTGGTTAGT 31511074 31511096 
Test GGGCAACAAGAGCGAAACT 31462581 31462600 
Negative control 1 AGGAAAGCACAGTGGAAGGT 31441775 31441795 
Negative control 2 GTGGGACTCTCTGTCATCTTCA 31448998 31449019 
Negative control 3 GGATGGTCTCTTCACTTTGTTTA 31469157 

 
 

31469180 
Negative control 4 ATTCTCTAAGTGAATCATGTAACCA 31484531 31484556 

K562-GTSF1 (chr12: 53057134- 54867386) 
Bait CATCCCAATCTTCAGTGCTAA 54866105 54866125 
Test CTCCTCATCACTCTCCCCAG 53054077 53054096 
Negative control 1 CACTTCTTCTCTTTCACGGACT 52985986 52986008 
Negative control 2 CCTCACCACCCTACCTCACT 53010988 53011007 
Negative control 3 ACAGGTGGTAGAAACAAGAGCA 53099729 53099751 
Negative control 4 AGTTGTGGGATTCCTGCCT 53168272 53168291 

K562-PEAR1 (chr1: 156833377- 156883324) 
Bait CTGGAAATAATCATTTGTGAGTCA 156881874 156881897 
Test CGCTGCTTGTTTGCTGGT 156831007 156831026 
Negative control 1 GGATTGTCTGTTTACTCTGCTGA 156789709 156789731 
Negative control 2 GTGTTCATCCTTCCTTCTCCA 156808276 156808297 
Negative control 3 GTGGAGAAGAAGGACGAAACA 156844389 156844410 
Negative control 4 CCCTATCACTTCCAATCACCT 156852439 156852460 

Internal control primers 
GAPDH-F ATGTTCGTCATGGGTGTGAA 6646327 6646346 
GAPDH-R AGGCATTGCTGCAAAGAAAG 6646463 6646482 

 
 
Table S4. List of BAC clones used in 3C-qPCR experiments. 
 
BAC ID ID of test interaction 

covered 
RP11-184F16 GM12878-DDX39B 
RP11-257P24 GM12878-HLA-DQA1 
RP11-17G1 GM12878-BATF 
RP11-705K13 GM12878-CD53 



RP11-631D1 GM12878-CD53 
RP11-878N13 GM12878-POU2AF1 
RP11-243J12 K562-MYCL3 
RP11-440N18 K562-MYCL3 
RP11-184F16 K562-DDX39B 
RP11-441M5 K562-GTSF1 
RP11-753H16 K562-GTSF1 
RP11-730I22 K562-PEAR1 
 
 
 
 
Table S5. Gene ontology term enrichment analysis of genes regulated by shadow 
enhancers. Top five enriched GO biological process terms are shown. Adjusted (Benjamini-
Hochberg procedure) p-value cutoff is 0.05. Cell-type-specific GO terms are highlighted in blue.  
 
Cell Type Enriched in genes with 3 or more 

enhancers 
Enriched in genes with 2 or fewer 
enhancers 

GM12878 
(lymphoblastoid 
cell) 

� Viral reproduction 
� Regulation of innate immune 

response 
� Immune response – acting signal 

transduction 
� regulation of I-kappaB 

kinase/NF-kappaB cascade 
� mature B cell differentiation 

� mRNA metabolic process 
� Macromolecule metabolic 

process 
� Intracellular transport 
� Cell cycle phase 
� Protein localization 

H1-ESC 
(Embryonic 
Stem Cell) 

� Regulation of telomere 
maintenance 

� Chordate embryonic development 
� Erythrocyte differentiation 
� Regulation of cyclin-dependent 

protein kinase activity 
� Embryonic morphogenesis 

� Regulation of transcription, 
DNA-dependent 

� Nervous system development 
� Cellular protein metabolic 

process 
� RNA biosynthetic process 
� Cell part morphogenesis 

HepG2 
(hepatocellular 
carcinoma) 

� Response to DNA damage 
� Cellular response to stress 
� Glycerolipid biosynthetic process 
� Cholesterol metabolic process 
� Insulin receptor signaling 

pathway 

� Cell cycle phase 
� Cellular protein localization 
� mRNA metabolic process 
� Intracellular transport 
� Chromatin organization 

HMEC 
(mammary 
epithelial cell) 

� Epithelium development 
� Mammary gland morphogenesis 
� Epithelial cell differentiation 
� Keratinocyte differentiation 
� Regulation of epithelial cell 

migration 

� Intracellular transport 
� Nitrogen compound 

biosynthetic process 
� Protein catabolic process 
� RNA processing 
� Cell cycle process 

HSMM 
(skeletal muscle 
myoblast) 

� Actin cytoskeleton organization 
� Regulation of epithelial cell 

proliferation 
� Adherens junction organization 

� Cellular protein metabolic 
process 

� RNA process 
� Nitrogen compound 



� Cardiac muscle tissue growth 
� Fibroblast growth factor receptor 

signaling pathway 

biosynthetic process 
� Apoptosis 
� Protein transport 

HUVEC 
(umbilical vein 
endothelial cell) 

� Vasculature development 
� Regulation of epidermal growth 

factor receptor signaling pathway 
� Heart morphogenesis 
� Muscle cell development 
� Placenta development 

� Protein ubiquitinatioin 
� Intracellular protein transport 
� Cellular macromolecule 

catabolic process 
� RNA biosynthetic process 
� Cellular metabolic process 

IMR90  
(fetal lung 
fibroblast) 

� Lung development 
� Tube development 
� Blood vessel development 
� Morphogenesis of an epithelium 
� Muscle cell differentiation 

� Nucleic acid metabolic process 
� Protein metabolic process 
� Regulation of gene expression 
� Regulation of cell motion 
� Establishment of protein 

localization 
K562 
(myelogenous 
leukemia) 

� DNA damage response 
� Endosome transport 
� Cell development 
� Regulation of endocytosis  
� Regulation of innate immune 

response 

� Establishment of protein 
localization 

� Cellular response to stress 
� RNA metabolic process 
� Regulation of transcription, 

DNA-dependent 
� Nitrogen compound 

biosynthetic process 
MCF7 
(breast ductal 
carcinoma) 

� Embryonic development ending 
in birth or egg hatching 

� Heart development 
� Tube morphogenesis 
� Embryonic appendage 

morphogenesis 
� Gland morphogenesis 

� Regulation of transcription, 
DNA-dependent 

� Biopolymer modification 
� Virus-host interaction 
� RNA metabolic process 
� Intracellular transport 

NHEK 
(epidermal 
keratinocyte) 

� Regulation of epidermal growth 
factor receptor signaling pathway 

� Epithelial cell differentiation 
� Cell-cell junction assembly 
� Keratinocyte differentiation 
� Cellular response to extracellular 

stimulus 

� Nitrogen compound 
biosynthetic process 

� Protein localization 
� Cell cycle phase 
� Regulation of cell development 
� Cell death 

NHLF 
(lung fibroblast) 

� Fibroblast growth factor receptor 
signaling pathway 

� Ameboidal cell migration 
� Regulation of epithelial cell 

proliferation 
� Regulation of fibroblast 

proliferation 
� Lung cell differentiation 

� Cellular protein localization 
� Virus-host interaction 
� Intracellular transport 
� Cell cycle phase 
� Protein catabolic process 

CD4+ T 
(peripheral 
blood T cell) 

� T cell differentiation 
� Lymphocyte activation 
� T cell mediated immunity 
� Immune system development 
� T-helper cell differentiation 

� Establishment of protein 
localization 

� Cell cycle process 
� Intracellular transport 
� RNA processing 



� Cellular protein metabolic 
process 

 
 
 
Table S6. Overlap of EP pairs with mirrored CNC and CAC sites.  P-values are based on 
Fisher’s exact test. 
 

Cell  
Type 

Cohesin 
Subunit 

# of EP pairs 
overlap with CNC 

p-value # of EP pairs 
overlap with CAC 

p-value 

GM12878 Rad21, Smc3 5047 6.1E-22 604 0.65 
HepG2 Rad21, Smc3 4691 6.9E-44 665 1.8E-2 
K562 Rad21, Smc3 4693 1.6E-9 991 1.7E-2 

H1ESC Rad21 263 3.1E-7 1080 1.5E-2 
MCF-7 Rad21, Stag1 3143 9.0E-3 260 0.51 
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