The Equilibrium Distribution at Room Temperature

As we stated in Analysis of the Experimental Data, the validity of our approach strongly depends on the assumption
that the gallery of snapshots describes a system at thermodynamical equilibrium. This assumption should be carefully
checked in the case of a system that undergoes a temperature quench between room temperature (Tamp ~ 20°C) and
the temperature of dynamical arrest (estimated as the temperature of divergence of water viscosity T, ~ —45°C).

We can identify two limiting cases for this process. In the case of an almost instantaneous temperature quench the
probability density of states of the system would not have the time to significantly relax away from the equilibrium
distribution at room temperature. The latter one would then be the distribution of states observed in the experiment.
In the opposite case of an almost adiabatic temperature quench, the system would have time to gradually thermalize
and it will approach the equilibrium distribution at T, through a series of consecutive quasi-equilibrium states. At
realistic values of the quenching rate, the situation will be a compromise between these two extremes, so that the
observed density of states would correspond as a first approximation to thermodynamic equilibrium at a temperature
intermediate between T, and T.

To gain a quantitative insight into this problem, let us focus on the equilibrium distribution at room temperature
in the two limiting cases Ty = Tamb and Ty = T,. By introducing in Eq. 2 the Egs. 11 and 12 for the effective
potential, one obtains the following relation:
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where ¢min < ¢1,02 < Pmax and 8 € [0,360]. The normalized profiles p;(¢, Tamp) and p2(8, Tamb), and their
corresponding cumulative distributions, are computed from Eq. 1 and plotted in Figures 1 a and b, respectively.
The two distributions differ only slightly. More precisely, the difference between them is smaller than the average
fluctuation displayed by the experimental data (i.e. statistical error). As a consequence, we can claim that the
measured distribution is consistent with the stationarity hypothesis.
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Figure 1: (a) Cumulative distributions of the ¢ angles at room temperature (main plot) and associated normalized histograms
(inset). Both profiles are computed from Eq. 1. The solid line refers to To = Tamb whereas the dashed line is found by setting
To = Teo- (b) Cumulative distributions of the 6 angles at room temperature (main plot) and associated normalized histograms
(Inset). The curves are derived from Eq. 1. The solid line refers to Top = Tamb while the dashed line is found by setting To = T

It should be noted that this conclusion does not help determining the best value for Tj to use in Eq 12. However,
we can provide an estimate of T by studying the ratio of the correlation time of the molecule 7., and the experimental
quenching time At,. A good estimate of 7, is given by the time constant of the exponential decay of the position
autocorrelation function of an harmonically bound Brownian particle in the over-damped limit,
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where v is the friction coefficient of a single domain of the IgG molecule, M its mass and w is the frequency of the
harmonic oscillations. We can approximate the friction coefficient « of a single Fab domain with that of a rigid sphere
of radius L/2, v = 6mny (L/2). Therefore, recalling Eq. 17, we obtain a ratio 7.,/At, of the order 10™* at T' = Tamb
for the slowest degree of freedom (oscillations around ¢min). This means that the quenching process is significantly
adiabatic. Therefore, it appears reasonable to assume as a first approximation To = T..

Finally, as a side remark, let us shortly discuss the issue of determining the two limiting angles ¢nin and @max in
the distribution p; (¢). By analyzing the experimental data, it is indeed reasonable to guess the existence of a potential
barrier (or, alternatively, of a steep repulsive potential) around the configuration @min and ¢max. Unfortunately, the
statistic is at present too poor to allow for a satisfactory interpretation of the distribution p;(¢#) in those regions.
Therefore, we chose to approximate the potential with two infinite potential barriers located at ¢unin and ¢max. This
amounts to labeling as unaccessible regions that most probably are just rarely visited.



