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Supplementary Material

In this section we will prove that under a special case of the null hypothesis the
test statistic (5) with scoring function S;(¢) = £1 given in (7) has an asymptotic
normal distribution. To show this we will use several theorems and definitions from
Fleming and Harrington [10]. Let A;(¢) be the hazard rate for species i at time ¢.
We shall assume a strong version of our null hypothesis given by

Ho: M\i(t) = X(t) fori=1,...,n and Vt € R (22)

This amounts to assuming that there are no age effects (the Red Queen hypothesis)
or covariate effects on species extinction. I will prove that:

J D
N = N(0,1) (23)

This will be shown by applying a martingale central limit theorem to statistic
J [10]. Using the univariate case of theorem 5.3.4 of Fleming and Harrington we
have the following central limit theorem:

THEOREM 6.1 Let W be a Brownian motion process and f be a measurable nonneg-
ative function such that a(t) = fot f2(s)ds < oo, ¥Vt > 0.
Suppose,

(1) {N;(t):i=1,...,n} is a counting process with  stochastic  basis
(QF {F::t>0},P)

(2) The compensator A;(t) of N;(t) is continuous.

(8) H;(t) is a locally bounded Fy-predictable process.

Define

i(t) —
Ui(t) = / Hy(s)dMi(s), U(H) = 3" Ui(o), (25)

i=1

and for any € > 0

t
Ui ,(t) :/0 Hi(s)I{1m, ()| >y dMi(s),

Assume for any t € [0,n] as n — oo

i (UU) ()2 [] f2(s)ds
and
i. (U, U (t) 20 for any e > 0

Then U 2 J fdW in D[0,7n] as n — oo.

Proof of (23):
Before showing that 4. and 4. hold, I will show conditions 1-3 for the situation of
our statistic J:
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(1) Show N;(t) is a counting process.

The relevant definitions are:

DEFINITION 6.2 A counting process is a stochastic process {N(t) : t > 0}
adapted to a filtration {Fy : t > 0} with N(0) = 0 and N(t) < o0 a.s. and
whose paths are with probability one right-continuous, piecewise constant, and
have only jump discontinuities, with jumps of size +1.

DEFINITION 6.3 A stochastic process {X (t) : t > 0} is adapted to a filtration
if, for every t >0, X(t) is Fy-measurable, i.e., {w: X (t,w) <z} € F.

In our situation

0,t < R;
Ni(t) = Imoety = {17 i (26)

where R; > 0. This clearly satisfies N(0) = 0 and N(¢) < oo, and has paths
which are right-continuous and piecewise constant, with a single jump of
size 1. The filtration we use throughout this work is

Fi=o0 {Nl(u),NzL(u) 10 <u<t}, where NF(u) = I <uy- (27)

Since N;(t) € {N;(u), N}(u):0<wu<t}, it is clear that N;(t) is Fy-
measurable
Now I Will show that the continuous compensator of N;(t) is A;(t) =

f Yi(u)i(u)du, that is A;(t) is increasing, continuous and Fi-predictable
and M( ) N;(t) — A;(t) is an Fi-martingale, where

)\()_hi%hP(t<R <t+h|lL; <t<R;). (28)
To show this I will need to establish the following:

a) A;(t) is continuous, increasing, and Fy-predictable.
b) M;(t) is adapted to F;.

c) E|M;(t)] < oo
d) E(Mi(t + s)|Fr) = Mi(t)
a) Show A;(t) is increasing, continuous and Fi-predictable.

A;(t) is continuous and increasing since it is the cumulative integral
of a non-negative integrand. Define

v

A;(t) is adapted since
t
v

and both t A R; and t A L; are easily seen to be adapted. Now, since
A;(t) is continuous and adapted, we conclude (from Lemma 1.4.1 of
Fleming and Harrington) that A;(t) is predictable.

b) Show M;(t) is adapted to F;.
It suffices to show that N;(t) and A;(t) are adapted to F:, but these
were shown earlier.
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c) Show E|M;(t)| < co.

E|M;(t)| < E(N,(t)) + E / Yi(u) () du
vy

| /\

t
+/PL <u < R)Ai(u)du
g

t
1+/ Ai(u)du
g

< 0

IN

d) Show E(M;(t + s)|F) = M;(t) a.s. Vs, t > 0.

t+s

E(M;(t+s)|F) = {N(t+s) Yi(u))\i(u)du|ft}

/“Y u)du 4+ E {N;(t + 5) — N;(t)|F:}

—E{[H%ﬂm&WMME}

t+s
:A@@%+Eﬂ%@+syaM@ﬂE}—E{

Yi(u))\i(u)du|ft}

t

Thus it suffices to show that

t+s

For the remainder of the proof we will suppress the use of ¢ in the
notation. Let us start by noting that 7, = o {L(t), R(t)} where

1 — L,L<t
" loo, L>t

) _ R, R<t
R _{OO,R>L‘

Removing the i notation from the left hand side of the equation (29)
we have:

E(N(t+s)— N(t)|F) =Pt < R<t+s|F)
E I{t<R<t+s}|ft)
TR<t
t<R<t+ﬂL>ﬂ, if L >t

1— e J7Mwdu, ifL<t<R
(30)
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When L > ¢ equation (30) follows from {w:L(w) >t} =
{w: L®(w) = RO (w) = 0o}

Now we will evaluate the right hand side of equation (29) and show
that it is equal to the left.

t+s t+s
E< t Y(u))\(u)du|ft> = E(Y (u)|F)A(u)du (31)

t

For t <u < t+ s, let’s consider equation (31) on the 3 sets: {R < t},
{L > t}, and {L <t < R}. By definition we know that

E(Y (u)|Ft) = P(L < u < R|F}).

For w e {R <t}, P(L <u < R|F;) = 0. Thus,

t+s
t E(Y (u)|F)A(w)du =0 (32)

on {R <t}. Forwe {L <t < R},
P(L <u<R|F)=PR>ulL,R>t)=¢ [ A2z

Thus, if L <t < R,

t+s t+s "
E(Y (w)| F)Mu)du = / e~ JTAEE ) (1) du
t t

” u=t+s
— e ft A(z)dz

—1— e S/ MRz (33)
For w € {L > t},

EY(w)|F)=P(L<u<RIL>t)=Pt<L<u<R|L>t)
P(t<L<u<R)

P(L>1t)
S/ P(R>u|L = z)dFL(2)
N P(L > t)

B j;u e~ I ’\(w)dwdFL(Z) (34)
N P(L > t)
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Thus by equation (34) we have,

t+s t+s e~ S AM(w)dw 5
[ porwE = [ <L o >) N

1 t+s t+s f“ Ny
- - —J. w)dw
 P(L>t) /t dFL(Z)/z ‘ Mu)du

_ fttJrs dFL(Z)

HCR

t+s
_ ft dFL(Z) (1 e f:+b )\(w)dw)
P(L >t)

_ P(R<t+s,L>t)
B P(L >t)
=P(R<t+s|L>1)
Pt<R<t+s|L>t) (35)

Now by equations (31), (32), (33), and (35) we have,

t+s 0, if R S t

/ E(Y ()| FMu)du = P(t< R<t+s|L>t), ifL>t

t 1 — e [T A=)z, ifL<t<R
(36)

This is equivalent to equation (30).

(3) Show that H;(t) = S;(t)Yi(t) is locally bounded.
We will show this for the particular score function S;(¢) which takes the
values +1 or —1 (7). This score function is actually bounded globally:

[Hi(t)] = [Si(0)Ya(t)] < Yi(t) <1Vt >0 (37)

i. Show (J,J) (t) % [7 f2(s)ds.
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Let’s first break down Statistic J.

J(t) = \/15; A S5 ()Y (w)dN;(u)

- ; [ st + - : [ s
- = Z / 5 ()Yi (w)dMi(u) + = Z / "5V () ()
_ \/15 Z: L " 8 (u) i ()M () + \/15 L t :1 S5(w) V() s (u)du
- sz [ s« 7 [ : Si()Y: (AW (by Ho)
- 223 [ st (38)

Now we will show a.s. uniform convergence of * > | V;(u).
n 1=

n

1 1 & 1< as.
- Z Yi(u) = - Z Iig>uy — -~ Z I, >uy = uniformiy Sr(w) — Sp(u)
=1 =1

n -
=1

as n — oo by the Glivenko-Cantelli Theorem. Here we are assuming the pairs
(Liy R;), i = 1,...,n are i.i.d. and denote the survival functions of L; and R;
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by St and Sg, respectively. This implies that

A(u) <711 Z WU)) = wniformiy M) (Sr(u) — Sp(u)) asn —oo.  (39)

(izﬁﬁw>Mw—wmw—Sﬂwa>ﬁ

integration leads to

sup
u

uﬂw%/ﬂwm

for all ¢ where f2(u) = (Sr) — Si(u)Mu).

Je( \fZ/ Si(u {|s (u)Yi(u) = \x}dMi(“)
M%H)i;/S s i o A
- [ 1 g ah@
=1

1 [?

nZ/ Ly > yiey A1)
=1

=0 for n > 1/€2.
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