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Procedure to carry out microrheology with an AFM 

The general procedure to carry out microrheological experiments with the AFM relies on the 

work of Alcaraz et al.[1] The complex shear modulus G* is given by 

 

𝐺∗ 𝜔 = 𝐺´ 𝜔 + 𝑖𝐺´´ 𝜔 = !!!
!!!!"#(!)

!(!)
!(!)
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and the ratio between the force oscillation F(ω) and the separation oscillation δ(ω) depends 

on the measured amplitudes AF of the force signal and Aδ  of the indentation signal at a given 

frequency ω: 
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where φF and φδ are the phase shifts of the force oscillation and the separation oscillation, 

respectively. The complex shear modulus consists of a real part G´ called storage modulus, 

which accounts for the energy stored in the system and an imaginary part G´´ called loss 

modulus, which accounts for energy dissipated in the sample. The ratio between loss modulus 

and storage modulus is called loss tangent η and is given by the tangent of the phase shift Δφ 

between the two sinusoidal signals of F(ω) and δ(ω) (see also Supplementary Fig. S2):  

 

𝜂 = tan 𝜑! ! − 𝜑! ! = tan  (∆𝜑)   (S3) 

 

The loss tangent is a model independent parameter, which does not rely on geometrical 

factors. For a pure elastic solid η is zero, while it approaches infinity for a purely viscous 

sample.  

As the cantilever is always in contact with the viscous medium during the microrheological 

experiment, the measured force is the sum of the hydrodynamic force and the force response 

of the sample. To correct for the hydrodynamic force acting on the cantilever during 

oscillation, we used a method introduced by Alcaraz et al. [2] The force response ΔFHDD of 

the cantilever to small amplitude oscillations Δz was measured for several oscillation 

frequencies as a function of the tip-sample separation h (Fig. S1A). Before correction of the 

hydrodynamic drag, the deviation from 90° phase shift in a viscous environment φlag was 

compensated for every frequency f in each measurement (see Fig. S2). Afterwards, the 

transfer function HD*, given by 

 

𝐻!∗ 𝑓 = 𝐻!´+ 𝑖𝐻!´´ 𝑓 = !!!(!)
!!!!(!)

  with  (S4) 

 

𝐻! 𝑓 = !∆!
!∆!
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was determined for every frequency at different tip-sample distances h by fitting a sine wave 

with the amplitude A and the phase shift φ to Δz and ΔFHDD (Fig. S1B).  Here, k is the spring 

constant of the cantilever and AΔF, AΔz, φΔF and φΔz are the amplitudes and the phases of ΔFHDD 

and Δz.  

Fig. S1C shows an example for the frequency dependence of the transfer function HD
* at a 

fixed tip-sample separation. The imaginary part Hd´´ increases linearly with oscillation 

frequency, while the real part can be neglected. Linear fitting of Hd´´ provides the drag 

coefficient b(h) as the slope m of the fit is given by m=2πb(h).  

The drag coefficient is determined at tip-sample separations ranging from 200 nm to 3500 

nm. The dependency of the drag coefficient b(h) from the tip-sample separation is shown in 

Fig. S1D. At low tip-substrate distances, a higher drag coefficient is observed. The drag 

coefficient as a function of the tip-sample separation is fitted with the scaled spherical model 

of the cantilever 

 

𝑏 ℎ = !!"!!""!

!!!!""
     (S6) 

 

with the dynamic viscosity of the medium η and the two fitting parameters aeff and heff  that 

account for the effecting cantilever geometry. The drag coefficient at zero tip sample 

separation b(h0) was extrapolated from that fit. This drag coefficient b(h0) was used in the 

microrheological experiment to correct for the hydrodynamic drag in the imaginary part of G*  

 

𝐺∗ 𝜔 = 𝐺´ 𝜔 + 𝑖𝐺´´ 𝜔 = !!!
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The obtained data for G* were fitted using the power law structural damping model used by 

Alcaraz et al.:[1] 

 

𝐺∗ = 𝐺! 1+ 𝑖  𝑡𝑎𝑛 𝛼 ∙ !
!

!
!!

!
+ 𝑖𝜇𝜔  (S8) 

 

G0 is a scaling factor, α is the power law exponent and µ denotes the viscosity of the sample. 

Fig.S3 confirms that the loss tangent η does not depend on the indentation depth δ in contrast 

to all other parameters due to shortcoming of the contact model. 
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Supplementary Information Figures 

 

 

 

Fig. S1	
   A Scheme illustrating the correction of force data for hydrodynamic drag. The 

triangular cantilever is kept at a height h above the surface and oscillates with a z-

displacement of Δz at its basis. The force response ΔFHDD is determined over the deflection of 

the cantilever and its spring constant. B Δz and ΔFHDD as a function of time. Dots are the 

measured data; the dashed line shows the fit of both signals. C Real part of the transfer 

function HD´ (squares) and imaginary part HD´´ (triangles) as a function of the oscillation 

frequency f at a fixed tip surface distance h. The dashed line shows linear fit of HD´´ with the 

slope 2πb(h). D Drag coefficient b(h) (squares) as a function of the tip-sample separation h. 

The data were fitted using a scaled spherical model (dashed line). Extrapolation of the fit to h 

= 0 nm delivers the drag coefficient b(h0) used for the hydrodynamic drag correction. 
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Fig. S2 A Example of deviation from 90° phase shift of Δz and ΔFHDD  (squares) as a function 

of the oscillation frequency measured in viscous medium. Data were fitted using a linear fit 

applied to all data above an oscillation frequency of 10 Hz. Deviations of more than 20% 

from 90° were also not taken into account. B Loss tangent of NMuMG cells computed for 100 

Hz oscillation frequency as a function of the indentation depth. 

 

Fig. S3 AFM images (deflection) of cell lines used in this study. 
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Fig. S4 Median values of the storage modulus G´ (closed symbols) and loss modulus G´´ 

(open symbols) of cell lines with different metastatic potential as a function of the oscillation 

frequency (2 force maps, >10 cells). MDCKII and NMuMG cells are non-metastatic 

immortalized epithelial cells, while NIH 3T3 are benign mesenchymal cells. A549, SW13 and 

the CaKi-1 cells are metastatic cancer cells. The data of the complex shear modulus were 

fitted using the power-law structural damping model (dashed line). 
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Fig. S5 Loss tangent η of cell lines MDCKII, NMuMG, NIH 3T3, SW13, A549 and CaKi-1 

cells with different metastatic potential (2 force maps, >10 cells). Dashed line shows course 

of loss tangent determined from the power law structural damping model. 

 

Fig. S6 Loss tangent η of benign MCF-10A cells (red diamonds) in comparison to malignant 

MDA-MD-231 cells (green triangles). Continuous lines are the correspond fits according to 

the structural damping model.  

	
  


