Supplementary Material

In this section we will prove that under a special case of the null hypothesis the test statistic (5) with scoring function $S_i(t) = \pm 1$ given in (7) has an asymptotic normal distribution. To show this we will use several theorems and definitions from Fleming and Harrington [10]. Let $\lambda_i(t)$ be the hazard rate for species i at time t. We shall assume a strong version of our null hypothesis given by

$$H_0: \lambda_i(t) = \lambda(t) \text{ for } i = 1, ..., n \text{ and } \forall t \in \mathbb{R}^+$$
 (22)

This amounts to assuming that there are no age effects (the Red Queen hypothesis) or covariate effects on species extinction. I will prove that:

$$\frac{J}{\sqrt{V}} \xrightarrow{D} N(0,1) \tag{23}$$

This will be shown by applying a martingale central limit theorem to statistic J [10]. Using the univariate case of theorem 5.3.4 of Fleming and Harrington we have the following central limit theorem:

THEOREM 6.1 Let W be a Brownian motion process and f be a measurable nonnegative function such that $\alpha(t) = \int_0^t f^2(s)ds < \infty$, $\forall t > 0$. Suppose,

- (1) $\{N_i(t): i=1,...,n\}$ is a counting process with stochastic basis $(\Omega, \mathcal{F}, \{\mathcal{F}_t: t>0\}, P)$
- (2) The compensator $A_i(t)$ of $N_i(t)$ is continuous.
- (3) $H_i(t)$ is a locally bounded \mathcal{F}_t -predictable process.

Define

$$M_i(t) \equiv N_i(t) - A_i(t), \tag{24}$$

$$U_i(t) = \int_0^t H_i(s)dM_i(s), \ U(t) = \sum_{i=1}^n U_i(t),$$
 (25)

and for any $\epsilon > 0$

$$U_{i,\epsilon}(t) = \int_0^t H_i(s) I_{\{|H_i(s)| \ge \epsilon\}} dM_i(s),$$

$$U_{\epsilon}(t) = \sum_{i=1}^{n} U_{i,\epsilon}(t).$$

Assume for any $t \in [0, \eta]$ as $n \to \infty$

$$i. \langle U, U \rangle (t) \xrightarrow{p} \int_0^t f^2(s) ds$$

ii.
$$\langle U_{\epsilon}, U_{\epsilon} \rangle (t) \stackrel{p}{\to} 0 \text{ for any } \epsilon > 0$$

Then
$$U \stackrel{D}{\to} \int f dW$$
 in $D[0, \eta]$ as $n \to \infty$.

Proof of (23):

Before showing that i. and ii. hold, I will show conditions 1-3 for the situation of our statistic J:

(1) Show $N_i(t)$ is a counting process.

The relevant definitions are:

DEFINITION 6.2 A counting process is a stochastic process $\{N(t): t > 0\}$ adapted to a filtration $\{\mathcal{F}_t: t > 0\}$ with N(0) = 0 and $N(t) < \infty$ a.s. and whose paths are with probability one right-continuous, piecewise constant, and have only jump discontinuities, with jumps of size +1.

DEFINITION 6.3 A stochastic process $\{X(t): t \geq 0\}$ is adapted to a filtration if, for every $t \geq 0$, X(t) is \mathcal{F}_t -measurable, i.e., $\{\omega: X(t,\omega) \leq x\} \in \mathcal{F}_t$.

In our situation

$$N_i(t) = I_{\{R_i \le t\}} = \begin{cases} 0, t < R_i \\ 1, t \ge R_i \end{cases}$$
 (26)

where $R_i > 0$. This clearly satisfies N(0) = 0 and $N(t) < \infty$, and has paths which are right-continuous and piecewise constant, with a single jump of size 1. The filtration we use throughout this work is

$$\mathcal{F}_t = \sigma \left\{ N_i(u), N_i^L(u) : 0 \le u \le t \right\}, \text{ where } N_i^L(u) = I_{\{L_i \le u\}}.$$
 (27)

Since $N_i(t) \in \{N_i(u), N_i^L(u) : 0 \le u \le t\}$, it is clear that $N_i(t)$ is \mathcal{F}_{t} -measurable.

(2) Now I will show that the continuous compensator of $N_i(t)$ is $A_i(t) \equiv \int_{\gamma}^{t} Y_i(u) \lambda_i(u) du$, that is $A_i(t)$ is increasing, continuous and \mathcal{F}_t -predictable and $M_i(t) = N_i(t) - A_i(t)$ is an \mathcal{F}_t -martingale, where

$$\lambda_i(t) = \lim_{h \to 0} \frac{1}{h} P(t < R_i < t + h | L_i < t < R_i).$$
 (28)

To show this I will need to establish the following:

- a) $A_i(t)$ is continuous, increasing, and \mathcal{F}_t -predictable.
- b) $M_i(t)$ is adapted to \mathcal{F}_t .
- c) $E|M_i(t)| < \infty$
- d) $E(M_i(t+s)|\mathcal{F}_t) = M_i(t)$
- a) Show $A_i(t)$ is increasing, continuous and \mathcal{F}_t -predictable.

 $A_i(t)$ is continuous and increasing since it is the cumulative integral of a non-negative integrand. Define

$$\Lambda_i(t) = \int_{\gamma}^t \lambda_i(u) \, du \, .$$

 $A_i(t)$ is adapted since

$$A_i(t) = \int_{\gamma}^{t} I(L_i < u \le R_i) \lambda_i(u) du = \Lambda_i(t \land R_i) - \Lambda_i(t \land L_i)$$

and both $t \wedge R_i$ and $t \wedge L_i$ are easily seen to be adapted. Now, since $A_i(t)$ is continuous and adapted, we conclude (from Lemma 1.4.1 of Fleming and Harrington) that $A_i(t)$ is predictable.

b) Show $M_i(t)$ is adapted to \mathcal{F}_t . It suffices to show that $N_i(t)$ and $A_i(t)$ are adapted to \mathcal{F}_t , but these were shown earlier. c) Show $E|M_i(t)| < \infty$.

$$E|M_{i}(t)| \leq E(N_{i}(t)) + E \int_{\gamma}^{t} Y_{i}(u)\lambda_{i}(u)du$$

$$\leq 1 + \int_{\gamma}^{t} P(L_{i} < u \leq R_{i})\lambda_{i}(u)du$$

$$\leq 1 + \int_{\gamma}^{t} \lambda_{i}(u)du$$

$$< \infty$$

d) Show $E(M_i(t+s)|\mathcal{F}_t) = M_i(t)$ a.s. $\forall s, t \geq 0$.

$$E(M_{i}(t+s)|\mathcal{F}_{t}) = E\left\{N_{i}(t+s) - \int_{\gamma}^{t+s} Y_{i}(u)\lambda_{i}(u)du|\mathcal{F}_{t}\right\}$$

$$= N_{i}(t) - \int_{\gamma}^{t} Y_{i}(u)\lambda_{i}(u)du + E\left\{N_{i}(t+s) - N_{i}(t)|\mathcal{F}_{t}\right\}$$

$$- E\left\{\int_{t}^{t+s} Y_{i}(u)\lambda_{i}(u)du|\mathcal{F}_{t}\right\}$$

$$= M_{i}(t) + E\left\{N_{i}(t+s) - N_{i}(t)|\mathcal{F}_{t}\right\} - E\left\{\int_{t}^{t+s} Y_{i}(u)\lambda_{i}(u)du|\mathcal{F}_{t}\right\}$$

Thus it suffices to show that

$$E\left\{N_i(t+s) - N_i(t)|\mathcal{F}_t\right\} = E\left\{\int_t^{t+s} Y_i(u)\lambda_i(u)du|\mathcal{F}_t\right\}$$
(29)

For the remainder of the proof we will suppress the use of i in the notation. Let us start by noting that $\mathcal{F}_t = \sigma \{L^{(t)}, R^{(t)}\}$ where

$$L^{(t)} = \begin{cases} L, L \le t \\ \infty, L > t \end{cases}$$

$$R^{(t)} = \begin{cases} R, R \le t \\ \infty, R > t \end{cases}$$

Removing the i notation from the left hand side of the equation (29) we have:

$$E(N(t+s) - N(t)|\mathcal{F}_t) = P(t < R \le t + s|\mathcal{F}_t)$$

$$= E(I_{\{t < R \le t + s\}}|\mathcal{F}_t)$$

$$= \begin{cases} 0, & \text{if } R \le t \\ P(t < R \le t + s|L > t), & \text{if } L > t \\ 1 - e^{-\int_t^{t+s} \lambda(u)du}, & \text{if } L \le t < R \end{cases}$$
(30)

When L > t equation (30) follows from $\{\omega : L(\omega) > t\} = \{\omega : L^{(t)}(\omega) = R^{(t)}(\omega) = \infty\}.$

Now we will evaluate the right hand side of equation (29) and show that it is equal to the left.

$$E\left(\int_{t}^{t+s} Y(u)\lambda(u)du|\mathcal{F}_{t}\right) = \int_{t}^{t+s} E(Y(u)|\mathcal{F}_{t})\lambda(u)du \tag{31}$$

For t < u < t + s, let's consider equation (31) on the 3 sets: $\{R \le t\}$, $\{L > t\}$, and $\{L \le t < R\}$. By definition we know that

$$E(Y(u)|\mathcal{F}_t) = P(L < u \le R|\mathcal{F}_t).$$

For $\omega \in \{R \le t\}$, $P(L < u \le R | \mathcal{F}_t) = 0$. Thus,

$$\int_{t}^{t+s} E(Y(u)|\mathcal{F}_{t})\lambda(u)du = 0$$
(32)

on $\{R \leq t\}$. For $\omega \in \{L \leq t < R\}$,

$$P(L < u \le R | \mathcal{F}_t) = P(R \ge u | L, R > t) = e^{-\int_t^u \lambda(z) dz}.$$

Thus, if $L \leq t < R$,

$$\int_{t}^{t+s} E(Y(u)|\mathcal{F}_{t})\lambda(u)du = \int_{t}^{t+s} e^{-\int_{t}^{u} \lambda(z)dz} \lambda(u)du$$

$$= -e^{-\int_{t}^{u} \lambda(z)dz} \Big|_{u=t}^{u=t+s}$$

$$= 1 - e^{-\int_{t}^{t+s} \lambda(z)dz} \tag{33}$$

For $\omega \in \{L > t\}$,

$$E(Y(u)|\mathcal{F}_t) = P(L < u \le R|L > t) = P(t < L < u \le R|L > t)$$

$$= \frac{P(t < L < u \le R)}{P(L > t)}$$

$$= \frac{\int_t^u P(R \ge u|L = z)dF_L(z)}{P(L > t)}$$

$$= \frac{\int_t^u e^{-\int_z^u \lambda(w)dw}dF_L(z)}{P(L > t)}$$
(34)

Thus by equation (34) we have,

$$\int_{t}^{t+s} E(Y(u)|\mathcal{F}_{t})\lambda(u)du = \int_{t}^{t+s} \lambda(u) \left(\frac{\int_{t}^{u} e^{-\int_{z}^{u} \lambda(w)dw} dF_{L}(z)}{P(L>t)}\right) du$$

$$= \frac{1}{P(L>t)} \int_{t}^{t+s} dF_{L}(z) \int_{z}^{t+s} e^{-\int_{z}^{u} \lambda(w)dw} \lambda(u) du$$

$$= \frac{\int_{t}^{t+s} dF_{L}(z)}{P(L>t)} \left(-e^{-\int_{z}^{u} \lambda(w)dw}|_{z}^{t+s}\right)$$

$$= \frac{\int_{t}^{t+s} dF_{L}(z)}{P(L>t)} \left(1 - e^{-\int_{z}^{t+s} \lambda(w)dw}\right)$$

$$= \frac{P(R \le t + s, L > t)}{P(L>t)}$$

$$= P(R \le t + s|L>t)$$

$$= P(t < R \le t + s|L>t)$$
(35)

Now by equations (31), (32), (33), and (35) we have,

$$\int_{t}^{t+s} E(Y(u)|\mathcal{F}_{t})\lambda(u)du = \begin{cases}
0, & \text{if } R \leq t \\
P(t < R \leq t + s|L > t), & \text{if } L > t \\
1 - e^{-\int_{t}^{t+s} \lambda(z)dz}, & \text{if } L \leq t < R
\end{cases}$$
(36)

This is equivalent to equation (30).

(3) Show that $H_i(t) = S_i(t)Y_i(t)$ is locally bounded. We will show this for the particular score function $S_i(t)$ which takes the values +1 or -1 (7). This score function is actually bounded globally:

$$|H_i(t)| = |S_i(t)Y_i(t)| < Y_i(t) < 1 \ \forall t > 0 \tag{37}$$

i. Show $\langle J, J \rangle (t) \xrightarrow{p} \int_0^t f^2(s) ds$.

Let's first break down Statistic J.

$$J(t) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dN_{i}(u)$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u) + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) d\Lambda_{i}(u)$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u) + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) \lambda_{i}(u) du$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u) + \frac{1}{\sqrt{n}} \int_{\gamma}^{t} \sum_{i=1}^{n} S_{i}(u) Y_{i}(u) \lambda_{i}(u) du$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u) + \frac{1}{\sqrt{n}} \int_{\gamma}^{t} \sum_{i=1}^{n} S_{i}(u) Y_{i}(u) \lambda(u) du \text{ (by } H_{0})$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u)$$

$$(38)$$

$$\langle J, J \rangle (t) = \left\langle \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u), \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u) \right\rangle$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\langle \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u), \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) dM_{i}(u) \right\rangle$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}^{2}(u) Y_{i}(u) dA_{i}(u)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} Y_{i}(u) dA_{i}(u)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} Y_{i}(u) dA_{i}(u) \text{ by (7)}$$

$$= \int_{\gamma}^{t} \frac{1}{n} \sum_{i=1}^{n} Y_{i}(u) \lambda(u) du$$

Now we will show a.s. uniform convergence of $\frac{1}{n} \sum_{i=1}^{n} Y_i(u)$.

$$\frac{1}{n} \sum_{i=1}^{n} Y_i(u) = \frac{1}{n} \sum_{i=1}^{n} I_{\{R_i \ge u\}} - \frac{1}{n} \sum_{i=1}^{n} I_{\{L_i \ge u\}} \overset{a.s.}{\to}_{uniformly} S_R(u) - S_L(u)$$

as $n \to \infty$ by the Glivenko-Cantelli Theorem. Here we are assuming the pairs (L_i, R_i) , i = 1, ..., n are i.i.d. and denote the survival functions of L_i and R_i

by S_L and S_R , respectively. This implies that

$$\lambda(u) \left(\frac{1}{n} \sum_{i=1}^{n} Y_i(u) \right) \stackrel{a.s.}{\to}_{uniformly} \lambda(u) \left(S_R(u) - S_L(u) \right) \text{ as } n \to \infty.$$
 (39)

Since

$$\sup_{u} \left| \left(\frac{1}{n} \sum_{i=1}^{n} Y_i(u) \right) \lambda(u) - \left(S_R(u) - S_L(u) \right) \lambda(u) \right| \stackrel{a.s.}{\to} 0,$$

integration leads to

$$\langle J, J \rangle (t) \stackrel{a.s.}{\rightarrow} \int_{\gamma}^{t} f^{2}(u) du$$

for all t where $f^2(u) = (S_{R(u)} - S_{L(u)})\lambda(u)$.

$$J_{\epsilon}(t) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}(u) Y_{i}(u) I_{\{|S_{i}(u)Y_{i}(u)\frac{1}{\sqrt{n}}| > \epsilon\}} dM_{i}(u)$$

$$\langle J_{\epsilon}, J_{\epsilon} \rangle (t) = \frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} S_{i}^{2}(u) I_{\left\{|S_{i}(u)Y_{i}(u)\frac{1}{\sqrt{n}}| > \epsilon\right\}} d\Lambda(u)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} I_{\left\{|\frac{Y_{i}(u)}{\sqrt{n}}| > \epsilon\right\}} d\Lambda(u)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{\gamma}^{t} I_{\left\{Y_{i}(u) > \sqrt{n}\epsilon\right\}} d\Lambda(u)$$

$$= 0 \text{ for } n > 1/\epsilon^{2}.$$