1 Supplemental Material

2	Rapid Detection of New Delhi Metallo-β-Lactamase Gene and Variants coding			
3	Carbapenemase with Different Activity by a PCR-based in vitro protein			
4	expression method			
5	Li Huang ^{1,3} , Xiumei Hu ^{2,4} , Man Zhou ¹ , Yinmei Yang ² , Jinjuan Qiao ^{1,3} , Dianbing Wang ¹ ,			
6	Junping Yu ¹ , Zongqiang Cui ¹ , Zhiping Zhang ¹ , Xian-En Zhang ¹ , Hongping Wei ^{1*}			
7	¹ State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of			
8	Sciences, Wuhan 430071, China			
9	² Department of Clinical Laboratory, Guangzhou First Municipal People's Hospital, Affiliated			
10	Hospital of Guangzhou Medical College, Guangzhou 510180, China			
11	³ University of Chinese Academy of Sciences, Beijing 100039, China			
12	⁴ Southern Medical University, Guangzhou, 510515, China			
13				
14	Supplementary Materials and Methods			
15	Clonal relationship of 15 A. baumannii isolates			
16	To test the cloneship between the 15 A. baumannii isolates, a multilocus sequence			
17	typing (MLST) method was used to determine the sequence types (STs) the A.			
18	baumannii isolates as described. The seven housekeeping genes (gltA, gyrB, gdhB,			
19	RecA, cpn60, gpi, rpoD) were sequenced by BGI Tech Inc. (Wuhan, China) and			
20	analyzed using the A. baumannii MLST database (http://pubmlst.org/abaumannii/). As			

- shown in supplementary Table S2, 8 different STs and three new STs (42, 65, 69 ABA)
- 22 were found in the 15 A. baumannii isolates. The results were also analyzed by

eBURST (<u>http://eburst.mlst.net/default.asp</u>). Using group defined by 6 or more loci
matches, eBURST results showed that there were 2 groups and 3 singletons in the 8
STs. Compared with all the STs in the database, the ST208, ST368 and ST368 belong
to group 1, in which the predicted founder was ST118 isolated from Thailand.

27

28 **Preparation of DNA templates of clinical isolates by heat lysis.**

Briefly, 1.4 mL bacteria culture (with McFarland between 3 to 4) were centrifuged first. Then the precipitates were re-suspended in 0.1 mL sterile milliQ water, and finally inactivated at 100 °C for 10 min.

32

33 Long fragment real-time PCR (LF-qPCR) assay.

34 The whole *bla*_{NDM-1} fragments (822 bp) were amplified by LF-qPCR with primers F-rt and R-rt designed in house and shown in Table S2. The LF-qPCR was performed on a 35 StepOnePlusTM qPCR System (Applied Biosystems Inc., USA) under the following 36 conditions: 2 min at 98 °C and 35 cycles of 10 s at 98 °C and 75 s at 68 °C. The 37 LF-qPCR mixture contained 10 µL MightyAmpTM (SYBR® Plus, Takara 38 Biotechnology Co. Ltd, China), 0.2 µL primer F-rt (20 µmol/L), 0.2 µL primer R-rt 39 $(20 \,\mu \text{mol/L})$, 4 μ L DNA template and 5.6 μ L sterile milliQ water. The threshold cycle 40 (C_T) values were calculated by the StepOneTM Software v2.2.2. 41

42 The analytical sensitivity of the LF-qPCR for bla_{NDM-1} contained plasmids were 43 determined using the plasmid solution extracted from *A. baumanii* 65. The qPCR 44 sensitivity for bacteria suspensions was also determined by spiking different amounts of *A. baumanii* 65 into water. To quantify the viable bacteria in each dilution step, a nutrient agar plate was inoculated with 100 μ L of a suspension and incubated overnight at 37 °C. The number of colonies that grew was counted on the following day. All experiments were repeated three times to determine the sensitivity and the linearity of LF-qPCR.

50

51 **PCR amplification for** *in vitro* **expression (ePCR).**

52 The ePCR is performed to add T7 promoter and 5' untranslated region (5' UTR) for in 53 *vitro* expression using the primers F-1-UTR and R-1 shown in Table S2. The ePCR amplifications were conducted with an initial 30 s denaturation step at 98 °C, 37 54 cycles of 98 °C for 30 s, 70 °C for 1 min, and 72 °C for 30 s, and a final 10 min 55 56 elongation on a thermal cycler (Biometra, Germany). Each reaction tube contained 0.6 U of Phusion®High-Fidelity DNA Polymerase (NEB, UK), 10 µL 5×GC buffer, 200 57 μ mol/L of each dNTP, 20 μ mol/L of each primers, 4 μ L Dimethyl-sulfoxide and 3 μ L 58 59 DNA template. The amplified products were analyzed by electrophoresis using 1.5% agarose gel with ethidium bromide. 60

61

62 *In vitro* synthesis of NDM-1

The amplified bla_{NDM-1} DNA in the ePCR were concentrated by adding 3M CH₃COONa (pH 5.2) according to a volume ratio 1:10 and 4 µL DNAmate (Takara Biotechnology Co. Ltd, Dalian, China) first, and then by the ethanol precipitation. The concentration and the quality of the concentrated DNAs were evaluated by a

67	Nanodrop 2000 spectrophotometer (Thermo, USA). The in vitro synthesis of NDM-1
68	was carried out at 24 °C for 20 h using RTS TM 100 Wheat Germ CECF Kit (5 Prime
69	Inc., USA) following the procedures suggested by the manufacturer. An equal amount
70	of the Wheat Germ lysate without adding the ePCR amplicon was also incubated
71	simultaneously as the negative control.
72	
73	Antibiotic degradation assay
74	After <i>in vitro</i> synthesis of NDM-1, 3 μ L of the lysates were mixed with 297 μ L of 50
75	mmol/L HEPES buffer (containing 100 μ mol/L imipenem and 1 μ mol/L ZnSO ₄ , pH
76	7.5) at 30 °C, respectively. Measurements of NDM-1 activities were performed on a
77	Synergy H1 Hybrid Reader (BioTek, USA) by observing the decrease in absorption at
78	300 nm. The inhibition assays were performed by pre-incubating the lysates with
79	EDTA for 2 min at the 25 °C before addition of the imipenem contained HEPES
80	buffer, as described previously. All experiments were repeated three times
81	

82 Tables

Sample no.	Strain	Isolated from	Isolated time
Negative control	E. coli 53	urine	2009/5/3
Positive control	A. baumannii 65	sputum	2010/7/20
1	E. coli 23	urine	2008/3/5
2	<i>E. coli</i> 59	ascites	2009/8/1
3	<i>E. coli</i> 75	urine	2008/12/12
4	K. pneumoniae 17	sputum	2011/11/17
5	K. pneumoniae 19	sputum	2009/2/24
6	K. pneumoniae 76	-	2007
7	E. cloacae 60	sputum	2009/1/12
8	E. cloacae 63	sputum	2009/3/4
9	K. ozaenae 16	urine	2008/12/12
10	A. baumannii 26	sputum	2009/10/22
11	A. baumannii 30	sputum	2009/2/2
12	A. baumannii 31	sputum	2011/11/17
13	A. baumannii 33	sputum	2009/4/29
14	A. baumannii 39	sputum	2009/7/29
15	A. baumannii 40	trachea	2010/3/9
16	A. baumannii 41	sputum	2010/3/1
17	A. baumannii 42	trachea	2010/6/3
18	A. baumannii 59	sputum	2009/12/1
19	A. baumannii 62	sputum	2010/1/20
20	A. baumannii 63	trachea	2010/1/20
21	A. baumannii 66	sputum	2010/9/8
22	A. baumannii 69	ascites	2010/6/14
23	A. baumannii 70	sputum	2008/8/2

TABLE S1 Information of clinical samples.

Strain no			A	llele no).			ST
Strain no.	gtlA	gyrB	gdhB	recA	cpn60	gpi	rpoD	51
26	21	15	3	2	35	111	4	254
30	21	15	3	2	35	111	4	254
31	21	15	3	2	35	111	4	254
33	21	15	3	2	35	111	4	254
39	21	15	3	2	35	111	4	254
40	21	15	3	2	35	111	4	254
41	21	15	3	2	35	111	4	254
42	21	15	3	49	35	111	4	new
59	1	3	3	2	2	97	3	208
62	1	3	3	2	2	97	3	208
63	34	81	3	2	2	16	3	381
65	9	3	34	2	39	125	20	new
66	1	3	3	2	2	140	3	368
69	1	15	3	7	39	111	22	new
70	1	15	2	28	1	107	32	229

TABLE S2 Results of MLST.

TABLE S3 Primer sequences used for amplification of the *bla*_{NDM-1} gene and

	Primers	Sequence (5'- 3')
LF-qPCR	F-rt	AAACTTGATGGAATTGCCCA
	R-rt	GCTCAGCGCAGCTTGTC
ePCR	F-rt-UTR ^a	TAATACGACTCACTATAGGATACTCCCCCACAACAGCTTA
		CAATACTCCCCCACACAGCTTACAAATACTCCCCCAAA
		CTTGATGGAATTGCCCA
	F-1-UTR ^a	TAATACGACTCACTATAGGATACTCCCCCACAACAGCTTA
		CAATACTCCCCCACACAGCTTACAAATACTCCCCCATGG
		AATTGCCCAATATTATGCA
	R-1	TCAGCGCAGCTTGTCGGCCATGC
PCR ^b	F-38	GGCGGAATGGCTCATCACGA
	R-344	CGCAACACAGCCTGACTTTC
	Pre-A	CACCTCATGTTTGAATTCGCC
	Pre-B	CTCTGTCACATCGAAATCGC
Variants	F-K211E	CTGTCCTCGATCAGGCAGCCAC
	R-K211E	CTGCCTGATCGAGGACAGCAAG
	F-P28A	CTGAGCGGGTGCATGGCCGGTGAAATCCGCC
	R-P28A	GGCGGATTTCACCGGCCATGCACCCGCTCAG
	F-D95N	TCGATACCGCCTGGACCAATGACCAGACCGCCCAGA
	R-D95N	TCTGGGCGGTCTGGTCATTGGTCCAGGCGGTATCGA
	F-V88L	GCGGCCGCGTGCTGTTGGTCGATACCGCCTG
	R-V88L	CAGGCGGTATCGACCAACAGCACGCGGCCGC
	F-A233V	ACTACGCCGCGTCAGTGCGCGCGTTTGGTGC
	R-A233V	GCACCAAACGCGCGCACTGACGCGGCGTAGT
	F-M154L	GGGCTGGTTGCGGCGCAA
	R-M154L	CCGCAACCAGCCCCTCTT

89 construction of $bla_{\text{NDM-1}}$ variants.

90 Abbreviations: 5' UTR, 5' untranslated regulatory regions that could enhance protein

91 expression in the wheat germ system.

- ^a The 5' UTR sequence is shown in boldface type.
- ⁹³ ^b PCR here means the conventional PCR to test bla_{NDM-1} gene.

FIG S1 Positions of the PCR primers used. The frame was the open reading frame

FIG S2 Assay of the clinical samples. (A) Typical amplification curves of bla_{NDM-1} LF-qPCR assay using the plasmid templates extracted from four positive samples. (B) Typical amplification curves of bla_{NDM-1} LF-qPCR assay using the templates prepared by boiling the four positive samples.