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Appendix

In the following proofs we consider four different cases:

Case I: p; and S; are known;
Case II: p; are known, S; are unknown and estimated by se;;
Case III: S; are known, p; are unknown and estimated by p;;
Case 1V: p; and S; are unknown and estimated by p; and se;, respectively.

Case I is the most ideal state where complete knowledge about p; and S; are acquired
in all studies. The examination of the relationship between these two quantities could be
done in a standard analysis. Cases II and III allow one of the two quantities to be known

exactly while the other has to be estimated. In a real meta analysis, Case IV may be the
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most relevant to practice where both are estimated. We note that in the main manuscript
we only present the theoretical results for Case IV. We introduce Case I - III to describe via
comparison how the estimation of correlation between se; and p; is gradually influenced by

the fact that these population-specific parameters themselves are estimated from the data.

0.1 Consistency of p

Proof of Theorem 3.1. 1t is easy to see that p is consistent for Case I (Fisher (1925)). We only
show the results for Case IV since other cases can be proved by following similar arguments.

We note that
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Applying the strong law of large number (Theorem 1.14 in Shao (1999)) for independent
random variables with finite expectations, we can argue that as n — oo the second and third

terms in the above equation vanish to zero almost surely whereas the first term converges to
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with probability one. Followed by the consistency of p; and the use of a version of dominated

convergence theorem (ex 6.3 in Durrett (2005)), it can be shown that
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Similarly, we can show
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Finally we use the continuous mapping theorem (Theorem 1.10 in Shao (1999)) to con-

clude
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0.2 Consistency and normality of &

Proof of Theorem 4.1. By using strong law of large number for independent variables, we

have
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By using dominated convergence theorem, the fact that se; is uncorrelated to p; and the

consistency of p; to p;, we have
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The limit on the right-hand-side is zero when evaluated at the true parameter. This verifies
that the estimating equation defined in (4.2) is asymptotically unbiased and the consistency

of & follows (eg. Lemma 5.10 in van der Vaart (1998)).
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Proof of Theorem 4.2. The asymptotic normality of \/n(&—a) is now a consequence of The-

orem 5.21 in van der Vaart (1998). We consider Case I first. Denote V;(a) = wlf((s’ )((1 ’?(la)fz))'

We then have
71/2 Z V O WQ)

where

We = B Z g

The derivative of the estimating equation (4.2) with respect to a is given by
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It follows that the summations of the first two terms converge to zero and the third term

converges to
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Therefore, under Case I, the sequence of /n(& — a) is asymptotically normal with mean
zero and covariance matrix H *1V~V2H -1

We then consider Case II. The estimating equations (4.2) can now be decomposed into
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For the first term, we have
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where the second equality follows from var(se;|S;) = S;(1
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The second term converges to the same normal distribution as argued previously. Fur-

thermore, the two terms are orthogonal if we observe
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The derivative of the estimating equation (4.2) with respect to a in this case is given by
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which converges to H in probability again. Therefore /n(& — ) is asymptotically normal

with mean zero and covariance matrix H (W + Wy)H ',

We skip Case III since its proof can be mimicked partially from what we show in the



following case. In Case IV where p; is also replaced by p; in estimating equations (4.2), the

equations can be written as
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The first two terms thus converges to two normal distributions as argued before. For the

last term, we have
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where the second equality follows a Taylor expansion and f'(zg, &) is the derivative of f(z, o)
with respect to x evaluated at zy. Hence the last term converges to zero in probability.

The derivative of the estimating equation (4.2) with respect to « in this case is given by
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It follows that the first two terms converge to zero and the third term converges to

By using similar arguments as the proof of Theorem 4.1, we can show that H}*(a) converges
in probability to H.
Combining all of the above results and using Slutsky’s theorem, we conclude that under

Case III the sequence of /n(&— ) is asymptotically normal with mean zero and covariance

matrix H~ (W + Wy)H L.
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Table 1: Data for Example 1

Study Prevalence (%)

Sensitivity (%)

Specificity (%)
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45.0
60.0
58.0
52.2
47.8
53.6
70.3
55.0
51.8
o7.1
47.0
58.2
79.5
41.5
99.7

78.2
62.5
48.9
72.7
68.6
80.0
45.5
72.2
66.7
63.2
65.5
64.1
64.2
89.6
69.4

73.3
83.3
76.9
77.1
34.4
84.6
51.9
2.7
44.8
61.6
59.7
46.4
45.1
78.5
33.7

Table 2: Data for Example 2

Study Prevalence (%)

Sensitivity (%)

Specificity (%)
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22
28
73
38
34
93
32
35
o7
o7
33

95
100
94
93
93
100
70
83
100
86
38

75
85
100
7
73
95
75
87
89
100
89




