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Appendix

In the following proofs we consider four different cases:

Case I: pi and Si are known;

Case II: pi are known, Si are unknown and estimated by ŝei;

Case III: Si are known, pi are unknown and estimated by p̂i;

Case IV: pi and Si are unknown and estimated by p̂i and ŝei, respectively.

Case I is the most ideal state where complete knowledge about pi and Si are acquired

in all studies. The examination of the relationship between these two quantities could be

done in a standard analysis. Cases II and III allow one of the two quantities to be known

exactly while the other has to be estimated. In a real meta analysis, Case IV may be the
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most relevant to practice where both are estimated. We note that in the main manuscript

we only present the theoretical results for Case IV. We introduce Case I - III to describe via

comparison how the estimation of correlation between sei and pi is gradually influenced by

the fact that these population-specific parameters themselves are estimated from the data.

0.1 Consistency of ρ̂

Proof of Theorem 3.1. It is easy to see that ρ̂ is consistent for Case I (Fisher (1925)). We only

show the results for Case IV since other cases can be proved by following similar arguments.

We note that

n
∑

i=1

wi(ŝei − s̄e)(p̂i − p̄) =
n

∑

i=1

wi(ŝei − se)(p̂i − µp) + (se− s̄e)(n−1
n

∑

i=1

wip̂i − p̄)

+(n−1

n
∑

i=1

wiŝei − s̄e)(µp − p̄).

Applying the strong law of large number (Theorem 1.14 in Shao (1999)) for independent

random variables with finite expectations, we can argue that as n → ∞ the second and third

terms in the above equation vanish to zero almost surely whereas the first term converges to

n−1
n

∑

i=1

E[wi(ŝei − se)(p̂i − µp)]

= n−1
n

∑

i=1

E[wi(Si − se)(p̂i − pi)] + n−1
n

∑

i=1

E[wi(Si − se)(pi − µp)].

with probability one. Followed by the consistency of p̂i and the use of a version of dominated

convergence theorem (ex 6.3 in Durrett (2005)), it can be shown that

n−1
n

∑

i=1

E[wi(ŝei − se)(p̂i − µp)] → µwE(S− se)(p− µp).
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Similarly, we can show

n−1

n
∑

i=1

wi(ŝei − s̄e)2 →a.s. µwE(S− se)2,

n−1
n

∑

i=1

wi(p̂i − p̄)2 →a.s. µwE(p− µp)
2.

Finally we use the continuous mapping theorem (Theorem 1.10 in Shao (1999)) to con-

clude

ρ̂ →a.s. ρ.

0.2 Consistency and normality of α̂

Proof of Theorem 4.1. By using strong law of large number for independent variables, we

have

n−1
n

∑

i=1

wi
(ŝei − f(p̂i,α))ḟα

f(p̂i,α)(1− f(p̂i,α))
→a.s. µwn

−1
n

∑

i=1

E
(ŝei − f(p̂i,α))ḟα

f(p̂i,α)(1− f(p̂i,α))
. (1)

By using dominated convergence theorem, the fact that ŝei is uncorrelated to p̂i and the

consistency of p̂i to pi, we have

E
(ŝei − f(p̂i,α))ḟα

f(p̂i,α)(1− f(p̂i,α))
→ E

(Si − f(pi,α))ḟα
f(pi,α)(1− f(pi,α))

.

The limit on the right-hand-side is zero when evaluated at the true parameter. This verifies

that the estimating equation defined in (4.2) is asymptotically unbiased and the consistency

of α̂ follows (eg. Lemma 5.10 in van der Vaart (1998)).

3



Proof of Theorem 4.2. The asymptotic normality of
√
n(α̂−α) is now a consequence of The-

orem 5.21 in van der Vaart (1998). We consider Case I first. Denote Vi(α) = wi
(Si−f(pi,α))ḟα

f(p̂i,α)(1−f(p̂i,α))
.

We then have

n−1/2
n

∑

i=1

Vi(α) →d N(0, W̃2),

where

W̃2 = lim
n→∞

n−1E[

n
∑

i=1

w2
i

var(Si|pi)ḟαḟT
α

f(pi,α)2(1− f(pi,α))2
]

The derivative of the estimating equation (4.2) with respect to α is given by

Hn(α) = n−1
n

∑

i=1

wi[
Si − f(pi,α)

f(pi,α)(1− f(pi,α))
f̈α +

(Si − f(pi,α))(2f(pi,α)− 1)ḟα(pi)ḟα(pi)
T

f(pi,α)2(1− f(pi,α))2

+
ḟα(pi)ḟα(pi)

T

f(pi,α)(1− f(pi,α))
].

It follows that the summations of the first two terms converge to zero and the third term

converges to

H = lim
n→∞

n−1

n
∑

i=1

wiE
ḟα(pi)ḟα(pi)

T

f(pi,α)(1− f(pi,α))
= µwE

ḟα(p)ḟα(p)
T

f(p,α)(1− f(p,α))
.

Therefore, under Case I, the sequence of
√
n(α̂−α) is asymptotically normal with mean

zero and covariance matrix H−1W̃2H
−1.

We then consider Case II. The estimating equations (4.2) can now be decomposed into

n−1

n
∑

n=1

Ui(α) + n−1

n
∑

i=1

Vi(α),

where Ui(α) = wi
(ŝei−Si)ḟα

f(pi,α)(1−f(pi,α))
.
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For the first term, we have

n−1/2

n
∑

i=1

Ui(α) →d N(0, W̃1),

where

W̃1 = lim
n→∞

n−1E[

n
∑

i=1

w2
i

var(ŝei|Si)ḟαḟT
α

f(pi,α)2(1− f(pi,α))2
]

= lim
n→∞

n−1
n

∑

i=1

E[w2
i

Si(1− Si)ḟα(pi)ḟα(pi)
T

Nif(pi,α)2(1− f(pi,α))2
],

where the second equality follows from var(ŝei|Si) = Si(1− Si)/Ni.

The second term converges to the same normal distribution as argued previously. Fur-

thermore, the two terms are orthogonal if we observe

E(UiV
T
i ) = E{E(UiV

T
i |Si, pi)}

= E{ w2
i ḟαḟ

T
α

f(pi,α)2(1− f(pi,α))2
E((ŝei − Si)(Si − f(pi,α))|Si, pi)}

= E{ w2
i ḟαḟ

T
α

f(pi,α)2(1− f(pi,α))2
(E(ŝei|Si)− Si)(Si − f(pi,α))} = 0.

The derivative of the estimating equation (4.2) with respect to α in this case is given by

H∗

n(α) = n−1

n
∑

i=1

wi[
ŝei − f(pi,α)

f(pi,α)(1− f(pi,α))
f̈α(pi) +

(ŝei − f(pi,α))(2f(pi,α)− 1)ḟα(pi)ḟα(pi)
T

f(pi,α)2(1− f(pi,α))2

+
ḟα(pi)ḟα(pi)

T

f(pi,α)(1− f(pi,α))
],

which converges to H in probability again. Therefore
√
n(α̂ −α) is asymptotically normal

with mean zero and covariance matrix H−1(W̃1 + W̃2)H
−1.

We skip Case III since its proof can be mimicked partially from what we show in the

5



following case. In Case IV where pi is also replaced by p̂i in estimating equations (4.2), the

equations can be written as

n−1

n
∑

i=1

U∗

i (α) + n−1

n
∑

i=1

V ∗

i (α) + n−1

n
∑

i=1

W ∗

i (α),

where we denote U∗

i (α) = wi
(ŝei−Si)ḟα(p̂i)

f(p̂i,α)(1−f(p̂i,α))
, V ∗

i (α) = wi
(Si−f(pi,α))ḟα(p̂i)
f(p̂i,α)(1−f(p̂i,α))

, and W ∗

i (α) =

wi
(f(pi,α)−f(p̂i,α))ḟα(p̂i)

f(p̂i,α)(1−f(p̂i,α))
. The three pieces are asymptotically equivalent to Ui(α), Vi(α), and

Wi(α) = wi
(f(pi,α)−f(p̂i,α))ḟα(pi)

f(pi,α)(1−f(pi,α))
, respectively.

The first two terms thus converges to two normal distributions as argued before. For the

last term, we have

var(n−1/2

n
∑

i=1

Wi(α)) = n−1E[

n
∑

i=1

w2
i

var(f(p̂i,α)|pi)ḟαḟT
α

f(pi,α)2(1− f(pi,α))2
]

= n−1
n

∑

i=1

w2
iE

f ′(pi,α)2λiḟα(pi)ḟα(pi)
T

Mif(pi,α)2(1− f(pi,α))2

→ n−1
n

∑

i=1

λi
w2

i

Mi

E
f ′(p,α)2ḟα(p)ḟα(p)

T

f(p,α)2(1− f(p,α))2
as n → ∞,

→ 0 as Mi → ∞,

where the second equality follows a Taylor expansion and f ′(x0,α) is the derivative of f(x,α)

with respect to x evaluated at x0. Hence the last term converges to zero in probability.

The derivative of the estimating equation (4.2) with respect to α in this case is given by

H∗∗

n (α) = n−1

n
∑

i=1

wi[
ŝei − f(p̂i,α)

f(p̂i,α)(1− f(p̂i,α))
f̈α(p̂i) +

(ŝei − f(p̂i,α))(2f(p̂i,α)− 1)ḟα(p̂i)ḟα(p̂i)
T

f(p̂i,α)2(1− f(p̂i,α))2

+
ḟα(p̂i)ḟα(p̂i)

T

f(p̂i,α)(1− f(p̂i,α))
].
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It follows that the first two terms converge to zero and the third term converges to

n−1

n
∑

i=1

E
[

wi
ḟα(p̂i)ḟα(p̂i)

T

f(p̂i,α)(1− f(p̂i,α))

]

.

By using similar arguments as the proof of Theorem 4.1, we can show that H∗∗

n (α) converges

in probability to H .

Combining all of the above results and using Slutsky’s theorem, we conclude that under

Case III the sequence of
√
n(α̂−α) is asymptotically normal with mean zero and covariance

matrix H−1(W̃1 + W̃2)H
−1.
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Table 1: Data for Example 1
Study Prevalence (%) Sensitivity (%) Specificity (%)

1 45.0 78.2 73.3
2 60.0 62.5 83.3
3 58.0 48.9 76.9
4 52.2 72.7 77.1
5 47.8 68.6 34.4
6 53.6 80.0 84.6
7 70.3 45.5 51.9
8 55.0 72.2 72.7
9 51.8 66.7 44.8
10 57.1 63.2 61.6
11 47.0 65.5 59.7
12 58.2 64.1 46.4
13 79.5 64.2 45.1
14 41.5 89.6 78.5
15 59.7 69.4 33.7

Table 2: Data for Example 2
Study Prevalence (%) Sensitivity (%) Specificity (%)

1 22 55 75
2 28 100 85
3 73 94 100
4 38 93 77
5 34 93 73
6 53 100 95
7 32 70 75
8 35 83 87
9 57 100 89
10 57 86 100
11 33 88 89
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