Bax Inhibitor-1-Mediated Inhibition of Mitochondrial Ca²⁺ Intake Regulates Mitochondrial Permeability Transition Pore Opening and Cell Death

Geum-Hwa Lee¹, Hwa-Young Lee¹, Bo Li¹, Hyung-Ryong Kim², Han-Jung Chae¹¶

¹Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea; ²Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea.

To whom correspondence should be addressed: Han-Jung Chae, Ph.D.; Department of Pharmacology, School of Medicine, Chonbuk National University; Jeonju, 560-182; Republic of Korea; Tel: 82-63-270-3092; Fax: 82-63-275-2855; E-mail: <u>hjchae@chonbuk.ac.kr</u>

Supplementary Figure 1

 Ca^{2+} induces cytochrome c release from mitochondria more potently in BI-1^{-/-} liver tissues than in ^{+/+} tissues. Mitochondria from BI-1^{-/-} liver and BI-1^{+/+} liver were incubated with 100 µM CaCl₂ for various times (0, 10, 30, and 60 min). Absorbance at 540 nm was measured after incubation at 30°C. The data shown represent the mean ± S.E. (n = 4). ^{*}p < 0.05 versus Ca²⁺-exposed mitochondria from BI-1^{+/+} tissue (**A**). The released cytochrome c in supernatants was detected by western blotting with anti-cytochrome c antibody (**B**). Sup, supernatants.

Supplementary Figure 2

A549/Neo and A549/BI-1 cells were treated with 5 μ M thapsigargin (arrow) and analyzed for Rhod II AM fluorescence (upper) and erAEQ luminescence (lower), respectively (A). A549/Neo and A549/BI-1 were loaded with Fura2-AM and treated with the mitochondrial inhibitor CCCP (1 μ M). Representative Ca²⁺ traces are shown. Individual cells were imaged (n = 16) and their fluorescence intensities (Fura2) recorded; the peaks of Ca²⁺ release were also shown (B). Mitochondria from A549/Neo and A549/BI-1 were loaded with 1 μ M Rhod II AM and treated with 2 mM CaCl₂. Rhod II fluorescence was monitored (C). A549/Neo and A549/BI-1 cells were treated with 5 μ M thapsigargin in the presence or absence of 5 μ M CsA or 1 μ M Ru360 for 48 hrs. Cell viability was measured by trypan blue exclusion (D) A549/Neo and A549/BI-1 cells were treated with 5 μ M thapsigargin in the presence or absence of 48 hrs. Cell viability was measured by trypan blue exclusion (D) A549/Neo and A549/BI-1 cells were treated with 5 μ M thapsigargin in the presence of 100 μ M diazoxide, 500 μ M 5-HD, 100 μ M NS1619, or 2 μ M paxilline for 48 hrs. Cell viability was measured by trypan blue exclusion (E). *, *p* < 0.05 versus thapsigargin-treated A549/BI-1. [Ca²⁺]_i, intracellular Ca²⁺; Tg, thapsigargin; CCCP, carbonylcyanide m-chlorophenylhydrazone; A549/Neo, neomycin-resistant pcDNA3-transfected A549 cells; A549/BI-1, HA-BI-1-pcDNA3-transfected A549 cells.

Supplementary Figure 3

These experiments used HeLa cells in which BI-1 expression was conditionally driven using a doxycycline-inducible system. Cells were treated with 5 μ M thapsigargin (arrow) and loaded with Rhod II AM or transfected with erAEQ and the fluorescence (upper) and erAEQ luminescence (lower) was monitored (A). Doxycylcine-treated or non-treated Hela-Tet-on BI-1 cells were loaded with Fura2-AM and exposed to the mitochondrial inhibitor CCCP (1 μ M). Representative Ca²⁺ traces are shown with or without doxycycline. Individual cells were imaged (n = 15) and their fluorescence intensities (Fura2) were recorded; the peaks of Ca²⁺ release are also shown (B). Mitochondria from doxycylcine-treated or non-treated Hela-Tet-on BI-1 cells were loaded with 1 μ M Rhod II AM and treated with 2 mM CaCl₂. Rhod II fluorescence was monitored (C). Cells were treated with 5 μ M thapsigargin in the presence or absence of 5 μ M CsA or 1 μ M Ru360 for 48 hrs. Cell viability was measured by trypan blue exclusion (D). Cells were treated with 5 μ M thapsigargin in the presence or absence of 100 μ M diazoxide, 500 μ M 5-HD, 100 μ M NS1619, or 2 μ M paxilline for 48 hrs. Cell viability was measured by trypan blue exclusion (E). *, *p* < 0.05 versus thapsigargin-treated without doxycycline; *, *p* < 0.05 versus with doxycycline. [Ca²⁺]_i, intracellular Ca²⁺; Tg, thapsigargin; CCCP, carbonylcyanide m-chlorophenylhydrazon; Con, Doxycycline-non-treated; BI-1, Doxycycline-treated.

Supplementary Figure 4

Mitochondrial membrane potential in HT1080/Neo and HT1080/BI-1 cells was measured by JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining and analyzed by PTI. The mitochondrial uncoupler, CCCP (1 μ M) was added to collapse the mitochondria membrane potential.

Τg

÷

+

÷

