Assessing the Dependence of Sensitivity and Specificity on Prevalence in Meta-analysis

Jialiang Li*1 and Jason P. Fine²

Appendix

In the following proofs we consider four different cases:

Case I: p_i and S_i are known;

Case II: p_i are known, S_i are unknown and estimated by \hat{se}_i ;

Case III: S_i are known, p_i are unknown and estimated by \hat{p}_i ;

Case IV: p_i and S_i are unknown and estimated by \hat{p}_i and \hat{se}_i , respectively.

Case I is the most ideal state where complete knowledge about p_i and S_i are acquired in all studies. The examination of the relationship between these two quantities could be done in a standard analysis. Cases II and III allow one of the two quantities to be known exactly while the other has to be estimated. In a real meta analysis, Case IV may be the

 $^{^{1}}$ Department of Statistics and Applied Probability, National University of Singapore

² Department of Biostatistics and Department of Statistics, University of North Carolina, Chapel Hill, USA

^{*}Corresponding author: Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, email:stalj@nus.edu.sg.

most relevant to practice where both are estimated. We note that in the main manuscript we only present the theoretical results for Case IV. We introduce Case I - III to describe via comparison how the estimation of correlation between \mathbf{se}_i and p_i is gradually influenced by the fact that these population-specific parameters themselves are estimated from the data.

0.1 Consistency of $\hat{\rho}$

Proof of Theorem 3.1. It is easy to see that $\hat{\rho}$ is consistent for Case I (Fisher (1925)). We only show the results for Case IV since other cases can be proved by following similar arguments. We note that

$$\sum_{i=1}^{n} w_{i}(\hat{\mathtt{se}}_{i} - \bar{\mathtt{se}})(\hat{p}_{i} - \bar{p}) = \sum_{i=1}^{n} w_{i}(\hat{\mathtt{se}}_{i} - \bar{\mathtt{se}})(\hat{p}_{i} - \mu_{p}) + (\bar{\mathtt{se}} - \bar{\mathtt{se}})(n^{-1}\sum_{i=1}^{n} w_{i}\hat{p}_{i} - \bar{p}) + (n^{-1}\sum_{i=1}^{n} w_{i}\hat{\mathtt{se}}_{i} - \bar{\mathtt{se}})(\mu_{p} - \bar{p}).$$

Applying the strong law of large number (Theorem 1.14 in Shao (1999)) for independent random variables with finite expectations, we can argue that as $n \to \infty$ the second and third terms in the above equation vanish to zero almost surely whereas the first term converges to

$$\begin{split} n^{-1} \sum_{i=1}^n E[w_i(\hat{\mathtt{se}}_i - \mathtt{se})(\hat{p}_i - \mu_p)] \\ = n^{-1} \sum_{i=1}^n E[w_i(\mathtt{S}_i - \mathtt{se})(\hat{p}_i - p_i)] + n^{-1} \sum_{i=1}^n E[w_i(\mathtt{S}_i - \mathtt{se})(p_i - \mu_p)]. \end{split}$$

with probability one. Followed by the consistency of \hat{p}_i and the use of a version of dominated convergence theorem (ex 6.3 in Durrett (2005)), it can be shown that

$$n^{-1} \sum_{i=1}^{n} E[w_i(\hat{\mathtt{se}}_i - \mathtt{se})(\hat{p}_i - \mu_p)] \to \mu_w E(\mathtt{S} - \mathtt{se})(p - \mu_p).$$

Similarly, we can show

$$n^{-1} \sum_{i=1}^{n} w_{i} (\hat{\mathsf{se}}_{i} - \bar{\mathsf{se}})^{2} \to_{a.s.} \mu_{w} E(\mathsf{S} - \mathsf{se})^{2},$$
$$n^{-1} \sum_{i=1}^{n} w_{i} (\hat{p}_{i} - \bar{p})^{2} \to_{a.s.} \mu_{w} E(p - \mu_{p})^{2}.$$

Finally we use the continuous mapping theorem (Theorem 1.10 in Shao (1999)) to conclude

$$\hat{\rho} \rightarrow_{a.s.} \rho$$
.

0.2 Consistency and normality of $\hat{\alpha}$

Proof of Theorem 4.1. By using strong law of large number for independent variables, we have

$$n^{-1} \sum_{i=1}^{n} w_{i} \frac{(\hat{\mathsf{se}}_{i} - f(\hat{p}_{i}, \boldsymbol{\alpha})) \dot{f}_{\boldsymbol{\alpha}}}{f(\hat{p}_{i}, \boldsymbol{\alpha})(1 - f(\hat{p}_{i}, \boldsymbol{\alpha}))} \to_{a.s.} \mu_{w} n^{-1} \sum_{i=1}^{n} E \frac{(\hat{\mathsf{se}}_{i} - f(\hat{p}_{i}, \boldsymbol{\alpha})) \dot{f}_{\boldsymbol{\alpha}}}{f(\hat{p}_{i}, \boldsymbol{\alpha})(1 - f(\hat{p}_{i}, \boldsymbol{\alpha}))}. \tag{1}$$

By using dominated convergence theorem, the fact that \hat{se}_i is uncorrelated to \hat{p}_i and the consistency of \hat{p}_i to p_i , we have

$$E\frac{(\hat{\mathsf{se}}_i - f(\hat{p}_i, \boldsymbol{\alpha}))\dot{f}_{\boldsymbol{\alpha}}}{f(\hat{p}_i, \boldsymbol{\alpha})(1 - f(\hat{p}_i, \boldsymbol{\alpha}))} \to E\frac{(\mathsf{S}_i - f(p_i, \boldsymbol{\alpha}))\dot{f}_{\boldsymbol{\alpha}}}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))}.$$

The limit on the right-hand-side is zero when evaluated at the true parameter. This verifies that the estimating equation defined in (4.2) is asymptotically unbiased and the consistency of $\hat{\alpha}$ follows (eg. Lemma 5.10 in van der Vaart (1998)).

Proof of Theorem 4.2. The asymptotic normality of $\sqrt{n}(\hat{\alpha}-\alpha)$ is now a consequence of Theorem 5.21 in van der Vaart (1998). We consider Case I first. Denote $V_i(\alpha) = w_i \frac{(\mathbf{s}_i - f(p_i, \alpha))\dot{f}_{\alpha}}{f(\hat{p}_i, \alpha)(1 - f(\hat{p}_i, \alpha))}$ We then have

$$n^{-1/2} \sum_{i=1}^{n} V_i(\boldsymbol{\alpha}) \to_d N(0, \tilde{W}_2),$$

where

$$\tilde{W}_2 = \lim_{n \to \infty} n^{-1} E\left[\sum_{i=1}^n w_i^2 \frac{\operatorname{var}(\mathbf{S}_i|p_i) \dot{f}_{\boldsymbol{\alpha}} \dot{f}_{\boldsymbol{\alpha}}^T}{f(p_i, \boldsymbol{\alpha})^2 (1 - f(p_i, \boldsymbol{\alpha}))^2}\right]$$

The derivative of the estimating equation (4.2) with respect to α is given by

$$H_n(\boldsymbol{\alpha}) = n^{-1} \sum_{i=1}^n w_i \left[\frac{\mathbf{S}_i - f(p_i, \boldsymbol{\alpha})}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))} \ddot{f}_{\boldsymbol{\alpha}} + \frac{(\mathbf{S}_i - f(p_i, \boldsymbol{\alpha}))(2f(p_i, \boldsymbol{\alpha}) - 1)\dot{f}_{\boldsymbol{\alpha}}(p_i)\dot{f}_{\boldsymbol{\alpha}}(p_i)^T}{f(p_i, \boldsymbol{\alpha})^2 (1 - f(p_i, \boldsymbol{\alpha}))^2} + \frac{\dot{f}_{\boldsymbol{\alpha}}(p_i)\dot{f}_{\boldsymbol{\alpha}}(p_i)^T}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))} \right].$$

It follows that the summations of the first two terms converge to zero and the third term converges to

$$H = \lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} w_i E \frac{\dot{f}_{\alpha}(p_i) \dot{f}_{\alpha}(p_i)^T}{f(p_i, \alpha)(1 - f(p_i, \alpha))} = \mu_w E \frac{\dot{f}_{\alpha}(p) \dot{f}_{\alpha}(p)^T}{f(p, \alpha)(1 - f(p, \alpha))}.$$

Therefore, under Case I, the sequence of $\sqrt{n}(\hat{\alpha} - \alpha)$ is asymptotically normal with mean zero and covariance matrix $H^{-1}\tilde{W}_2H^{-1}$.

We then consider Case II. The estimating equations (4.2) can now be decomposed into

$$n^{-1} \sum_{n=1}^{n} U_i(\alpha) + n^{-1} \sum_{i=1}^{n} V_i(\alpha),$$

where
$$U_i(\boldsymbol{\alpha}) = w_i \frac{(\hat{\mathsf{se}}_i - \mathsf{S}_i) \dot{f}_{\boldsymbol{\alpha}}}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))}$$
.

For the first term, we have

$$n^{-1/2} \sum_{i=1}^{n} U_i(\boldsymbol{\alpha}) \to_d N(0, \tilde{W}_1),$$

where

$$\tilde{W}_{1} = \lim_{n \to \infty} n^{-1} E\left[\sum_{i=1}^{n} w_{i}^{2} \frac{\operatorname{var}(\hat{\mathbf{se}}_{i}|\mathbf{S}_{i}) \dot{f}_{\boldsymbol{\alpha}} \dot{f}_{\boldsymbol{\alpha}}^{T}}{f(p_{i}, \boldsymbol{\alpha})^{2} (1 - f(p_{i}, \boldsymbol{\alpha}))^{2}}\right]$$

$$= \lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} E\left[w_{i}^{2} \frac{\mathbf{S}_{i} (1 - \mathbf{S}_{i}) \dot{f}_{\boldsymbol{\alpha}} (p_{i}) \dot{f}_{\boldsymbol{\alpha}} (p_{i})^{T}}{N_{i} f(p_{i}, \boldsymbol{\alpha})^{2} (1 - f(p_{i}, \boldsymbol{\alpha}))^{2}}\right],$$

where the second equality follows from $\text{var}(\hat{\mathbf{se}}_i|\mathbf{S}_i) = \mathbf{S}_i(1-\mathbf{S}_i)/N_i$.

The second term converges to the same normal distribution as argued previously. Furthermore, the two terms are orthogonal if we observe

$$\begin{split} E(U_iV_i^T) &= E\{E(U_iV_i^T|\mathbf{S}_i,p_i)\} \\ &= E\{\frac{w_i^2\dot{f}_{\boldsymbol{\alpha}}\dot{f}_{\boldsymbol{\alpha}}^T}{f(p_i,\boldsymbol{\alpha})^2(1-f(p_i,\boldsymbol{\alpha}))^2}E((\hat{\mathbf{se}}_i-\mathbf{S}_i)(\mathbf{S}_i-f(p_i,\boldsymbol{\alpha}))|\mathbf{S}_i,p_i)\} \\ &= E\{\frac{w_i^2\dot{f}_{\boldsymbol{\alpha}}\dot{f}_{\boldsymbol{\alpha}}^T}{f(p_i,\boldsymbol{\alpha})^2(1-f(p_i,\boldsymbol{\alpha}))^2}(E(\hat{\mathbf{se}}_i|\mathbf{S}_i)-\mathbf{S}_i)(\mathbf{S}_i-f(p_i,\boldsymbol{\alpha}))\} = 0. \end{split}$$

The derivative of the estimating equation (4.2) with respect to α in this case is given by

$$H_n^*(\boldsymbol{\alpha}) = n^{-1} \sum_{i=1}^n w_i \left[\frac{\hat{\mathbf{se}}_i - f(p_i, \boldsymbol{\alpha})}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))} \ddot{f}_{\boldsymbol{\alpha}}(p_i) + \frac{(\hat{\mathbf{se}}_i - f(p_i, \boldsymbol{\alpha}))(2f(p_i, \boldsymbol{\alpha}) - 1)\dot{f}_{\boldsymbol{\alpha}}(p_i)\dot{f}_{\boldsymbol{\alpha}}(p_i)^T}{f(p_i, \boldsymbol{\alpha})^2(1 - f(p_i, \boldsymbol{\alpha}))^2} + \frac{\dot{f}_{\boldsymbol{\alpha}}(p_i)\dot{f}_{\boldsymbol{\alpha}}(p_i)^T}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))} \right],$$

which converges to H in probability again. Therefore $\sqrt{n}(\hat{\alpha} - \alpha)$ is asymptotically normal with mean zero and covariance matrix $H^{-1}(\tilde{W}_1 + \tilde{W}_2)H^{-1}$.

We skip Case III since its proof can be mimicked partially from what we show in the

following case. In Case IV where p_i is also replaced by \hat{p}_i in estimating equations (4.2), the equations can be written as

$$n^{-1}\sum_{i=1}^{n}U_{i}^{*}(\boldsymbol{\alpha})+n^{-1}\sum_{i=1}^{n}V_{i}^{*}(\boldsymbol{\alpha})+n^{-1}\sum_{i=1}^{n}W_{i}^{*}(\boldsymbol{\alpha}),$$

where we denote $U_i^*(\boldsymbol{\alpha}) = w_i \frac{(\hat{\mathbf{se}}_i - \mathbf{S}_i) \dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)}{f(\hat{p}_i, \boldsymbol{\alpha})(1 - f(\hat{p}_i, \boldsymbol{\alpha}))}, \ V_i^*(\boldsymbol{\alpha}) = w_i \frac{(\mathbf{S}_i - f(p_i, \boldsymbol{\alpha})) \dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)}{f(\hat{p}_i, \boldsymbol{\alpha})(1 - f(\hat{p}_i, \boldsymbol{\alpha}))}, \ \text{and} \ W_i^*(\boldsymbol{\alpha}) = w_i \frac{(f(p_i, \boldsymbol{\alpha}) - f(\hat{p}_i, \boldsymbol{\alpha})) \dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)}{f(\hat{p}_i, \boldsymbol{\alpha})(1 - f(\hat{p}_i, \boldsymbol{\alpha}))}.$ The three pieces are asymptotically equivalent to $U_i(\boldsymbol{\alpha}), \ V_i(\boldsymbol{\alpha}), \ \text{and} \ W_i(\boldsymbol{\alpha}) = w_i \frac{(f(p_i, \boldsymbol{\alpha}) - f(\hat{p}_i, \boldsymbol{\alpha})) \dot{f}_{\boldsymbol{\alpha}}(p_i)}{f(p_i, \boldsymbol{\alpha})(1 - f(p_i, \boldsymbol{\alpha}))}, \ \text{respectively.}$

The first two terms thus converges to two normal distributions as argued before. For the last term, we have

$$\operatorname{var}(n^{-1/2} \sum_{i=1}^{n} W_{i}(\boldsymbol{\alpha})) = n^{-1} E\left[\sum_{i=1}^{n} w_{i}^{2} \frac{\operatorname{var}(f(\hat{p}_{i}, \boldsymbol{\alpha})|p_{i})\dot{f}_{\boldsymbol{\alpha}}\dot{f}_{\boldsymbol{\alpha}}^{T}}{f(p_{i}, \boldsymbol{\alpha})^{2}(1 - f(p_{i}, \boldsymbol{\alpha}))^{2}}\right]$$

$$= n^{-1} \sum_{i=1}^{n} w_{i}^{2} E \frac{f'(p_{i}, \boldsymbol{\alpha})^{2} \lambda_{i} \dot{f}_{\boldsymbol{\alpha}}(p_{i}) \dot{f}_{\boldsymbol{\alpha}}(p_{i})^{T}}{M_{i} f(p_{i}, \boldsymbol{\alpha})^{2}(1 - f(p_{i}, \boldsymbol{\alpha}))^{2}}$$

$$\rightarrow n^{-1} \sum_{i=1}^{n} \lambda_{i} \frac{w_{i}^{2}}{M_{i}} E \frac{f'(p, \boldsymbol{\alpha})^{2} \dot{f}_{\boldsymbol{\alpha}}(p) \dot{f}_{\boldsymbol{\alpha}}(p)^{T}}{f(p, \boldsymbol{\alpha})^{2}(1 - f(p, \boldsymbol{\alpha}))^{2}} \quad \text{as } n \to \infty,$$

$$\rightarrow 0 \quad \text{as } M_{i} \to \infty,$$

where the second equality follows a Taylor expansion and $f'(x_0, \boldsymbol{\alpha})$ is the derivative of $f(x, \boldsymbol{\alpha})$ with respect to x evaluated at x_0 . Hence the last term converges to zero in probability.

The derivative of the estimating equation (4.2) with respect to α in this case is given by

$$H_n^{**}(\boldsymbol{\alpha}) = n^{-1} \sum_{i=1}^n w_i \left[\frac{\hat{\operatorname{se}}_i - f(\hat{p}_i, \boldsymbol{\alpha})}{f(\hat{p}_i, \boldsymbol{\alpha})(1 - f(\hat{p}_i, \boldsymbol{\alpha}))} \ddot{f}_{\boldsymbol{\alpha}}(\hat{p}_i) + \frac{(\hat{\operatorname{se}}_i - f(\hat{p}_i, \boldsymbol{\alpha}))(2f(\hat{p}_i, \boldsymbol{\alpha}) - 1)\dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)\dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)^T}{f(\hat{p}_i, \boldsymbol{\alpha})^2(1 - f(\hat{p}_i, \boldsymbol{\alpha}))^2} + \frac{\dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)\dot{f}_{\boldsymbol{\alpha}}(\hat{p}_i)^T}{f(\hat{p}_i, \boldsymbol{\alpha})(1 - f(\hat{p}_i, \boldsymbol{\alpha}))} \right].$$

It follows that the first two terms converge to zero and the third term converges to

$$n^{-1} \sum_{i=1}^{n} E\left[w_{i} \frac{\dot{f}_{\alpha}(\hat{p}_{i}) \dot{f}_{\alpha}(\hat{p}_{i})^{T}}{f(\hat{p}_{i}, \boldsymbol{\alpha})(1 - f(\hat{p}_{i}, \boldsymbol{\alpha}))}\right].$$

By using similar arguments as the proof of Theorem 4.1, we can show that $H_n^{**}(\alpha)$ converges in probability to H.

Combining all of the above results and using Slutsky's theorem, we conclude that under Case III the sequence of $\sqrt{n}(\hat{\alpha} - \alpha)$ is asymptotically normal with mean zero and covariance matrix $H^{-1}(\tilde{W}_1 + \tilde{W}_2)H^{-1}$.

References

- [1] Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinburgh and London: Oliver and Boyd.
- [2] Durrett, R. (2005). Probability: Theory and Examples. Third Edition. Duxbury.
- [3] Shao, J. (1999). Mathematical Statistics. Springer.
- [4] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press.

Table 1: Data for Example 1

Table 1. Data for Example 1				
Study	Prevalence (%)	Sensitivity (%)	Specificity (%)	
1	45.0	78.2	73.3	
2	60.0	62.5	83.3	
3	58.0	48.9	76.9	
4	52.2	72.7	77.1	
5	47.8	68.6	34.4	
6	53.6	80.0	84.6	
7	70.3	45.5	51.9	
8	55.0	72.2	72.7	
9	51.8	66.7	44.8	
10	57.1	63.2	61.6	
11	47.0	65.5	59.7	
12	58.2	64.1	46.4	
13	79.5	64.2	45.1	
14	41.5	89.6	78.5	
15	59.7	69.4	33.7	
			_	

Table 2: Data for Example 2

Study	Prevalence (%)	Sensitivity (%)	Specificity (%)
1	22	55	75
2	28	100	85
3	73	94	100
4	38	93	77
5	34	93	73
6	53	100	95
7	32	70	75
8	35	83	87
9	57	100	89
10	57	86	100
11	33	88	89