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Supplementary Material

In this section we will prove that under a special case of the null hypothesis the
test statistic (5) with scoring function Si(t) = ±1 given in (7) has an asymptotic
normal distribution. To show this we will use several theorems and definitions from
Fleming and Harrington [10]. Let λi(t) be the hazard rate for species i at time t.
We shall assume a strong version of our null hypothesis given by

H0 : λi(t) = λ(t) for i = 1, ..., n and ∀t ∈ R+ (22)

This amounts to assuming that there are no age effects (the Red Queen hypothesis)
or covariate effects on species extinction. I will prove that:

J√
V

D→ N(0, 1) (23)

This will be shown by applying a martingale central limit theorem to statistic
J [10]. Using the univariate case of theorem 5.3.4 of Fleming and Harrington we
have the following central limit theorem:

Theorem 6.1 Let W be a Brownian motion process and f be a measurable nonneg-
ative function such that α(t) =

∫ t
0
f2(s)ds <∞, ∀t > 0.

Suppose,

(1) {Ni(t) : i = 1, ..., n} is a counting process with stochastic basis
(Ω,F , {Ft : t > 0} , P )

(2) The compensator Ai(t) of Ni(t) is continuous.
(3) Hi(t) is a locally bounded Ft-predictable process.

Define

Mi(t) ≡ Ni(t)−Ai(t), (24)

Ui(t) =
∫ t

0

Hi(s)dMi(s), U(t) =
n∑
i=1

Ui(t), (25)

and for any ε > 0

Ui,ε(t) =
∫ t

0

Hi(s)I{|Hi(s)|≥ε}dMi(s),

Uε(t) =
n∑
i=1

Ui,ε(t).

Assume for any t ∈ [0, η] as n→∞

i. 〈U,U〉 (t) p→
∫ t

0
f2(s)ds

and
ii. 〈Uε, Uε〉 (t)

p→ 0 for any ε > 0

Then U
D→
∫
fdW in D[0, η] as n→∞.

Proof of (23):
Before showing that i. and ii. hold, I will show conditions 1-3 for the situation of
our statistic J :
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(1) Show Ni(t) is a counting process.
The relevant definitions are:

Definition 6.2 A counting process is a stochastic process {N(t) : t > 0}
adapted to a filtration {Ft : t > 0} with N(0) = 0 and N(t) < ∞ a.s. and
whose paths are with probability one right-continuous, piecewise constant, and
have only jump discontinuities, with jumps of size +1.

Definition 6.3 A stochastic process {X(t) : t ≥ 0} is adapted to a filtration
if, for every t ≥ 0, X(t) is Ft-measurable, i.e., {ω : X(t, ω) ≤ x} ∈ Ft.

In our situation

Ni(t) = I{Ri≤t} =
{

0, t < Ri
1, t ≥ Ri

(26)

where Ri > 0. This clearly satisfies N(0) = 0 and N(t) <∞, and has paths
which are right-continuous and piecewise constant, with a single jump of
size 1. The filtration we use throughout this work is

Ft = σ
{
Ni(u), NL

i (u) : 0 ≤ u ≤ t
}
, where NL

i (u) = I{Li≤u}. (27)

Since Ni(t) ∈
{
Ni(u), NL

i (u) : 0 ≤ u ≤ t
}

, it is clear that Ni(t) is Ft-
measurable.

(2) Now I will show that the continuous compensator of Ni(t) is Ai(t) ≡∫ t
γ Yi(u)λi(u)du, that is Ai(t) is increasing, continuous and Ft-predictable

and Mi(t) = Ni(t)−Ai(t) is an Ft-martingale, where

λi(t) = lim
h→0

1
h
P (t < Ri < t+ h|Li < t < Ri). (28)

To show this I will need to establish the following:
a) Ai(t) is continuous, increasing, and Ft-predictable.
b) Mi(t) is adapted to Ft.
c) E|Mi(t)| <∞
d) E(Mi(t+ s)|Ft) = Mi(t)
a) Show Ai(t) is increasing, continuous and Ft-predictable.

Ai(t) is continuous and increasing since it is the cumulative integral
of a non-negative integrand. Define

Λi(t) =
∫ t

γ
λi(u) du .

Ai(t) is adapted since

Ai(t) =
∫ t

γ
I(Li < u ≤ Ri)λi(u) du = Λi(t ∧Ri)− Λi(t ∧ Li)

and both t ∧ Ri and t ∧ Li are easily seen to be adapted. Now, since
Ai(t) is continuous and adapted, we conclude (from Lemma 1.4.1 of
Fleming and Harrington) that Ai(t) is predictable.

b) Show Mi(t) is adapted to Ft.
It suffices to show that Ni(t) and Ai(t) are adapted to Ft, but these
were shown earlier.
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c) Show E|Mi(t)| <∞.

E|Mi(t)| ≤ E(Ni(t)) + E

∫ t

γ
Yi(u)λi(u)du

≤ 1 +
∫ t

γ
P (Li < u ≤ Ri)λi(u)du

≤ 1 +
∫ t

γ
λi(u)du

<∞

d) Show E(Mi(t+ s)|Ft) = Mi(t) a.s. ∀s, t ≥ 0.

E(Mi(t+ s)|Ft) = E

{
Ni(t+ s)−

∫ t+s

γ
Yi(u)λi(u)du|Ft

}
= Ni(t)−

∫ t

γ
Yi(u)λi(u)du+ E {Ni(t+ s)−Ni(t)|Ft}

− E
{∫ t+s

t
Yi(u)λi(u)du|Ft

}
= Mi(t) + E {Ni(t+ s)−Ni(t)|Ft} − E

{∫ t+s

t
Yi(u)λi(u)du|Ft

}
Thus it suffices to show that

E {Ni(t+ s)−Ni(t)|Ft} = E

{∫ t+s

t
Yi(u)λi(u)du|Ft

}
(29)

For the remainder of the proof we will suppress the use of i in the
notation. Let us start by noting that Ft = σ

{
L(t), R(t)

}
where

L(t) =
{
L, L ≤ t
∞, L > t

R(t) =
{
R, R ≤ t
∞, R > t

Removing the i notation from the left hand side of the equation (29)
we have:

E(N(t+ s)−N(t)|Ft) = P (t < R ≤ t+ s|Ft)

= E(I{t<R≤t+s}|Ft)

=


0, if R ≤ t
P (t < R ≤ t+ s|L > t), if L > t

1− e−
R t+s

t
λ(u)du, if L ≤ t < R

(30)
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When L > t equation (30) follows from {ω : L(ω) > t} ={
ω : L(t)(ω) = R(t)(ω) =∞

}
.

Now we will evaluate the right hand side of equation (29) and show
that it is equal to the left.

E

(∫ t+s

t
Y (u)λ(u)du|Ft

)
=
∫ t+s

t
E(Y (u)|Ft)λ(u)du (31)

For t < u < t+ s, let’s consider equation (31) on the 3 sets: {R ≤ t},
{L > t}, and {L ≤ t < R}. By definition we know that

E(Y (u)|Ft) = P (L < u ≤ R|Ft).

For ω ∈ {R ≤ t}, P (L < u ≤ R|Ft) = 0. Thus,

∫ t+s

t
E(Y (u)|Ft)λ(u)du = 0 (32)

on {R ≤ t}. For ω ∈ {L ≤ t < R},

P (L < u ≤ R|Ft) = P (R ≥ u|L,R > t) = e−
R u

t
λ(z)dz.

Thus, if L ≤ t < R,

∫ t+s

t
E(Y (u)|Ft)λ(u)du =

∫ t+s

t
e−

R u

t
λ(z)dzλ(u)du

= −e−
R u

t
λ(z)dz

∣∣∣u=t+s

u=t

= 1− e−
R t+s

t
λ(z)dz (33)

For ω ∈ {L > t},

E(Y (u)|Ft) = P (L < u ≤ R|L > t) = P (t < L < u ≤ R|L > t)

=
P (t < L < u ≤ R)

P (L > t)

=

∫ u
t P (R ≥ u|L = z)dFL(z)

P (L > t)

=

∫ u
t e
−

R u

z
λ(w)dwdFL(z)

P (L > t)
(34)
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Thus by equation (34) we have,

∫ t+s

t
E(Y (u)|Ft)λ(u)du =

∫ t+s

t
λ(u)

(∫ u
t e
−

R u

z
λ(w)dwdFL(z)

P (L > t)

)
du

=
1

P (L > t)

∫ t+s

t
dFL(z)

∫ t+s

z
e−

R u

z
λ(w)dwλ(u)du

=

∫ t+s
t dFL(z)
P (L > t)

(
−e−

R u

z
λ(w)dw|t+sz

)
=

∫ t+s
t dFL(z)
P (L > t)

(
1− e−

R t+s

z
λ(w)dw

)
=
P (R ≤ t+ s, L > t)

P (L > t)

= P (R ≤ t+ s|L > t)

= P (t < R ≤ t+ s|L > t) (35)

Now by equations (31), (32), (33), and (35) we have,

∫ t+s

t
E(Y (u)|Ft)λ(u)du =


0, if R ≤ t
P (t < R ≤ t+ s|L > t), if L > t

1− e−
R t+s

t
λ(z)dz, if L ≤ t < R

(36)

This is equivalent to equation (30).

(3) Show that Hi(t) = Si(t)Yi(t) is locally bounded.
We will show this for the particular score function Si(t) which takes the

values +1 or −1 (7). This score function is actually bounded globally:

|Hi(t)| = |Si(t)Yi(t)| ≤ Yi(t) ≤ 1 ∀t ≥ 0 (37)

i. Show 〈J, J〉 (t) p→
∫ t

0 f
2(s)ds.
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Let’s first break down Statistic J .

J(t) ≡ 1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dNi(u)

=
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u) +

1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dΛi(u)

=
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u) +

1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)λi(u)du

=
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u) +

1√
n

∫ t

γ

n∑
i=1

Si(u)Yi(u)λi(u)du

=
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u) +

1√
n

∫ t

γ

n∑
i=1

Si(u)Yi(u)λ(u)du (by H0)

=
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u) (38)

〈J, J〉 (t) =

〈
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u),

1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)dMi(u)

〉

=
1
n

n∑
i=1

〈∫ t

γ
Si(u)Yi(u)dMi(u),

∫ t

γ
Si(u)Yi(u)dMi(u)

〉

=
1
n

n∑
i=1

∫ t

γ
S2
i (u)Yi(u)d 〈Mi,Mi〉 (u)

=
1
n

n∑
i=1

∫ t

γ
S2
i (u)Yi(u)dΛi(u)

=
1
n

n∑
i=1

∫ t

γ
Yi(u)dΛ(u) by (7)

=
∫ t

γ

1
n

n∑
i=1

Yi(u)λ(u)du

Now we will show a.s. uniform convergence of 1
n

∑n
i=1 Yi(u).

1
n

n∑
i=1

Yi(u) =
1
n

n∑
i=1

I{Ri≥u} −
1
n

n∑
i=1

I{Li≥u}
a.s.→uniformly SR(u)− SL(u)

as n→∞ by the Glivenko-Cantelli Theorem. Here we are assuming the pairs
(Li, Ri), i = 1, ..., n are i.i.d. and denote the survival functions of Li and Ri



December 3, 2012 Journal of Applied Statistics JASarticle

22

by SL and SR, respectively. This implies that

λ(u)

(
1
n

n∑
i=1

Yi(u)

)
a.s.→uniformly λ(u) (SR(u)− SL(u)) as n→∞. (39)

Since

sup
u

∣∣∣∣∣
(

1
n

n∑
i=1

Yi(u)

)
λ(u)− (SR(u)− SL(u))λ(u)

∣∣∣∣∣ a.s.→ 0,

integration leads to

〈J, J〉 (t) a.s.→
∫ t

γ
f2(u)du

for all t where f2(u) = (SR(u) − SL(u))λ(u).

Jε(t) =
1√
n

n∑
i=1

∫ t

γ
Si(u)Yi(u)In

|Si(u)Yi(u) 1√
n
|>ε

odMi(u)

〈Jε, Jε〉 (t) =
1
n

n∑
i=1

∫ t

γ
S2
i (u)In

|Si(u)Yi(u) 1√
n
|>ε

odΛ(u)

=
1
n

n∑
i=1

∫ t

γ
In
|Yi(u)
√

n
|>ε

odΛ(u)

=
1
n

n∑
i=1

∫ t

γ
I{Yi(u)>

√
nε}dΛ(u)

= 0 for n > 1/ε2.
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