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Additional file 1 – methods appendix 
 
Domain identification. 
We initially identified three environmental domains, air, water and land, based on 
selected chapters from the U.S. Environmental Protection Agency (EPA) 2008 Report on 
the Environment (ROE) [1].  Following consultation with the ROE, the team undertook a 
more extensive review to complement the domains and data sources already identified, 
which included the following activities: 1) Identified precise literature search terms, limits 
and reporting format; 2) conducted a literature review on “Environment and Infant 
Mortality”; 3) recorded findings; 4) finalized search terms for within-domain literature 
review; 5) conducted within domain literature review; 6) recorded findings. We chose 
infant mortality to be the health outcome for the literature search for several reasons: 1) 
infant mortality is a well-researched and understood health outcome; 2) infant mortality is 
a general outcome, with known positive associations with other lifetime-health measures 
like disability-adjusted life expectancy [2], and the environmental exposure – health 
outcome relationship would not be restricted to one organ (e.g., heart disease) or system 
(e.g., asthma); 3) the research team was largely composed of reproductive / perinatal 
researchers for whom infant mortality was an important health outcome. The literature 
review was conducted in PubMed, which is a service of the U.S. National Library of 
Medicine and the National Institutes of Health for the years 1980-2008. We added the 
built and social demographic domains based on the findings of the literature review. This 
search process revealed specific indicators that have been used to estimate the 
association of sub-domains and infant mortality. For instance, after searching under “air 
environment and infant mortality”, one would find literature assessing carbon monoxide 
(CO), particulate matter, ozone, etc. We then used each of these indicators as key terms 
to use in subsequent searches. The team also explored references from the main 
papers, defined as those that come up repeatedly in the various searches, to make sure 
seminal papers, indicators, sub-domains or domains were not missed. From this broad 
search, and our a priori identification, five specific domains were considered: air, water, 
land, built, and sociodemographic environments.  
 
Geographic level of analysis. 
The unit of analysis for EQI development was U.S. county. While county is a broad unit 
of analysis that may not allow for small-geography specificity, most national data 
sources are available at the county-level. We wanted to construct a replicable process 
and product for use across the United States and we deemed the county-level as the 
most widely generalizable. It also allows for linking to those health data aggregated to 
the county level, such as national birth statistics from the National Center for Health 
Statistics (NCHS).  
 
Data source time period. 
At the initiation of the EQI development, we restricted the temporal framework to 2000 to 
2005. We wanted to primarily utilize publicly available data, and this six-year window 
was chosen based on availability of both environmental (including decennial census) 
and outcome data (e.g., national birth records). 
 
Data sources. 
The data sources are described in detail elsewhere[3]. Briefly, data sources were 
considered for EQI inclusion based on temporal, spatial, and quality-related criteria. 
Temporal appropriateness required data to represent the 2000 to 2005 time period. Data 
sources were considered spatially appropriate if data were available at, or could be 
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aggregated or kriged to represent, the county-level for all 50 states. Kriging is a 
geospatial technique that uses known data points to interpolate data at locations with 
unknown measurements[4]. Data quality, especially related to data source 
documentation, was determined by data source managers (in data reports and internal 
documentation), project investigators, and with the larger field of environmental 
research, through use and critique of the various data sources.  
 
The air domain included two data sources:  the Air Quality System (AQS)[5], which is a 
repository of national ambient air concentrations from monitors across the country for 
criteria air pollutants; and the National-Scale Air Toxics Assessment (NATA)[6], which 
uses emissions inventory data and air dispersion models to estimate non-residential 
ambient concentrations of hazardous air pollutants (HAPs).   
 
The water domain comprised five data sources: Watershed Assessment, Tracking & 
Environmental Results (WATERS) Program Database [7], Estimates of Water Use in the 
U.S. [8], National Atmospheric Deposition Program (NDAP) [9], Drought Monitor 
Network[10], and National Contaminant Occurrence Database (NCOD) [11]. The 
WATERS Program Database is a collection of data from various EPA-conducted water 
assessment programs including impairment, water quality standards, pollutant discharge 
permits, and beach violations and closures.  The Estimates of Water Use in the U.S. is 
calculated by the United States Geological Survey (USGS) and includes county level 
estimates of water withdrawals for domestic, agricultural, and industrial uses. The NDAP 
dataset provides measures of chemicals in precipitation using a network of monitors 
located throughout the U.S. The Drought Monitor Data provides raster data on the 
drought status for the entire U.S. on a weekly basis.  The NCOD dataset provides data 
from public water supplies on 69 different contaminants.  
 
The land domain was constructed using data from five sources. The 2002 National 
Pesticide Use Database [12] estimates state-level pesticide usage based on pesticide 
ingredients and crop type. The 2002 Census of Agriculture [13] is a summary of 
agricultural activity, including information about crops, livestock, and chemicals used. 
The National Priority Site data [14] includes location of and information on sites that 
have been placed on the National Priority List (NPL), including indicators for major 
facilities (e.g., Superfund sites), large quantity generators, toxics release inventory, 
resources conservation and recovery act treatment, storage and disposal facilities (and 
corrective action facilities, assessment, cleanup, and redevelopment exchange 
(brownfield sites), and section seven tracking system pesticide producing site locations. 
The National Geochemical Survey [15] contains geochemical data (e.g., arsenic, 
selenium, mercury, lead, zinc, magnesium, manganese, iron, etc). The fifth source is the 
EPA Radon Zone Map [16], which identifies areas of the U.S. with the potential for 
elevated indoor radon levels.   
 
The sociodemographic domain included two data sources: the U.S. Census [17]and 
Federal Bureau of Investigation (FBI) Uniform Crime Report (UCR) [18].  The U.S. 
Census collects population and housing data every 10 years, economic and government 
data every five years and the American Community Survey annually. FBI UCR rate data 
are available annually and by crime type (violent or property).  
 
The built environment domain employed five data sources. Dun and Bradstreet collects 
commercial information on businesses and contains more than 195 million records [19]. 
These data are the only publically available data, which are not available for free, used 
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in the EQI. Topographically Integrated Geocoding Encoding Reference (TIGER) [20] 
data provides maps and road layers for the U.S. at multiple units of census geography. 
The Fatality Analysis Reporting System (FARS) [21] data is a national census providing 
the National Highway Traffic Safety administration yearly reports of fatal injuries suffered 
in motor vehicle crashes. Housing and Urban Development (HUD) [22] data provide a 
count of low-rent and section-eight housing in each housing authority area, which 
correspond to cities. The built environment domain also included one census variable; 
census data have been previously described.  
 
EQI construction. 
 
Variable construction. Each of the data sources could plausibly give rise to hundreds of 
potentially relevant variables; therefore only specific variables were selected – or in 
some cases constructed – from each of the data sources. Some variables have been 
widely used and were therefore obvious choices. For example, air quality is frequently 
estimated using measures of particulate matter or ozone, while the sociodemographic 
conditions frequently include some measure of poverty[23-25].  Other variables, 
particularly those in the water domain, needed to be constructed from multiple existing 
data sources. A detailed listing of all the constructed variables is available in Additional 
file 2. 

 
Statistical processes common to all variables in all domains. Variable collinearity was 
assessed within subgrouping and when the correlation coefficients exceeded 0.7, one 
variable was chosen for inclusion. Variables with low numbers of missing values were 
retained over those with high numbers of missing values. If missingness was 
approximately equal, the decision about which variable to retain was based on exposure 
routes from hazard summaries [26], with routes from the appropriate domain being 
primary. 
 
Variable missingness was also assessed to determine if missing data were missing or 
instead represented true zeros. For instance, when crime data was missing for a county 
we considered that missing but when low-income housing data were missing for a 
county, we considered those to be true zeros. When more than 50 percent of all counties 
were missing or zero for a given variable, that variable was excluded from further 
consideration for the EQI. 
 
Because of the data reduction approach used for index construction (principal 
components analysis (PCA), discussed in detail below), and the statistical assumptions 
implied by this method, variables were assessed for normality. This was done by visually 
comparing histograms of each variable’s distribution to a normal distribution for that 
variable. When violations of normality were visually observed, transformations were 
considered to enable the variable to best approximate the normal distribution. For each 
variable, natural-log, logit, and squared-root transformations were considered and 
distributions were visually inspected again. In each case, log transformation resulted in 
the most normally-appearing distribution. For variables with true zeros, log-
transformation was achieved by adding half of the non-zero minimum value to all 
observations then taking the natural log of that value.  
 
Finally, variables were assessed to determine valences for environmental quality. 
Valences, or the positive or negative direction of the indices, were determined based on 
potential for human health and ecological effects. Domains containing variables with 
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known or suspected potential for adverse health outcomes (e.g., increased morbidity or 
mortality) or ecologic effects (e.g., disruption of biotic integrity) were considered to have 
a negative valence with higher values representing poorer environmental quality.  In 
some cases, the valence of a given variable was unknown, in which case the valence 
would be empirically assigned through the data reduction / PCA process by virtue of its 
association with other variables in that domain. The specifics of variable construction for 
each of the domains are presented below. 

  
Air domain variable construction: Daily concentrations of six criteria air pollutants were 
downloaded from the AQS[5] and temporally averaged to get annual mean 
concentrations for each monitor location from 2000 to 2005. The annual means were 
then temporally and spatially kriged to estimate annual concentrations at each county 
center point. An exponential covariance structure for the spatial covariance was 
implemented to represent both temporal and spatial variability. These values were then 
averaged for the full study period.  
 
The 2002 NATA [6] database was used as an initial source of county-level HAP 
concentrations for evaluation of variable inclusion. After evaluation for collinearity (18 
variables removed) and missingness (77 variables removed), 81 HAPs were considered 
appropriate for EQI inclusion; emissions estimates for these were retrieved from the 
NATAs for 1999 (40 available) and 2005 (81 available), and estimates for each variable 
from the three NATAs were averaged to get a composite emissions estimate across the 
study period. Air domain variables were then checked for normality of distribution and 
where indicated were log-transformed (85 of 87 variables; PM2.5 and carbon tetrachloride 
were not transformed). For both criteria and hazardous air pollutants, higher 
concentrations are negative for air quality. Therefore, the valence of the air domain is 
negative.     
 
Water domain variable construction: Water impairment is determined for multiple types 
of water usage: agricultural, drinking, recreational, wildlife and industrial. Using the 
WATERS [7] database and joining the data in GIS software with measures of stream 
length in the Reach Address Database [27], we developed 11 variables for water 
impairment [28]. However, only one was used due to county-level missingness.  A 
cumulative measure of percent of water impaired for any use was used to represent 
overall water quality in the county. A high percent of impaired waters represents poor 
water quality and therefore the valence for this variable is negative. 
 
Water contamination can be caused by several sources and we used the number of 
National Pollutant Discharge Elimination System (NPDES) [29] permits in a county as a 
proxy for general water contamination. Using permit information in the WATERS 
database, we calculated 13 variables for the number of discharge permits in a county. 
Because the 10 variables which were calculated based on individual permit types had 
too many missing values, the three composite variables were included in the EQI. We 
developed a composite variable for number of sewage permits per 1000 km of stream 
length in a county by summing the number of Animal Feeding Operations/Concentrated 
Animal Feeding Operations NPDES permits, Combined Sewer Overflow NPDES 
permits, and NPDES permits for sludge in each county and dividing by the total stream 
length in the county. Similarly, we calculated composite variables for industrial permits 
(combining total of pretreatment NPDES permits, general facilities NPDES permits, and 
individual facilities NPDES permits) and stormwater permits (combining total of general 
stormwater NPDES Permits, industrial stormwater NPDES permits) county per 1000 km 
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of stream length. These three variables were not collinear. A high number of pollution 
permits is considered poor for water environmental quality and therefore the valence for 
these variables is negative. 
 
Recreational water quality was assessed also using the WATERS database [7] which 
also includes annual information on the number of days of beach closures, from which 
we created three variables for the number of days of beach closure for any event in a 
county, the number of days of beach closure for contamination events in a county, and 
the number of days of beach closure for rain events in a county. Overall, the seven 
variables constructed from these data were not collinear. A high percent of impaired 
waters, high number of pollution permits, and a high number of beach closures are 
associated with poorer water quality - and therefore the valence for these variables is 
negative.  
 
The quality of the water used for domestic needs data was extracted from the Estimates 
of Water Use in the U.S. [8] database as a proxy for domestic water quality. Initially 15 
variables of water withdrawals for domestic, agricultural, and industrial use were 
developed. After evaluation for collinearity (four variables removed) and missingness 
(nine variables removed), two variables were included in the EQI:  the percent of 
population on self-supplied water supplies and the percent of those on public water 
supplies which are on surface waters. These variables are not associated with good or 
bad water quality and therefore the valence is neutral for this component of the water 
domain.  
 
The atmospheric deposition of chemicals can affect water quality. The NDAP [9] dataset 
provides measures for the concentration of nine chemicals in precipitation, calcuim, 
magnesium, potassium, sodium, ammonium, nitrate, chloride, sulfate, and mercury. 
Annual summary data from each monitoring site for each year 2000-2005 were spatially 
kriged, using an exponential covariance structure, to achieve national coverage and 
county level estimates. The annual estimates for each pollutant were then averaged over 
the six-year study period.  The data for all pollutants, except sulfate, were skewed and 
therefore were log- transformed to achieve normal distributions. No variables were 
removed for collinearity or missingness. Higher concentrations of these chemicals are 
considered harmful to water quality, therefore the valence for this component of the 
water domain is negative, in the direction of poor environmental quality.   
 
We expected that drought affects the concentration of pathogens and chemicals in 
waters and therefore can affect water quality. The Drought Monitor [10] dataset provides 
raster data on six possible drought status conditions for the entire U.S. on a weekly 
basis. The data were spatially aggregated to the county level to estimate the percentage 
of the county in each drought status condition. From this data we used the percentage of 
the county in extreme drought (D3-D4) in the EQI. The remaining five drought status 
conditions were removed as all of the drought statuses were highly correlated. Drought 
can have negative impacts on water quality and therefore the valence is negative for this 
component of the water domain. 
 
Chemical contamination of water supplies was extracted from the NCOD [11] dataset 
which provides data on 69 contaminants provided by public water supplies throughout 
the country for the period from 1998-2005. Data for all samples in a county for each 
contaminant were averaged over the entire time period of the data. The data were also 
log-transformed to achieve normal distributions. Missing values were set to zero, with 
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the assumption that lack of measurement for an area indicated low concern for 
contamination with that particular contaminant. Eight contaminants, asbestos, diquat, 
endothall, glyphosate, dioxin, radium, beta particles, and uranium, were not represented 
in enough counties (missingness) to be included in the EQI. No variables were deleted 
for collinearity. Higher concentrations of these contaminants is considered harmful to 
water quality; therefore, the valence for this component of the water domain is negative.   
 
The majority of variables in the water domain are estimates of pollutants for which higher 
values are considered negative for water quality. The final valence of the water domain 
is negative, indicating a higher water domain score is associated with poorer 
environmental quality.     
 
Land domain variable construction: Information on the agricultural environment, 
including non-pesticide chemicals used in farming, harvested acreage, irrigated acreage, 
and proportion of farms were obtained from the 2002 Census of Agriculture [13]. 
Agricultural animal units were estimated by multiplying the number of livestock by the 
“animals per animal unit” statistic, then summing across livestock categories [30]. In 
total, eight variables representing agriculture were constructed and county-level 
percentages (acres applied per county total acreage) were calculated. Following 
normality assessment, all agriculture variables were log-transformed. While the 
presence of agriculture is not in and of itself negative, these variables represent the 
presence of non-naturally occurring chemicals and the potential for environmentally 
disruptive practices. Therefore, the valence of the agricultural construct was considered 
negative.   
 
Variables specific to pesticide application were also constructed. Herbicide, insecticide, 
and fungicide use for each county were estimated using crop data from the 2002 Census 
of Agriculture and state pesticide use data from the 2002 National Pesticide Use Dataset 
[12]. County level acreage for specific crops was multiplied by state level pesticide use 
rates (tons/acre) to estimate pesticide use. All pesticide variables were log-transformed. 
In general, exposure to pesticides is not generally considered positive for human or 
ecologic health; therefore, the valence for the pesticide components of the land domain 
was considered negative, which equates with poor environmental quality.  
 
The natural geochemistry and soil contamination of an area was estimated using the 
National Geochemical Survey (NGS) data [15]. These data, collected for stream 
sediments, soils, and other media, were combined at the county level to estimate the 
mean values of 13 geochemical contaminants available. Contaminant variables were 
evaluated for normality and all were log-transformed. While many of these contaminants 
are naturally-occurring, excess concentrations can be harmful to human and ecologic 
health; therefore the valence for soil contaminants is negative and higher values are 
representative of poor environmental quality.  
 
Large industrial facilities represent sources for pollutants released into the environment. 
The National Priority List [14] data from the EPA provided information on facilities for the 
U.S.. Because many counties had at least one, but no counties had all six of the facility 
types present, a composite facilities data variable was constructed by summing the 
count of any one of the six facilities types (brownfield sites (n=1226) [31], superfund sites 
(n=721) [32], toxic release inventory sites (n=2670) [33], pesticide producing location 
sites (n=2095) [34], large quantity generator sites (n=1926) [35], and treatment, storage 
and disposal sites (n=874) [36]) across the counties. The composite count of facilities 
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was divided by the county population, which produced a facilities rate. The facilities rate 
variable was assessed for normality and log-transformed. Because the presence of 
these facilities has the potential to be harmful to human and ecologic health, the valence 
of facilities per capita is negative, with higher values representing poor environmental 
quality.   
 
Finally, the potential for elevated indoor radon levels was represented using county 
score from the EPA Radon Zone map [16]. While radon is naturally-occurring, high 
levels are harmful to human health. Therefore the valence for higher amounts of this 
portion of the land domain represents poor environmental quality.  
 
As all constructs in the land domain were determined to have a negative valence, the 
valence of the land domain as a whole is also negative, indicating a higher land domain 
score represents poor environmental quality. 
 
Sociodemographic domain: The sociodemographic environment is an important 
environment for human health. Eleven variables from the United States Census [17] 
were included in the sociodemographic domain of the EQI. The 11 variables were 
percent renter-occupied housing, percent vacant housing units, median household 
value, percent persons living below the federal poverty line, percent no English-
speaking, percent earning more than a high school education, percent unemployed, 
percent working outside the county of residence, median number of rooms in the 
housing unit, and percent of housing with more than 10 units. Following normality 
assessment, the percent of housing with more than 10 units was log-transformed before 
inclusion in the EQI. The sociodemographic domain contains a mix of positive and 
negative features; therefore when the sociodemographic domain was constructed, 
positive variables were reverse-coded to ensure that a higher amount of the 
sociodemographic domain represented adverse environmental conditions.   
The area-level crime environment was represented using the Federal Bureau of 
Investigation (FBI) Uniform Crime Reports (UCR) [18]. These data required some 
manipulation for inclusion in the EQI. First, each jurisdiction or place, the unit at which 
crime data is reported, was assigned to a county Federal Information Processing 
Standards (FIPS) code. In cases when a jurisdiction covered more than one county, the 
reported crime was assigned to both counties. While this double assignment results in a 
slight inflation of crime reports for a state, there was no way to determine which county 
should receive the crime reports. Further, if police or municipal jurisdictions crossed 
county lines, it is likely residents of both counties were “exposed” to the crime 
environment. This crime data being attributed to more than one county occurred in 
approximately 15 counties. Second, because crime reporting is voluntary and crime data 
are reported for less than half the U.S. counties, yet it seemed unlikely that no crimes 
occurred in the areas with no reported crime, crime data were spatially and temporally 
kriged to estimate values for counties with no reported crime. Kriging employed a double 
exponential covariance structure for the spatial covariance; one structure represented 
short-range variability and the other long-range variability. The covariance model was fit 
to experimental covariance values using a least squares method and demonstrated 
sufficient fit. Varying geographical unit sizes were not explicitly accounted for through the 
kriging estimates, but crime estimates were made for 57 percent of U.S. counties, mostly 
in rural areas. The crime variable was log-transformed for inclusion in the EQI. Living in 
areas with high crime rates is detrimental to human health and well-being, therefore the 
valence of these data is negative.  
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Both constructs in the sociodemographic domain have a negative valence. Therefore, 
the final valence of the sociodemographic domain is negative, indicating a higher 
sociodemographic domain score is associated with poor environmental quality. 
 
Built environment domain: Housing environments vary and features of the housing 
environment have the potential to influence human health and well-being. The housing 
environment was represented using two variables available from the HUD data source, 
low-rent and section-eight [37]. These variables were summed to result in the count of 
any low-rent or section-eight housing in each county. The rate of subsidized housing 
was constructed by dividing the count of subsidized housing units per county by the 
county population. Normality of the subsidized housing rate was assessed and this 
variable was log-transformed. The presence of public housing has typically been a 
marker for poverty and poor housing conditions, which have been associated with poor 
health. Therefore the valence for the public housing variables is toward poor 
environmental quality.  
 
Highway safety was represented by a traffic fatality variable. Rates for the count of fatal 
crashes per county were constructed by dividing the count of county-level fatal crashes 
(FARS) [21] by the county-level population. This rate was log distributed (due to many 
counties having zero fatal crashes) and was therefore log-transformed before inclusion. 
Traffic fatalities are a marker for hazardous road conditions, which have the potential for 
negative impacts on human health. The valence for traffic fatality is negative, toward 
poor environmental quality. 
 
The percent of county residents who use public transportation was the only U.S. Census 
[17] variable used in the built environment domain of the EQI. While this variable is 
available for all 3141 counties, for many counties, the percent of the population who 
reports using public transportation is near 0. Therefore, this variable was log-
transformed prior to its use in the built domain of the EQI. Public transportation use may 
convey multiple meanings therefore the valence for this variable is neutral.  
 
We were interested in characterizing the relative proportions of each county that were 
served by highways, secondary roads and primary roads. Two proportion variables were 
constructed from the TIGER data [20] by dividing the mileage of each road type (e.g., 
secondary primary roads) by the total road mileage in each county. The proportions of all 
roadways that were highways or primary roads, available for 3141 counties, were 
included. Similar to the public transportation use variables, proportions of roadways of 
varying types is varying in its likely association with human health and ecologic impact; 
therefore the valence of this variable’s construct for roadways is neutral for 
environmental health.  
 
Business and service environments are important predictors of human health and 
activity. We sought to estimate features of the economic and service environment using 
data from Duns and Bradstreet [19]. Nine business environment rate variables were 
constructed by dividing the county-level count of a business type by the county-level 
population count. The nine variables that were constructed from the Dun and Bradstreet 
data include: the positive food environment, negative food environment, vice 
environment (alcohol, pawn, gaming), entertainment environment, health care business 
environment, recreation environment, education environment, social-service 
environment and transportation-related environments.  All variables except the negative 
food environment were log-transformed for normality. The business and service 
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environments contain a mix of positive and negative features; therefore when the built 
domain was constructed, positive variables were reverse-coded to ensure that a higher 
amount of the these service variables represent adverse environmental conditions. The 
built domain’s valence is negative and indicating a higher built domain score represents 
poor environmental quality. 
 
EQI temporal representation. Variable consistency (mean and standard deviation) was 
compared across each year of the six-year period (2000-2005). Additionally, proto-EQIs 
were constructed using data from one year (2002) and from the average of all six-years. 
For those variables that were spatially kriged, county-level values before and after 
kriging were also compared. Because these county-level values were temporally 
consistent, the EQI was constructed based on county-level averages for the six-year 
period for each variable in each domain.   
 
RUCC stratification. Recognizing that environments differ across the rural – urban 
continuum [38], we concluded the EQI would be most useful if it accommodated rural-
urban environmental differences. Therefore, EQI construction was stratified by rural-
urban continuum codes (RUCC). The RUCC is a nine-item categorization code of 
proximity to/influence of major metropolitan areas [39]. As has been done elsewhere, the 
nine-item categories were condensed into four categories for which RUCC1 represents 
metropolitan urbanized = codes 1+2+3; RUCC2 non-metro urbanized = 4+5; RUCC3 
less urbanized = 6+7; and RUCC4 thinly populated =8+9 [40-43]. Both stratified county-
specific and all-county indices were created. Loadings on the stratified and non-stratified 
sets of indices were assessed to determine loading heterogeneity across counties. 
Because these loadings differed meaningfully by RUCC level, we constructed a RUCC-
stratified EQI for each county. 
 
Data reduction. Similar to the approach employed in other research [23, 44, 45], 
principal components analysis (PCA) was chosen for data reduction in this study 
because the investigators sought an empirical summary of total area-level variance 
explained by the environmental variables, rather than a confirmation of any underlying 
factor structure comprised of the previously identified domains. 
 
Component extraction and index construction. The constructed variables from each 
dataset were merged to produce a domain-specific county-level dataset. The domain-
specific variables were then combined using PCA. PCA produces variable loadings, 
which are roughly equivalent to the “weight” or contribution that each variable makes 
toward explaining the total variance. The loading associated with each variable is then 
multiplied by its mean value for the given geography (county, for the EQI) and these 
weighted mean values are summed. Although it is possible to form as many independent 
linear combinations as there are variables, we retained only the first principal 
component: the unique linear combination that accounted for the largest possible 
proportion of the total variability in the component measures. This process was 
undertaken separately for each of the four RUCC strata.  
 
Frequently in index construction, variables with low loadings may be excluded to 
produce a more parsimonious index. Both within and across each RUCC strata, domain-
specific variable loadings were evaluated based on the variable’s hypothesized 
relevance to health. For instance, while mercury may be a chemical with notable 
concentrations only in limited areas across the U.S. and may therefore have a small 
component loading, it is an important health hazard when present. So based on variable 
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loading magnitude alone, one might consider dropping mercury from an environmental 
quality index but we instead decided to retain it based on its relevance to human health. 
Because it was unclear which of the variables included in the domain-specific PCAs 
were irrelevant to human health, we retained all the variables for inclusion in the RUCC-
stratified and overall indices.   
 
The first principal component, which we labeled the domain-specific index (e.g., air 
domain index), was standardized to have a mean of 0 and standard deviation (SD) of 1 
by dividing the index by the square of the eigenvalue [46]. Each domain-specific index 
was then included in a second PCA procedure (Figure 1), from which we extracted the 
first principal component to create the overall EQI for each strata of RUCC. 
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