Supplemental Figures

2 Fig. S1 Selection of Motifs from ChIP-seq Datasets to Test KIKO Binding to HRE

3	ChIP-seq datasets in the vicinity of uterine focus genes in Figs. 2 and 5-7 are displayed in UCSC Genome
4	Browser showing WT and KIKO ERa (Blue), and PR (red) ChIP-seq tracks from mice treated for one
5	hour with vehicle, E_2 or P_4 , and input tracks (blue). The arrow shows the HRE or ERE motif containing
6	peak and the motif sequence that was inserted in pGL4.23 plasmid and tested in the in vitro DNA binding
7	assay is shown. HRE or ERE motifs are indicated by bold text with consensus-matching nucleotides
8	underlined.
0	(A) (Ia)
9	A) Inn
10	B) Igf1
11	C) $Aqp5 + 2400$ negative control
12	ChIP-seq near Aqp5 showing selection of negative ChIP-PCR primers (region in oval)
13	ChIP-PCR using negative control primers
1/1	
14	
15	Fig. S2 Control vectors demonstrate specificity of reporter gene assays
16	WT, KIKO and EAAE ERa with empty pGL4.23-luc vector, EBNA-luc, <i>Igf1</i> NRE-luc, <i>Fkbp5</i> NRE-luc.
17	Fold changes relative to V are indicated above each bar. E ₂ 10 nM, P ₄ 100 nM. Note that PR induction of
18	empty pGL4.23 or EBNA-luc is similar to PR induction of <i>Igf1</i> ERE-luc (Fig. 5B), indicating the activity
19	may be mediated by a cryptic PR site in the vector. Statistics: 2-way ANOVA, multiple comparisons of
20	means vs. V, Bonferroni multiple test correction, *p<0.05, ** p<0.001***p<0.001, **** p<0.0001

Fig. S3 Epstein Barr Virus Nuclear Antigen (EBNA) motif does not disrupt KIKO ERα HRE or ERE complex

3	Since the NRE motif disrupted KIKO ER α complexes with HRE or ERE, to demonstrate the
4	specificity of the DNA binding assay, 10x excess un-biotinylated EBNA motif was included in the
5	binding reaction. Biotinylated Fkbp5 HRE, Ihh HRE or Igf1 ERE binding with nuclear protein
6	extracts from WT or KIKO uteri. ER α -DNA complexes were detected as described in materials and
7	methods. Non-biotinylated (unlabeled) DNA (Positive controls: Fkbp5 HRE, Ihh HRE or Igf1 ERE,
8	Negative controls: <i>Fkbp5</i> NRE or <i>Igf1</i> NRE or EBNA; sequences in Table S1) was added to binding
9	reactions at 10x higher levels to compete with biotinylated probes for ER α binding and demonstrate
10	specificity. Probe, no NE sample contained no nuclear extract. Statistics: 2-way ANOVA, multiple
11	comparisons of values to binding reactions without unlabeled competitor DNA (none), Bonferroni
12	multiple test correction,* P<0.05, ** P<0.01,***P<0.001 **** p<0.0001.

13

14 Fig. S4 EAAE ERα Mouse Uterus Lacks Transcriptional Responses to E₂

15	Α.	RT-PCR analysis of transcripts in WT and EAAE uterine samples treated for 2h with saline or
16		E_2 . Transcripts that were E_2 responsive in the KIKO uterus (1) were selected for analysis in the
17		EAAE uterus. Statistics: 2-way ANOVA, multiple comparisons of means vs. V, Bonferroni
18		multiple test correction, *p<0.05, ** p<0.001***P<0.001, **** p<0.0001.
19	В.	Western blot of WT and EAAE uterine proteins probed with anti ER α and normalized to β -
20		tubulin. ER α/β Tub represents the ratio of the respective signal intensities.
21	С.	EAAE differentially expressed uterine transcripts. Cluster showing 53 probes (representing 44
22		genes) that were differentially expressed (FDR<0.05, fold change >2.0) in EAAE.
23	D.	Hierarchical cluster comparing previous microarray data from KIKO (1) to EAAE.

1		As the older KIKO dataset and 2 WT datasets were done using a 2-color protocol (1), whereas the
2		newer EAAE and 1 WT datasets were done using a one-color protocol (Materials and methods),
3		to make this comparison, values are expressed as log10(ratio E_2 2h/veh) and normalized to
4		mean=0, SD=1.0. Cluster represents 7093 probes with at least 2-fold change (ratio >2.0 or <0.5),
5		and filtered to remove probes with ratio=0 in the older dataset.
6		
7		
8		
9		References
10		
11		
12		
13	1.	Hewitt SC, O'Brien JE, Jameson JL, Kissling GE, Korach KS. Selective Disruption of ER alpha DNA-
14 15		Binding Activity Alters Uterine Responsiveness to Estradiol. <i>Molecular Endocrinology.</i> 2009;23(12):2111-2116.
16		
17		

Fig. S1A. Ihh

Ihh HRE: TACGGAAG**GAACA**GCA**TGAGC**TCCCAGGG

Fig. S1*B. lgf1*

Fig. S1C Aqp5 +2400 (negative primers)

Aqp5 transcript

0.0-

Ŵ

4140

Fig. S2

Fig. S3

Fig S4B

13.38

Fold Change (E₂ 2h/V) EAAE WT

-13.38

Fig S4D

Table S1: Oligonucleotides used insert PREs in luciferase reporter, ChIP –PCR, RT-PCR and mutagenesis

r	
For Luciferase Reporter and DNA Binding <u>Assay:</u>	
Igf1 ERE+	CTGGGCAAGGTCATGATGACCGCTGTATTT
Igf1 ERE-	AAATACAGCGGTCATCATGACCTTGCCCAG
Ihh HRE+	TACGGAAGGAACAGCATGAGCTCCCAGGG
Ihh HRE-	CCCTGGGAGCTCATGCTGTTCCTTCCGTA
Fkbp5 HRE+	GAAGAGCACAGAACACCCTGTTCTGAATGTGG
Fkbp5 HRE-	CCACATTCAGAACAGGGTGTTCTGTGCTCTTC
Igf1 NRE+	CTGGGCAAGATCATGATGATCGCTGTATTT
Igf1 NRE-	AAATACAGCGATCATCATGATCTTGCCCAG
Fkbp5 NRE+	GAAGAGCACAGATCACCCTGATCTGAATGTGG
Fkbp5 NRE-	CCACATTCAGATCAGGGTGATCTGTGCTCTTC
EBNA	ATCTGGGTAGCATATGCTATCCTAA
For ChIP-PCR:	
Igf1 ERE F	TTCCAGCCACCTCTCCACTTAC
Igf1 ERE R	CTGTGGAGCCATTGTTGGATCT
Ihh HRE F	GGGCAGCCACAGAGATCAA
Ihh HRE R	GCATACTTACAGCAGGAGACACTATTTACT
Fkbp5 HRE F	TCTGAATGTGGCTGGCACAT
Fkbp5 HRE R	GCTCCCCACCCCATTT
Klf15 HRE F	TAACCATCTGGGAAGTGGCT

KIf15 HRE R GCCACTCTGGAACAGGATG	
Aqp5 +2400 neg F	CTCACCGTGACCCCCTAT
Aqp5 +2400 neg R	CGGGCTGGGTTCATGGA
For RT-PCR	
Klf4 F	GTGCCCCGACTAACCGTTG
Klf4 R	GTCGTTGAACTCCTCGGT
Klf15 F GGAGTCCAGTCACCAGG	
Klf15 R	ATTTCGGTGACGAGAAGG
EAAE site directed mutagenesis primer 1 GGGTCTGGTCCTGCGAAGGCTGCGCGGGCTTTCTTTGCGGAGAGCACTCAAGGACACAA	
EAAE site directed mutagenesis primer 2 AAGCCGCGCAGCCTTCGCAGGACCCAGACCCCTCATGGTAGCCAGAGGCATAGTCA	

Table S2 ChIP-seq data summary

	ER				PR			
	WT Veh	WT E ₂	KIKO Veh	KIKO E ₂	input	PR Veh	PR P ₄	input
sequenced reads	61,593,532	32,117,033	51,125,666	48,508,817	57,614,948	35,628,904	35,585,795	44,458,968
mapped reads	38,357,494	25,913,390	35,163,961	35,360,326	37,569,545	26,103,619	26,739,428	32,323,251
mapped reads, deduplicated	30,151,013	20,399,334	28,847,781	27,051,778	34,039,058	17,991,984	19,973,075	30,611,636
peaks	5,496	20,792	2,908	18,990	NA	3,541	12,590	NA
estimated fragment length	132	142	120	149	120	138	140	100

Table S3: Motifs significantly enriched ($p<10^{-6}$) in 1h E₂ WT ER α selective vs. 1h E₂ WT ER α +1h E₂ KIKO ER α overlap. GGTCA motifs are highlighted.

Model Name	enrichment
	p-value
ER_Q6 (ERE)	1.42E-307
ER_Q6_02 (ERE)	1.84E-117
HNF4_Q6_02	1.22E-114
PPARG_Q6	6.41E-113
PPARG_02	6.50E-91
FXR_Q2	7.98E-65
RORA1_01	9.00E-61
ERR1_Q2	3.15E-44
ERR2_01	9.17E-42
PPARA_Q6	1.70E-32
RORA_Q4	2.61E-25
ZNF333_01	2.28E-20
TCF11_01	5.42E-20
SF1_Q6_01	7.80E-18
GCNF_01	6.34E-17
DAX1_01	8.49E-17
NUR77_Q5	3.74E-16
RORA2_01	3.74E-13
AREB6_01	4.77E-13
AREB6_02	5.84E-13
DELTAEF1_01	6.91E-11
OG2_01	5.78E-10
FOXP1_01	9.75E-10
TITF1_Q3	3.20E-09
PXRRXR_02	4.24E-09
DRI1_01	4.43E-09
SIX4_01	2.89E-08
HMGIY_Q3	5.59E-08
SF1_Q6	4.05E-07
NURR1_Q3	6.40E-07

Table S4: Motifs enriched in 1h E2 WT ER α +1h E2 KIKO ER α peaks vs. 1h E2 WT ER α selective peaks (p<10⁻⁶). Includes potential tethering mediators. Previously described tethering factors are highlighted in blue. HRE motifs are highlighted in yellow.

Model Name	enrichment
	p-value
AHR_01	7.78E-10
AHRARNT_02	1.86E-08
AHRHIF_Q6	7.66E-10
AP2_Q3	9.44E-37
AP2_Q6	2.79E-36
AP2_Q6_01	2.58E-39
AP2ALPHA_01	1.45E-20
AP2ALPHA_02	1.20E-08
AP2GAMMA_01	4.47E-17
AP4_01	3.74E-10
AP4_Q5	3.04E-11
AP4_Q6	2.16E-17
AR_01	5.24E-39
AR_02	1.11E-30
AR_03	1.07E-37
AR_04	6.98E-46
ARNT_01	2.84E-07
BEN_01	1.41E-13
BEN_02	2.23E-09
CACBINDINGPROTEIN_Q6	1.29E-11
CACD_01	6.33E-12
CEBP_Q2	2.59E-08
CEBP_Q2_01	1.04E-07
CEBPA_01	1.18E-09
CEBPB_02	1.98E-09
CETS1P54_01	1.91E-10
CETS1P54_02	3.39E-14
CETS1P54_03	1.52E-17
CHCH_01	6.56E-27
CKROX_Q2	6.49E-31
CLOCKBMAL_Q6	1.00E-09
CNOT3_01	4.63E-37
CP2_02	4.74E-14
CREB_Q3	8.55E-07
CTCF_01	2.02E-17

CTCF_02	3.22E-11
CTF1_01	3.15E-08
DEAF1_01	1.02E-16
DEAF1_02	9.87E-16
E2F_02	2.64E-14
E2F_Q2	1.47E-31
E2F_Q3_01	2.23E-09
E2F_Q4_01	3.30E-12
E2F_Q6_01	1.03E-13
E2F1_01	7.08E-09
E2F1_Q3	1.50E-10
E2F1_Q3_01	8.70E-20
E2F1_Q4	6.65E-09
E2F1_Q4_01	5.02E-09
E2F1_Q6	3.60E-10
E2F1_Q6_01	3.65E-12
E47_01	1.37E-09
EGR_Q6	1.34E-16
EGR1_01	1.28E-15
EGR2_01	2.58E-12
EGR3_01	1.41E-13
ELK1_01	7.14E-08
ELK1_02	1.87E-23
ELK1_04	1.65E-10
ETF_Q6	1.36E-32
ETS1_B	7.41E-08
ETS2_Q6	4.78E-11
FPM315_01	1.09E-34
GABP_B	1.55E-17
GABPALPHA_Q4	2.26E-22
GADP_01	2.01E-15
GKLF_02	1.58E-15
GR_01	3.79E-29
GR_Q6	1.44E-17
HEB_Q6	1.85E-14
HEN1_01	2.51E-14
HEN1_02	3.95E-18
HIC1_02	2.16E-20
HIC1_03	8.65E-11
HIF1_Q3	1.36E-11
HIF1_Q5	2.08E-07

IK_Q5	3.58E-16
KID3_01	1.72E-07
KROX_Q6	1.85E-38
LBP1_Q6	2.62E-24
LBP9_01	1.52E-10
MAZ_Q6	4.23E-16
MAZR_01	5.82E-13
MEF2_02	9.40E-07
MOVOB_01	6.30E-19
MTF1_Q4	8.09E-13
MYCMAX_03	4.31E-07
MYCMAX_B	9.37E-12
MYOD_Q6_01	5.00E-07
MYOGNF1_01	9.82E-09
MZF1_01	6.99E-07
NERF_Q2	6.48E-11
NEUROD_01	6.89E-10
NEUROD_02	3.62E-15
NF1_Q6	4.18E-30
NF1_Q6_01	1.51E-19
NGFIC_01	1.47E-17
NRSF_01	1.31E-07
NRSF_Q4	6.31E-12
P300_01	9.86E-13
P53_04	1.33E-09
PAX4_01	3.14E-12
PAX5_01	2.58E-08
PR_01	3.39E-25
PR_02	3.01E-28
RBPJK_Q4	9.30E-07
REST_01	6.08E-17
RNF96_01	1.25E-24
SAP1A_01	3.48E-18
SP1_01	3.28E-09
SP1_02	7.01E-21
SP1_Q2_01	1.53E-26
SP1_Q4_01	7.74E-25
SP1_Q6	2.78E-25
SP1_Q6_01	1.07E-23
SP1SP3_Q4	2.25E-30
SP3_Q3	3.39E-09

SP4_Q5	2.58E-24
SPZ1_01	1.79E-12
SREBP2_Q6	2.10E-08
STAT1_01	3.83E-12
STAT1_03	1.54E-08
STAT1_05	1.95E-09
STAT3_01	7.71E-09
STAT3_02	1.74E-10
STAT3_03	8.04E-18
TAL1_Q6	1.33E-12
TAL1ALPHAE47_01	1.15E-08
TFIII_Q6	2.13E-09
USF_01	9.49E-07
USF_Q6	7.91E-11
WT1_Q6	8.42E-26
ZBED6_01	3.22E-19
ZBRK1_01	8.51E-10
ZF5_01	3.53E-18
ZF5_B	1.17E-11
ZFP281_01	1.45E-16
ZFX_01	1.30E-49
ZNF219_01	1.22E-20

Table S5

WTWT and KIWT differ significantly in uterine weight from 7 weeks through 18 weeks.

Age-adjusted mean uterine weights, excluding animals \leq 4 weeks

	Age-adjusted mean uterine weight $(mg)\pm$ s.e.		KIWT vs. WTWT		
Age (weeks)	KIWT	WTWT	p-value		
3					
4					
5	51.1 ± 9.0	67.7 ± 10.7	0.2388		
6	73.5 ± 6.9	69.3 ± 8.6	0.7061		
7	94.0 ± 5.6	70.6 ± 7.9	0.0170		
8	112.7 ± 5.1	71.5 ± 8.2	< 0.0001		
9	129.6 ± 5.4	72.2 ± 8.8	< 0.0001		
10	144.7 ± 5.8	72.5 ± 9.2	< 0.0001		
11	157.9 ± 6.3	72.5 ± 9.3	< 0.0001		
12	169.3 ± 6.6	72.2 ± 9.0	< 0.0001		
13	178.8 ± 6.7	71.6 ± 8.6	< 0.0001		
14	186.5 ± 6.6	70.7 ± 8.4	< 0.0001		
15	192.4 ± 6.4	69.4 ± 9.0	< 0.0001		
16	196.4 ± 6.4	67.9 ± 11.0	< 0.0001		
17	198.6 ± 6.7	66.0 ± 14.4	< 0.0001		
18	199.0 ± 7.6	63.8 ± 19.0	< 0.0001		

Uterine weights were measured in peri-pubertal KIWT females, revealing significant enlargement occurs beginning at 7 weeks of age, following the onset of exposure to cycling ovarian hormones at 4 weeks of age. Therefore, the abnormal uterine enlargement likely reflects the biological consequence of inappropriate estrogen-dependent transcriptional regulation mediated by the DBD mutation.

Table S6. Summary of DNA binding (DNA) and reporter gene (Luc) activity of motifs tested. KIKO RE shows nucleotides that exhibit activity with KIKO ER

			DNA		Luc	
	12345	54321	WT	ΚΙΚΟ	WT	KIKO
(ER) ERE:	GGTCA nn	nTGACC				
(PR,GR,AR)HRE:	GAACAnn	nTGTTC				
KIKO RE:	GnnCAnn	nTGnnC				
Fkbp5 HRE:	GAACACC	CTGTTC	-	+	+	++
Fkbp5 NRE:	GATCACC	CTGATC	-	+	+	++
Igf1 ERE:	GGTCATG	ATGACC	+	+	++	-
Igf1 NRE:	GATCATG	ATGATC	-	+	-	+
Ihh HRE:	GAACAGC	CATGAGC	-	+	-	+
EBNA: ATCTG	GGTAG <mark>CA</mark> T	ATGCTATCCTAA	-	-	-	-