Supplementary Information

Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1V2-directed antibody

PG16

Marie Pancera, Syed Shahzad-ul-Hussan, Nicole A. Doria-Rose, Jason S. McLellan, Robert T. Bailer, Kaifan Dai, Sandra Loesgen, Mark K. Louder, Ryan P. Staupe, Yongping Yang, Baoshan Zhang, Robert Parks, Joshua Eudailey, Krissey E. Lloyd, Julie Blinn, S. Munir Alam, Barton F. Haynes, Mohammed N. Amin, Lai-Xi Wang, Dennis R. Burton, Wayne C. Koff, Gary J. Nabel, John R. Mascola, Carole A. Bewley and Peter D. Kwong

Supplementary Figure 1 | 1FD6ZM109V1/V2 scaffold binding to PG16: characterization and purification. a, ELISA Binding of PG9 and PG16 to V1/V2 scaffolds expressed in different cell lines. ELISA binding of PG9 (pink) and PG16 (orange) to scaffolded V1/V2 from strain ZM109 expressed in GnTI^{-/-} cells (enriched in Man₅GlcNAc₂ glycans), 293F cells or 293F cells with swainsonine added after transfection (enriched in hybrid-type glycans). On-column complex formation and purification shown in **b**, **c**. **b**, Schematic showing the on-column complex formation between PG16 and scaffolded 1FD6ZM109A4 V1/V2s, as described in Methods. **c**, Gel filtration result of the elution shown in a. A coomassie blue-stained SDS-PAGE gel is shown for fractions as indicated on the gel. MW=molecular weight standards. S = purified scaffolded V1/V2 1FD6 ZM109A4. 8 mgs of scaffolded V1/V2 1FD6ZM109A4 was used to obtain 200µgs of complex PG16/V1/V2(1FD6ZM109A4).

Observed m/z	Proposed Structure	Proposed Figure	% Peak Area Fraction N160 _{gp120} "HC@S(N)IT TDVK"	% Peak Area Fraction N173 _{gp120} "V(N)ATFYDL DIVPLSSSDA SSASSLYR"
1579.9	(GlcNAc)2(Man)5	>	20	9
1783.9	(GIcNAc)2(Man)6	<u>></u>	6	2
1988.1	(GIcNAc)2(Man)7	•	5	2
1000.0	(GlcNAc)3(Man)5 (Fuc)	or	0	6
1999.0	(GlcNAc)3(Man)4(Gal)(Fuc)	<u></u>	9	0
2192.1	(GIcNAc)2(Man)8		3	2
2203.1	(GlcNAc)3(Man)5(Gal)(Fuc)	<u> </u>	7	4
2244.2	(GlcNAc)4(Man)3(Gal)(Fuc)	***	4	3
2377.2	(GlcNAc)3(Man)5(Gal)(Fuc)2		5	3
2418.2	(GlcNAc)4(Man)3(Gal)2(Fuc)2	- -	5	4
2448.2	(GlcNAc)4(Man)3(Gal)3(Fuc)2	•	2	1
2564.3	(GIcNAc)3(Man)5(Gal)(Fuc)(NeuAc)		30	56
2605.3	(GIcNAc)4(Man)3(Gal)2(Fuc)(NeuAc)	•-	3	6
2622.3	(GlcNAc)4(Man)3(Gal)3(Fuc)2		0	0
2652.3	(GlcNAc)4(Man)3(Gal)4(Fuc)		0	1
2809.4	(GIcNAc)4(Man)3(Gal)3(Fuc)(NeuAc)		0	0
3013.4	(GIcNAc)4(Man)3(Gal)4(Fuc)(NeuAc)	•	0	0
3374.6	(GlcNAc)4(Man)3(Gal)4(Fuc)(NeuAc)2		0	0
	Total		100	100

Supplementary Figure 2 | Glycoforms present on the scaffolded V1/V2 1FD6 ZM109 A4.

a, ELISA binding of selected lectins including *Maackia amurensis* lectin II (MA), *Sambucus nigra* lectin (SN), concavalin A (ConA) and cyanovirin-N (CVN) to scaffolded V1/V2. **b**, ELISA showing binding of PG9 and PG16 to 1FD6 V1/V2 ZM109 A4 scaffold, either untreated or treated with various neuraminidases (3 hours at 37°C per manufacturer's instruction) that show different specificities for the linkage between galactose and sialic acid. PG16 does not bind to scaffolded V1/V2 pretreated with

e

f

neuraminidase or Sialidase A (faster rate for a2-6 linkage) but retains binding to scaffold treated with α 2-3 neuraminidase. PG9 is less affected by neuraminidase treatment. 1FD6 ZM109 A4 scaffold was either untreated or treated with various neuraminidases per manufacturer's instructions for 3 hours at 37 °C. α 2-3 Neuraminidase is a highly specific exoglycosidase that catalyzes the hydrolysis of α 2-3 and, at a much lower rate, a2-6 linked N-acetyl-neuraminic acid residues from oligosaccharides. This enzyme has a 260-fold preference for α 2-3 sialyl linkages over α 2-6 sialyl linkages and shows only trace activity against $\alpha 2-8$ sialyl linkages. Sialidase A releases $\alpha 2-3-$, $\alpha 2-6-$, $\alpha 2-8-$ and $\alpha 2-9-$ linked Nacetylneuraminic acid from complex carbohydrates. The initial rate of hydrolysis of α 2-6 linkages is reported to be approximately twice that of α 2-3-linked sialic acid however, in practice, this kinetic selectivity is of little consequence during extended incubations (Uchida et al., 1979). c, MALDI MS analysis of N-glycans released from 1FD6ZM109A4 with detection covering m/z 899-5000. d, Overview of sample processing. (e) Proposed N-linked glycans assigned on the basis of molecular weight, and their percent abundance. Glycan analyses and glycopeptide mapping were performed at the Complex Carbohydrate Research Center. Experimental details freelv available are at http://www.ccrc.uga.edu/services/ccrcanalyticalservices/index.html. e, Man₅GlcNAc₂ electron density. Man₅GlcNAc₂ and Asn160 are shown in green stick representation why oxygen atoms in red and nitrogen atoms in blue. Scaffolded-V1V2 is shown in green ribbon representation as well as PG16 antibody (heavy chain is tan and light chain is light blue). The 2Fo-Fc map obtained after final refinement is shown in blue at 1σ .

Supplementary Figure 3 | NMR data.

а

с

STD PG1

a, Glycan fragments from gp120 used for screening. Glycan fragments shown are representative of those present on gp120. Each of these glycans was analyzed by STD NMR for binding to PG16 and PG9 antibodies. **b**, Complex-type glycan binds PG16 mainly through terminal sialic acids. STD NMR spectra of 2 mM complex-type glycan (middle) and 2 mM asialo complex-type glycan (bottom) in the presence of 20 μ M Fab PG16. **c**, Man₅GlcNAc₂ binds negligibly to PG16₁₆₀ and does not bind to PG16₁₇₃, complex-type glycan binds negligibly to PG16₁₆₀. Left panel, STD (lower) and corresponding reference (upper) spectra of 2 mM complex-type glycan in the presence of 20 μ M PG16₁₆₀ shows negligible STD enhancements. Right panel, STD NMR spectra of 2 mM Man₅GlcNAc₂ in the presence of 20 μ M PG16₁₇₃ (lowest) shows no binding and 20 μ M PG16160 (middle) shows negligible binding. The corresponding reference spectrum is shown at the top. **d**, PG9₁₇₃ binds complex-type glycan very weakly and Man₅GlcNAc₂ negligibly. STD and corresponding reference spectra of 2 mM complex-type glycan is the presence of 20 μ M PG9₁₇₃(right panel). The signal denoted by an asterisk (*) corresponds to a buffer impurity. **e**, Binding curves used to calculate the K_ps

7

of chimeric antibody PG9,16-RSH to complex-type glycan and Man₅GlcNAc₂. Langmuir binding curves showing the effects on STD enhancement (expressed as the STD amplification factor A_{STD}) as a function of glycan concentration at a saturation time of 0.2 s (t_{sat} =0.2 s), and used to obtain the equilibrium dissociation constants (K_D) from the initial slopes. **f**, Qualitatively defined very weak and negligible binding affinities. STD NMR spectra of 2 mM complex-type glycan in the presence of 20 μ M PG16 and PG9 mutants. Complex-type glycan binds to PG9₁₇₃ very weakly (upper) and to PG16₁₆₀ negligibly (middle). This glycan does not bind to PG9₁₆₀ (lower).

2F5

Cardiolipin reactivity

	concentration (µg/ml)							
Antibody	100	33.33	11.11	3.70	1.23	0.41	0.14	0.05
PG9	0.079	0.049	0.044	0.039	0.042	0.039	0.041	0.041
PG16	0.711	0.296	0.079	0.046	0.042	0.039	0.041	0.034
PG9,16-RSH	0.511	0.116	0.065	0.044	0.042	0.040	0.041	0.041
Synagis	0.040	0.039	0.039	0.039	0.040	0.038	0.041	0.042
4E10 IgG1	2.612	2.587	2.478	2.198	1.761	0.999	0.456	0.187

Athena antinuclear antigen reactivity

Antihodu	ua/ml					Auto	antige	en		
Antibody	ug/mi	SSA	SSB	Sm	RNP	Scl 70	Jo 1	dsDNA	Cent B	Histone
PG9	50	3	2	5	5	3	3	25	5	6
	25	3	2	2	3	2	2	12	2	3
	12.5	1	3	4	3	3	4	10	1	4
	6.25	2	2	3	2	3	2	8	1	3
PG16	50	4	3	5	5	4	2	1	2	0
	25	3	4	4	3	4	2	10	2	2
	12.5	1	3	3	3	3	3	6	1	2
	6.25	2	2	4	2	1	3	5	1	2
PG9,16-RSH	50	4	2	9	2	10	9	30	3	2
	25	3	2	5	3	5	5	26	2	1
	12.5	3	2	2	1	3	4	17	2	4
	6.25	2	2	4	2	3	2	19	2	2
Synagis	50	3	3	4	3	2	2	7	1	3
	25	3	2	4	2	2	3	1	1	2
4E10 IgG1	50	201	276	21	7	3	204	17	57	140
	25	155	249	14	4	2	182	8	34	110
Neg Control	-	-	-	-	-	-	-	-	-	-
Pos Control 1	-	650	435						204	
Pos Control 2							539	1051		752
Pos Control 3				701	420	421				
Neg Control	-	-	-	-	-	-	-	-	-	-

Supplementary Figure 4 | Autoreactivity assessment of PG9, PG16 and PG9,16-RSH.

Immunofluorescence of HEp-2 epithelial cells stained with antibody at 50 and 25 μ g/ml. Cardiolipin reactivity: samples for which cardiolipin reactivity exceeded 0.2 are highlighted in yellow. Athena antinuclear antigen reactivity: samples for with autoantigen reactivity exceeded 125 are highlighted in yellow.

20.0% of somatic changes that result in different residues between PG16 and PG9 interact with glycans, 27.3% interact with both protein and glycans

27.3% Interact with both protein and glycans							
Germline	PG16	Glycans	PG9	Glycans			
H SER 55	H MET 55	Not de termined	HSER 55	156/173 NAG 657, MAN 658, 659			
H ASN 56	H ARG 56	156/173, SIA 582	H GLU 56	Not determined			
CDR H3 insertion	H ILE 100	160, NAG 561, MAN 565	HASP 100	160, NAG 560, 561, MAN 565			
CDR H3 insertion	HHIS 100B	160, NAG 560, 561	HARG 100B	160, NAG 560, 561			
H TRP 100K	H ASN 100K	156/173, NAG 573	H TYR 100K	156/173, NAG 657, 160, MAN 660, 662			
L TYR 30	L PHE 30	160, MAN 562, 564, 566	L TYR 30	160, MAN 562, 564, 566			
L ASN 31	L ASP 31	160, MAN 564, 565	L GLU 31	160, MAN 564, 565			
L ASN 53	L HIS 53	Not determined	LLYS 53	160, MAN 565			
L SER 94	L ARG 94	156/173, GAL 581, SIA 582	TLHR94	Not determined			
L SER 95	L SER 95	160, MAN 566, 156/173, MAN 578	L ARG 95	160, MAN 566			
L THR 95A	L HIS 95A	156/173, SIA 582	L ARG 95A	Not determined			

22.3% of somatic changes that result in different residues between PGT121 and 10-1074 interact with glycans

PGT121	Glycans	10-1074	Glycans
H ASP 31	SIA 310, GAL 308	H ASN 31	Not determined
H SER 32	SIA 310	H TYR 32	Not determined
HHIS 52	NAG 307, GAL 308	H SER 52	Not determined
HLYS53	G AL 308	H ASP 53	Not determined
H SER 54	NAG 307, GAL 308	H ARG 54	Not determined
HGLY 55	NAG 304, BMA 301, MAN 303	H GLU 55	Not determined
HASP 56	NAG 307, MAN 302, BMA 301	H SER 56	Not determined
H THR 57	NAG 304, MAN 303	HALA 57	Not determined
HASN 58	NAG 304, 306 BMA 301, MAN 303,	H THR 58	Not determined
HHIS 97	NAG 307, GAL 308	H ARG 97	Not determined
H ARG 99	NAG 307, MAN 302	HGLN 99	Not determined
H TRP 100J	MAN 302	H PHE 100J	Not determined
H THR 100L	NAG 307, MAN 302	H TYR 100L	Not determined
H TYR 1000	SIA 310	H SER 1000	Not determined
L PRO 95A	NAG 305	LGLY95A	Not determined
	PGT121 H ASP 31 H SER 32 H HIS 52 H LYS 53 H SER 54 H GLY 55 H ASP 56 H THR 57 H ASP 56 H HIS 97 H ARG 99 H TRP 100J H TRP 100J H TYR 100O L PPO 95A	PGT121 Glycans H ASP 31 SIA 310, GAL 308 H SER 32 SIA 310, GAL 308 H HIS 52 NAG 307, GAL 308 H LYS 53 GAL 308 H SER 54 NAG 307, GAL 308 H GLY 55 NAG 304, BMA 301, MAN 303 H ASP 56 NAG 304, MAN 302, BMA 301 M THR 57 NAG 304, MAN 303 H ASN 58 NAG 304, 306 BMA 301, MAN 303 H HIS 97 NAG 307, GAL 308 H ASN 58 NAG 307, GAL 308 H ASN 58 NAG 307, MAN 302 H TIR 100 MAR 302 H TRP 1000 MAG 307, MAN 302 H TYR 1000 SIA 310 L PRO 95A NAG 305	PGT121 Glycans 10-1074 H ASP 31 SIA 310, GAL 308 H ASN 31 H SER 32 SIA 310 H TYR 32 H HIS 52 NAG 307, GAL 308 H SER 52 H LYS 53 GAL 308 H ASP 33 H SER 54 NAG 307, GAL 308 H ASP 53 H GLY 55 NAG 304, BMA 301, MAN H GLU 55 303 H ASP 56 NAG 304, MAN 302, BMA H SER 56 H THR 57 NAG 304, MAN 303 H ALA 57 H ASN 58 NAG 307, GAL 308 H ARG 97 H ASN 58 NAG 307, GAL 308 H ARG 97 H ASN 58 NAG 307, GAL 308 H ARG 97 H ASN 58 NAG 307, MAN 302 H GLN 99 H TRP 100J MAN 302 H PHE 100J H TRP 100J MAS 302 H PHE 100J H TYR 100L NAG 307, MAN 302 H SER 100D H TYR 1000 SIA 310 H SER 100D

19.0% of somatic changes that result in different residues
between PGT128 and PGT127 interact with glycans,
33.3% interact with both protein and glycans

			0,	
Germline	PGT128	Glycans	PGT127	Glycans
H SER 30	H ALA 30	NAG 2 (cpx)	H GL Y 30	Not determined
H GLY 52C	H ALA 52C	NAG 1 (cpx)	H ARG 52C	Not determined
CDR H2 insertion	H TRP 52F	MAN 4 (man9), NAG 2 (cpx)	H TYR 52F	Not determined
HCDR H2 insertion	H ARG 54	MAN D3 (man9), MAN 4 (epx)	H THR 54	Not determined

Supplementary Figure 5 | Glycan interactions with various somatic variants.

Somatic variants for donor IAVI 24 (PG16, PG9), IAVI 17 (or patient 10) (PGT121, 10-1074), IAVI 36 (PGT128, PGT127) are shown in cartoon representation (with heavy and light chain in different colors) bound to glycans (green sticks, transparent when modeled). Residues that are affinity matured and differed between somatic variants are shown as sticks and semitransparent surface representation and are listed. The percentages of somatic changes that interact with glycans only or with both proteins and glycans are indicated.

Anti-gp120 antibody	glycan specificity	References
2G12	Manα1-2Man (of Man ₈₋₉ GlcNAc2)	Calarese et al., 2003, Science
PGT125-130	Man ₈ - ₉ GlcNAc ₂	Walker et al., 2011, Nature
PGT121	Complex-type glycan	Walker et al., 2011, Nature; Mouquet et al., PNAS, 2012
PGT141-144	Man ₅ GlcNAc ₂	Walker et al., 2011, Nature
PGT145	Man ₉ GlcNAc ₂	Walker et al., 2011, Nature
PG9	Man ₅ GlcNAc ₂ (N160 site)	Walker et al., 2009, Science; McLellan et al., 2011, Nature
CH01-CH05	Man ₅ GlcNAc ₂	Bonsignori et al., 2011, J. Virol.

Supplementary Table 1. Comparison of glycan specificities of anti-gp120 glycan directed antibodies

Supplementary Table 2. ZM109: PG16 interactions

	Interface Residue	Bond Type	ASA	BSA	$\Delta_i G$
	ZM109:SER 158		32.30	1.00	0.02
	ZM109:ASN 160		75.57	22.91	-0.07
	ZM109:THR 163		38.97	3.99	-0.03
	ZM109:LYS 166		156.02	4.06	-0.05
ZM109	ZM109:ASP 167	Н	112.64	62.08	0.04
	ZM109:ARG 168	HS	150.62	101.40	-1.21
	ZM109:LYS 169	Н	110.83	75.27	0.32
	ZM109:GLN 170		93.97	66.16	0.04
	ZM109:LYS 171	Н	147.63	89.15	0.22
	ZM109:VAL 172		40.63	4.66	0.07
	ZM109:ASN 173		126.70	22.32	-0.13
	H:TRP 100A		141.19	0.31	0.00
	H:ASP 100C		133.63	10.68	-0.12
	H:ASP 100D		132.70	15.19	-0.16
	H:VAL 100E		69.35	54.79	0.88
	H:LYS 100F	Н	84.96	49.90	0.07
PG16	H:TYR 100G		101.40	59.23	0.72
	H:TYS 100H	Н	115.35	69.49	-0.23
	H:ASP 100I		53.65	15.65	-0.08
	H:PHE 100J		178.64	94.07	1.45
	H:ASN 100K		151.68	16.90	0.03
	H:ASP 100L	HS	108.53	59.62	-0.46
	H:TYR 1000		80.51	18.82	-0.14

A. ZI	M109-Protein	: PG16-Protein	interactions
-------	--------------	----------------	--------------

Bond type: H: Hydrogen, S: Salt bridge ASA Accessible Surface Area, $Å^2$

 $\textbf{BSA} \quad BuriedSurfaceArea, \texttt{A}^2$

ΔiG

Solvation energy effect, kcal/mol Buried area percentage, one bar per 10%

Detailed interface data was calculated on the EBI PISA server (http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)

В.	ZM109-Gl	ycan160:	PG16-	Protein	interaction	IS
----	----------	----------	-------	---------	-------------	----

Interface Residue	Bond Type	ASA	BSA	$\Delta_i G$
ZM109:NAG 560-PG16:H	Н	361.50	98.97	-1.75
H:ILE 100		60.92	4.36	0.07
H:HIS 100B	Н	102.12	15.83	-0.34
H:TYR 100G		101.40	25.36	0.41
H:TYR 1000		80.51	18.20	-0.05
ZM109:NAG 561-PG16:H		360.36	75.68	-2.26
H:ILE 100		60.92	16.40	0.26
H:HIS 100B		102.12	8.46	-0.31
H:TYR 1000		80.51	21.05	0.29
ZM109:MAN 562-PG16:L		292.34	10.70	-0.35
L:PHE 30		67.36	9.68	0.15
ZM109:MAN 564-PG16:H		287.55	38.89	-0.26
H:ILE 100		60.92	9.37	0.15
H:TYR 1000		80.51	1.64	0.03
H:ASN 100P		71.09	0.37	-0.00
H: HIS 100R		155.46	29.58	0.77
ZM109:MAN 564-PG16:L		287.55	47.13	-0.61
L:PHE 30		67.36	21.88	0.35
L:ASP 31		100.74	7.10	0.06
L:SER 32		38.08	5.50	-0.06
L:LEU 91		45.80	9.11	0.15
ZM109:MAN 565-PG16:H	Н	289.33	98.24	-0.57
H:ILE 100		60.92	29.97	0.48
H:HIS 100B		102.12	0.31	0.01
H:ASN 100P		71.09	2.92	-0.03
H:TYR 100Q		77.59	15.43	0.04
H:HIS 100R	Н	155.46	22.27	0.01
ZM109:MAN 565-PG16:L	Н	289.33	95.63	-1.91
L:ASP 31		100.74	21.19	0.11
L:SER 32	Н	38.08	12.37	-0.09
L:ASP 50		59.28	31.59	-0.16
ZM109:MAN 566-PG16:H	Н	291.89	111.31	-1.22
H:ASP 100I		53.65	0.25	-0.00
H:TYR 1000		80.51	20.81	0.33
H:ASN 100P	Н	71.09	22.59	-0.23
H:HIS 100R	Н	155.46	27.12	0.54
ZM109:MAN 566-PG16:L		291.89	66.07	-1.11
L:PHE 30		67.36	9.99	0.16
L:LEU 91		45.80	17.64	0.28
L:THR 92		19.83	0.73	-0.01
L:SER 95		90.99	16.90	-0.17
L:ARG 96		174.64	4.07	-0.15

Bond type: H: Hydrogen, S: Salt bridge ASA Accessible Surface Area, $Å^2$

BSA BuriedSurfaceArea,Å²

Solvation energy effect, kcal/mol Buried area percentage, one bar per 10% $\Delta{}_{i}G$

Detailed interface data was calculated on the EBI PISA server (http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)

C.	ZM109-Glycar	1173: PG16	-Protein	interactions
	-			

Interface Residue	Bond Type	ASA	BSA	$\Delta_i G$
ZM109:NAG 573-PG16:H		359.11	68.75	-2.03
H:PHE 100J		178.64	54.27	0.87
H:ASN 100K		151.68	7.61	-0.13
ZM109:MAN 578-PG16:L		289.45	12.91	-0.38
L:ASP 93		89.43	2.95	-0.03
L:SER 95		90.99	10.80	-0.12
ZM109:GAL 581-PG16:H		291.06	87.28	-1.90
H:HIS 59		47.52	7.04	-0.09
H:ASP 61		141.69	14.30	-0.16
H:TRP 64		191.71	59.08	0.61
ZM109:GAL 581-PG16:L	Н	291.06	18.46	0.43
L:ARG 94	Н	168.75	17.83	-0.40
ZM109:SIA 582-PG16:H	Н	436.88	175.71	-0.61
H:ARG 56		119.07	13.22	0.21
H:LYS 57	Н	89.39	29.45	-0.18
H:TYR 58		112.70	45.73	0.61
H:HIS 59		47.52	26.93	-0.49
H:TRP 64		191.71	19.44	0.04
ZM109:SIA 582-PG16:L	Н	436.88	76.46	-1.12
L:ARG 94	Н	168.75	28.25	-0.35
L:HIS 95A	Н	86.96	22.74	0.31

Bond type: H: Hydrogen, S: Salt bridge ASA Accessible Surface Area, $Å^2$

BSA

BuriedSurfaceArea,Å² Solvation energy effect, kcal/mol $\Delta{}_{i}G$

 Buried area percentage, one bar per 10%

 Detailed interface data was calculated on the EBI PISA server (http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver)

Glycan residue	PG16 residue	distance	PG9 residue	distance
Nag 560 O5	His 100B _{HC} NE2	3.07	Arg 100B _{HC} NH2	3.29
Nag 560 O6			Arg 100B _{HC} NH2	2.98
			Asp 100 _{HC} OD2	2.62
			Arg 100B _{HC} NE	3.08
Man 565 O2	Asp 31 _{LC} O	2.67	Glu 31 _{LC} O	2.72
	Asp 50 _{LC} OD1	3.38	Asp 50 _{LC} OD1	3.36
	Asp 50 _{LC} OD2	3.89	Asp 50 _{LC} OD2	3.54
Man 565 O3	Asp 31 _{LC} O	3.63	Glu 31 _{LC} O	3.6
	Asp 50 _{LC} OD1	2.57	Asp 50 _{LC} OD1	2.7
	Ser 32 _{LC} OG	2.95	Ser 32 _{LC} OG	2.74
	His 100R _{HC} ND1	3.02	His 100R _{HC} ND1	2.89
	Tyr 100Q _{HC} O	3.79	Tyr 100Q _{HC} O	3.81
Man 565 O4	His 100R _{HC} ND1	3.68	His 100R _{HC} ND1	3.69
Man 566 O3	Asn 100P _{HC} N	3.11	Asn 100P _{HC} N	2.9
	Asn 100P _{HC} ND2	3.72	Asn 100P _{HC} ND2	3.37
Man 566 O4	His 100R _{HC} NE2	2.79	His 100R _{HC} NE2	2.79
	Asn 100P _{HC} ND2	3.39	Asn 100P _{HC} ND2	3.12

Glycan residue	PG16 residue	distance	PG9 residue	distance
Nag 573 N2			Tyr 100K _{HC} OH	3.81
Nag 573 O7			Tyr 100K _{HC} OH	2.94
Gal 581 O4	Arg 94 _{LC} NH2	3.86		
Gal 581 O6	Trp 64 _{HC} NE1	3.84		
Sia 582 N5	Lys 57 _{HC} O	3.08		
Sia 582 O1	His 59 _{HC} N	3.13		
	His 59 _{HC} ND1	3.94		
	His 59 _{HC} O	3.61		
Sia 582 O3	His 59 _{HC} ND1	2.75		
Sia 582 O8	His 95 _{LC} NE2	3.03		
Sia 582 O9	Arg 94 _{LC} O	2.68		
	Arg 94 _{LC} NE	3.87		
	His 95 _{LC} NE2	3.39		

Supplementary Table 3. Neutralization activity of PG9, PG16 and PG9,16-RSH on a large panel of pseudoviruses (195).

A. IC_{50} and IC_{80} neutralization for PG9,16-RSH, PG9 and PG16

71. 10 ₅₀ and 10 ₈₀	neutranzatio	11 101 1 O),10 IQ	IC 50	510		IC 80	
Virus ID	Clade	PG9,16-RSH	PG9	PG16	PG9,16-RSH	PG9	PG16
0260.v5.c36	А	0.702	1.120	2.090	6.060	8.410	>50
0330.v4.c3	A	0.003	0.013	0.002	0.016	0.038	0.014
0439.v5.c1	А	>50	>50	>50	>50	>50	>50
3365.v2.c20	A	0.011	0.060	0.005	0.111	0.233	0.064
3415.v1.c1	А	0.038	0.096	0.021	0.190	0.540	0.157
3718.v3.c11	А	0.009	0.038	0.012	0.038	0.136	0.079
398-F1_F6_20	А	>50	>50	>50	>50	>50	>50
BB201.B42	А	0.002	0.007	0.001	0.006	0.026	0.005
BB539.2B13	А	0.007	0.054	0.007	0.038	0.163	0.025
BI369.9A	А	0.003	0.017	0.004	0.020	0.067	0.022
BS208.B1	А	0.001	0.008	0.001	0.006	0.027	0.005
KER2008.12	А	0.002	0.007	0.002	0.010	0.028	0.016
KER2018.11	А	0.002	0.008	0.001	0.009	0.029	0.004
KNH1209.18	А	0.106	0.180	0.421	>50	>50	>50
MB201.A1	А	0.033	0.103	0.021	0.130	0.305	0.224
MB539.2B7	А	0.011	0.060	0.010	0.073	0.256	0.150
MI369.A5	А	0.020	0.050	0.008	0.135	0.226	0.300
MS208.A1	А	0.031	0.079	0.030	0.279	0.609	>50
Q23.17	А	0.001	0.003	0.000	0.004	0.012	0.002
Q259.17	А	0.023	0.050	0.031	0.186	0.340	28.500
Q769.d22	А	0.005	0.011	0.123	0.032	0.038	5.040
Q842.d12	А	0.009	0.024	0.003	0.029	0.068	0.022
QH209.14M.A2	А	>50	>50	>50	>50	>50	>50
RW020.2	А	0.081	0.124	0.253	1.090	0.771	27.900
UG037.8	А	0.007	0.014	0.002	0.037	0.080	0.015
3301.V1.C24	AC	0.091	0.230	0.011	0.610	1.400	0.134
3589.V1.C4	AC	0.006	0.027	0.522	0.034	0.098	>50
6540.v4.c1	AC	0.006	0.030	0.005	0.041	0.105	0.080
6545.V4.C1	AC	0.006	0.036	0.016	0.043	0.144	0.315
0815.V3.C3	ACD	>50	>50	>50	>50	>50	>50
6095.V1.C10	ACD	0.126	0.151	0.011	1.630	1.130	0.157
3468.V1.C12	AD	0.888	1.620	0.885	>50	>50	>50
Q168.a2	AD	0.021	0.060	0.008	0.079	0.179	0.043
Q461 e2	AD	0.898	2 050	5 120	5 860	15 600	>50
620345 c1		1 690	1.010	>50	>50	>50	>50
BIOY00000 02 4		0.076	1.010	×30	>00	7 7 7 0	>50
BJOX009000.02.4		0.970	0.202	4.000	0.750	1.730	>50
BIOX010000.00.2		0.110	0.303	13.400	0.759	1.550	>50
BIOX025000.01.1		0.204	0.096	0.431	1 960	0.826	>50
BIOX023000.01.1		1.560	0.690	14,900	11.000	3 680	>50
C1080 c3		0.001	0.002	0.000	0.002	0.008	0.002
C2101 c1		0.007	0.002	0.006	0.052	0.139	0.300
C33/7 c11		0.006	0.030	0.005	0.034	0.103	0.028
C/118 00		0.000	0.038	0.003	0.045	0.093	0.196
CM244 ec1		0.001	0.004	0.001	0.045	0.033	0.003
CNE3		0.035	0.064	0.059	0.501	0.598	>50
CNE5	AF	0.003	0.008	0.003	0.010	0.027	0.028
	/\L	0.000	0.000	0.000	0.010	0.021	0.020

			IC 50			IC 80		
Virus ID	Clade	PG9,16-RSH	PG9	PG16	PG9,16-RSH	PG9	PG16	
CNE55	AE	0.104	0.197	0.588	1.140	2.080	>50	
CNE56	AE	>50	>50	>50	>50	>50	>50	
CNE59	AE	0.068	0.060	0.028	0.764	0.443	4.460	
CNE8	AE	1.240	0.980	0.675	9.000	4.850	>50	
M02138	AE	0.065	0.210	0.050	0.468	0.954	1.000	
R1166.c1	AE	0.568	1.100	0.414	2.260	3.900	7.640	
R2184.c4	AE	0.247	0.384	3.680	1.570	2.230	>50	
R3265.c6	AE	0.025	0.084	0.010	0.137	0.322	0.091	
TH023.6	AE	0.064	0.138	4.160	2.960	7.890	>50	
TH966.8	AE	0.006	0.015	0.002	0.028	0.061	0.010	
TH976.17	AE	>50	>50	>50	>50	>50	>50	
235-47	AG	0.047	0.124	0.064	0.563	0.803	4.650	
242-14	AG	0.017	0.048	0.015	0.071	0.151	0.924	
263-8	AG	0.135	0.211	0.551	0.779	1.270	12.200	
269-12	AG	0.551	1.420	0.172	1.930	5.170	1.100	
271-11	AG	0.010	0.059	0.101	0.300	0.948	>50	
928-28	AG	0.004	0.038	0.016	0.030	0.225	0.115	
DJ263.8	AG	0.045	0.091	0.042	0.344	0.551	8.990	
T250-4	AG	0.000	0.001	0.000	0.001	0.004	0.002	
T251-18	AG	>50	>50	5.620	>50	>50	>50	
T253-11	AG	0.056	0.142	2.860	0.570	0.819	>50	
T255-34	AG	0.011	0.020	0.006	0.095	0.126	0.073	
T257-31	AG	0.006	0.019	0.002	0.025	0.059	0.011	
T266-60	AG	0.129	0.321	0.482	0.908	1.420	13.800	
T278-50	AG	0.329	0.385	0.381	2.170	2.510	21.000	
T280-5	AG	0.119	0.339	0.273	0.504	1.060	4.870	
T33-7	AG	0.004	0.019	0.016	0.034	0.162	0.471	
3988.25	В	0.012	0.045	0.022	0.078	0.200	0.841	
5768.04	В	0.114	0.270	0.285	2.940	2.540	>50	
6101.10	В	>50	>50	>50	>50	>50	>50	
6535.3	В	0.125	0.166	4.180	0.917	1.220	>50	
7165.18	В	>50	>50	12.200	>50	>50	>50	
45_01dG5	В	0.030	0.128	0.015	0.187	0.414	0.069	
89.6.DG	В	>50	>50	>50	>50	>50	>50	
AC10.29	В	0.007	0.031	0.005	0.051	0.191	0.060	
ADA.DG	В	0.097	0.216	0.010	7.320	>50	>50	
Bal.01	В	0.334	0.569	>50	8.590	>50	>50	
BaL.26	В	0.009	0.030	0.405	0.186	0.356	>50	
BG1168.01	В	>50	>50	>50	>50	>50	>50	
BL01.DG	В	>50	>50	>50	>50	>50	>50	
BR07.DG	В	>50	>50	>50	>50	>50	>50	
BX08.16	В	0.004	0.017	0.010	0.038	0.101	25.000	
CAAN.A2	В	2.850	6.310	11.000	>50	>50	>50	
CNE10	В	0.095	0.222	>50	0.575	1.680	>50	
CNE12	В	>50	>50	>50	>50	>50	>50	
CNE14	В	>50	>50	>50	>50	>50	>50	
CNE4	В	>50	>50	>50	>50	>50	>50	
CNE57	В	>50	>50	>50	>50	>50	>50	
HO86.8	В	0.006	0.051	0.005	0.137	0.345	0.051	
HT593.1	В	0.213	0.345	0.150	3.680	4.050	11.900	
HXB2.DG	В	0.207	1.000	>50	4.110	40.000	>50	
JRCSF.JB	В	0.001	0.004	0.003	0.005	0.016	0.076	

			IC 50			IC 80	
Virus ID	Clade	PG9,16-RSH	PG9	PG16	PG9,16-RSH	PG9	PG16
JRFL.JB	В	>50	>50	>50	>50	>50	>50
MN.3	В	3.570	17.100	>50	>50	>50	>50
PVO.04	В	3.530	7.630	10.100	13.700	20.700	>50
QH0515.01	В	>50	>50	>50	>50	>50	>50
QH0692.42	В	>50	>50	>50	>50	>50	>50
REJO.67	В	0.002	0.006	0.006	0.020	0.056	5.000
RHPA.7	В	4.600	9.970	0.465	32.100	>50	4.730
SC422.8	В	0.241	0.542	3.180	8.170	18.100	>50
SF162.LS	В	>50	>50	>50	>50	>50	>50
SS1196.01	В	0.020	0.147	0.017	0.338	1.150	0.935
THRO.18	В	4.570	4.870	0.809	>50	>50	>50
TRJO.58	В	0.047	0.173	0.766	0.623	1.810	38.800
TRO.11	В	9.110	>50	3.250	>50	>50	>50
WITO.33	В	0.002	0.007	0.002	0.008	0.020	0.011
YU2.DG	В	1.940	2.080	0.150	>50	>50	16.800
CH038.12	BC	3.690	5.530	5.580	>50	>50	>50
CH070.1	BC	0.001	0.006	0.002	0.004	0.018	0.008
CH117.4	BC	0.001	0.006	0.004	0.003	0.020	0.029
CH181.12	BC	0.001	0.004	0.001	0.006	0.019	0.003
CNE15	BC	0.001	0.005	0.001	0.004	0.018	0.006
CNE19	BC	0.004	0.015	0.035	0.028	0.068	1.980
CNE20	BC	0.038	0.047	3.220	0.188	0.163	>50
CNE21	BC	0.033	0.063	0.120	0.191	0.397	20.200
CNE40	BC	0.731	0.812	6.930	9.870	7.710	>50
CNE7	BC	0.394	1.020	0.148	1.860	4.280	1.750
286.36	С	0.091	0.185	0.024	0.300	0.668	0.071
288.38	С	3.300	2.420	0.564	>50	>50	>50
0013095-2.11	С	0.004	0.012	0.007	0.023	0.074	0.044
001428-2.42	С	0.001	0.002	0.000	0.003	0.007	0.002
0077_V1.C16	С	0.027	0.083	0.006	0.116	0.342	0.027
00836-2.5	С	>50	>50	>50	>50	>50	>50
0921.V2.C14	С	0.001	0.004	0.001	0.003	0.012	0.003
16055-2.3	С	0.003	0.016	0.002	0.013	0.037	0.010
16845-2.22	С	2.410	1.960	1.760	44.300	>50	>50
16936-2.21	С	>50	>50	>50	>50	>50	>50
25710-2.43	С	0.007	0.031	0.003	0.068	0.139	0.191
25711-2.4	С	0.460	0.932	0.018	1.750	3.690	0.235
25925-2.22	С	0.007	0.025	0.004	0.028	0.071	0.022
26191-2.48	С	0.106	0.132	0.390	0.950	0.809	>50
3168.V4.C10	С	0.043	0.092	0.025	0.150	0.393	0.201
3637.V5.C3	С	>50	>50	>50	>50	>50	>50
3873.V1.C24	С	>50	>50	>50	>50	>50	>50
6322.V4.C1	С	>50	>50	>50	>50	>50	>50
6471.V1.C16	С	>50	>50	>50	>50	>50	>50
6631.V3.C10	С	>50	>50	>50	>50	>50	>50
6644.V2.C33	С	0.003	0.025	>50	0.029	0.103	>50
6785.V5.C14	С	0.001	0.008	0.002	0.007	0.043	0.020
6838.V1.C35	C	0.000	0.006	0.001	0.003	0.032	0.004
96ZM651.02	C	>50	>50	>50	>50	>50	>50
BR025.9	C	0.004	0.019	0.004	0.022	0.065	0.024
CAP210.E8	C	0.057	0.165	0.023	0.412	0.876	0.736
L CAP244 D3	I C	0.017	0.067	0.009	0 102	0.231	0.037

			IC 50			IC 80	BO G9 PG16 010 0.002 50 >50 50 >50 430 >50 064 0.019 315 0.064 054 0.007 143 0.016 758 0.080			
Virus ID	Clade	PG9	,16-RSH	PG9	PG16	PG9,16-RSH	PG9	PG16		
CAP45.G3	С	0.00	00	0.003	0.001	0.002	0.010	0.002		
CNE30	С	>50		>50	>50	>50	>50	>50		
CNE31	С	19.7	' 00	15.800	3.190	>50	>50	>50		
CNE53	С	0.05	54	0.080	>50	0.235	0.430	>50		
CNE58	С	0.00)7	0.022	0.004	0.035	0.064	0.019		
DU123.06	С	0.03	30	0.062	0.010	0.154	0.315	0.064		
DU151.02	С	0.00)3	0.016	0.002	0.016	0.054	0.007		
DU156.12	С	0.01	4	0.041	0.003	0.079	0.143	0.016		
DU172.17	С	0.07	'1	0.190	0.015	0.278	0.758	0.080		
DU422.01	С	>50		>50	>50	>50	>50	>50		
MW965.26	С	0.86	60	0.619	0.123	>50	26.000	>50		
SO18.18	С	0.00)6	0.021	0.003	0.033	0.065	0.021		
TV1.29	С	0.00)2	0.005	0.002	0.008	0.027	0.050		
TZA125.17	С	0.03	34	0.140	0.031	0.281	0.808	1.960		
TZBD.02	С	0.03	32	0.170	0.010	0.215	0.676	0.082		
ZA012.29	С	9.12	20	7.470	4.770	>50	>50	>50		
ZM106.9	С	0.52	26	0.492	0.482	6.290	4.190	>50		
ZM109.4	С	0.04	1	0.154	10.000	0.502	2.440	>50		
ZM135.10a	С	>50		>50	>50	>50	>50	>50		
ZM176.66	С	0.00)3	0.010	0.001	0.012	0.033	0.005		
ZM197.7	С	0.16	64	0.369	0.434	1.100	2.130	9.790		
ZM214.15	С	>50		>50	>50	>50	>50	>50		
ZM215.8	С	0.06	65	0.073	>50	0.517	0.497	>50		
ZM233.6	С									
ZM249.1	С	0.01	5	0.043	0.013	0.209	0.267	1.820		
ZM53.12	С	0.02	20	0.036	0.003	0.106	0.129	0.020		
ZM55.28a	С	5.37	0	3.150	>50	>50	>50	>50		
3326.V4.C3	CD	0.0)9	0.030	0.011	0.053	0.103	0.094		
3337.V2.C6	CD	>50		>50	>50	>50	>50	>50		
3817.v2.c59	CD	0.0)1	0.004	0.002	0.003	0.015	0.016		
191821.E6.1	D	1.8	0	5,540	>50	>50	>50	>50		
231965 c1	D	0.84	15	0.682	2 540	>50	>50	>50		
231966.c02	D	0.0		0.002						
247-23	D	0.07	'5	0.092	4.230	0.441	0.422	>50		
3016.v5.c45	D	0.20)7	0.283	>50	16.900	12.600	>50		
57128.vrc15	D	0.03	35	0.122	0.137	0.356	0.465	>50		
6405.v4.c34	D	>50		>50	>50	>50	>50	>50		
A03349M1.vrc4a	D	>50		>50	>50	>50	>50	>50		
A07412M1.vrc12	D	1.14	10	0.773	5.970	>50	17.900	>50		
NKU3006.ec1	D	>50		>50	>50	>50	>50	>50		
UG021.16	D									
UG024.2	D	6.07	0	2.420	>50	>50	>50	>50		
P0402.c2.11	G	0.94	ŀ0	0.502	0.092	18.100	6.150	20.300		
P1981.C5.3	G	0.08	35	0.201	0.953	2.100	2.680	>50		
X1193.c1	G	0.03	36	0.120	0.016	0.145	0.378	0.115		
X1254.c3	G	0.0	9	0.035	0.011	0.135	0.125	0.106		
X1632.S2.B10	G	0.04	3	0.087	0.007	0.484	0.849	0.102		
X2088.c9	G	>50		>50	>50	>50	>50	>50		
X2131.C1.B5	G						1			
SIVmac251.30.SG3	NA	>50		>50	>50	>50	>50	>50		
SVA.MLV	NA	>50		>50	>50	>50	>50	>50		

B. IC_{50} and IC_{80} statistics on a panel of 195 isolates

• 	PG9,16-RSH	PG9	PG16
# Viruses	195	195	195
Total VS Neutralized			
IC50 <50ug/ml	157	156	147
IC50 <1ug/ml	138	133	122
% VS Neutralized			
IC50 <50ug/ml	81	80	75
IC50 <1ug/ml	71	68	63
Median IC50	0.033	0.082	0.018
Geometric Mean	0.038	0.093	0.042

	PG9,16-RSH	PG9	PG16
# Viruses	195	195	195
Total VS Neutralized			
IC80 <50ug/ml	139	137	103
IC80 <1ug/ml	108	100	77
% VS Neutralized			
IC80 <50ug/ml	71	70	53
IC80 <1ug/ml	55	51	39
Median IC80	0.145	0.315	0.080
Geometric Mean	0.155	0.311	0.136

C. Correlation between PG9,16-RSH improvement as a function of PG9 potency on 195 viruses.

Supplementary Table 4. NMR chemical shifts

Glycan	¹ H chemical shifts							
rings	H1	H2	НЗ	H4	H5	H6/H6'	H9/H9'	Ac
А	4.955	3.747	3.646	3.544	3.471	3.524, 3.72		1.905
В	4.5403	3.677	3.646	3.612	3.494	3.524, 3.720		1.972
С	4.66	4.140	3.664	3.667	3.552	3.670, 3.843		
D	5.018	4.082	3.785	3.384	3.496	3.520, 3.757		
Е	4.830	4.00	3.781	3.384	3.496	3.508, 3.786		
F	4.489	3.638	3.64	3.542	3.548	3.722, 3.860		1.958
G	4.333, 4.35	3.424	3.556	3.812	3.706	3.876, 3.431		
Sia			Ax,1.599 Eq, 2.552	3.539	3.688	3.581	3.585	1.92
Asn	3.799	2.776, 2.683						

A. ¹H chemical shifts of complex-type glycan

B. ¹³C chemical shifts of complex-type glycan

Glycan			13	C chemic	al shifts			
rings	C1	C2	C3	C4	C5	C6	C9	Ac
А	77.94	53.46	72.67	78.5	76.06	59.74		21.95
В	101.18	54.80	71.92	79.49	74.31	59.85		21.95
С	100.32	70.14	80.36	65.52	74.17	65.77		
D	99.41	76.25	69.301	67.15	72.71	62.51		
Е	96.82	76.08	69.32	67.15	72.71	61.53		
F	99.18	54.50	71.95	80.56	74.3	60.11		22.14
G	103.42, 102.8	70.64	72.31	73.57	73.57	63.21		
Sia			39.94	68.12	51.76	72.41	69.47	22.34
Asn	51.07	35.67						

Glycan rings	¹ H chemical shifts							
	H1	H2	H3	H4	H5	H6, H6'		
Αα	5.063	3.752	3.762	3.505	3.755			
Αβ	4.51	3.573	3.551	3.495	3.385	3.521, 3.708		
В	4.521	3.703	3.698	3.653	3.520			
С	4.702	4.171	3.685	3.709	3.560	3.875/3.696		
D	4.792	4.065	3.840	3.785	3.772	3.9109, 3.660		
E	5.0143	3.990	3.809	3.555	3.733	3.660, 3.831		
F	5.001	3.985	3.809	3.57	3.696	3.687, 3.807		
G	4.826	3.904	3.752	3.591	3.608			

C. ¹H chemical shifts of Man₅GlcNAc₂

Individual rings are labeled as shown in Fig. 5b.

Glycan	¹³ C chemical shifts							
rings	C1	C2	C3	C4	C5	C6		
Αα	90.27	53.52	69.12	79.58	69.2			
Αβ	94.68	55.94	72.38	79.13	74.44	59.95		
В	101.31	54.89	71.924	79.48	74.44			
с	100.34	70.14	80.56	65.42	74.31	65.93		
D	99.8	69.38	78.57	65.59	70.78	65.131		
E	102.44	69.95	70.3	66.81	77.81	61.067		
F	102.2	70.05	70.3	66.7	73.26	60.94		
G	99.2	69.88	70.52	66.66	72.64			

Individual rings are labeled as shown in Fig. 5b.

Supplementary Note

ELISAs. PG9 and PG16 detection. 2µg/mL of scaffolded V1/V2 were coated overnight in PBS at 4°C. Plates were washed once with PBS tween 0.2% and blocked for 2 hours at room temperature (5% skim milk in PBS). Antibodies (PG9 and PG16) were added starting at 10µg/ml with 5-fold dilution in PBS tween 0.2% for 1 hour. Plates were washed 5 times in PBS tween 0.05%. Secondary antihuman peroxidase conjugate antibody at 1:5,000 dilution was added to the plate for1 hour. The plates were washed 5 times in PBS Tween 0.05%. Plates were developed using 3,3',5,5'-tetramethylbenzidine (TMB) (Kirkegaard & Perry Laboratories) for 10 minutes and the reaction was stopped with 180nM H2SO4. The readout was measured at a wavelength of 450nm. All samples were tested in duplicate. Lectin detection. Scaffolded-V1/V2 was coated overnight in PBS at 4°C. Wells were blocked using Carbo free block from Vector Biolaboratories. Biotinylated lectins were added to the wells for 1 hour at RT in PBS tween 0.2% and then washed 5 times in PBS tween 0.05%. Vecstatin was added for 1 hour at RT. Plates were washed in PBS Tween 0.05% and developed using TMB. The average absorbance over multiple wells after subtraction of background reactivity is shown for each lectin with standard deviations from the mean as error bars. Some background noise was observed for SN lectin binding to the plate. Sambucus nigra lectin (S)N binds preferentially to Sia(α 2-6)Gal, and to a lesser degree Sia(α 2-3)Gal. Maackia amurensis lectin II (MA) prefers to bind sialic acid in an (α 2-3) linkage. CVN recognizes any glycans that contain α 1-2 linked – mannobiose, which are present on Man-7 through Man-9. Con A interacts with branched α -mannosides present in high-mannose type, hybrid type and biantennary complex type *N*-glycans.

23