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I. Discussion of Nash equilibrium and boundedly rational theories

Nash equilibria in simple games like ours satisfy two properties: (a) Players
accurately guess what strategies (or mixtures of strategies) others will play; and (b)
players choose the optimal strategy with the highest expected payoff—their “best
response”—given their (accurate) beliefs from (a).

In competitive games like those we study, the Nash equilibrium mixtures are
proportions which lead to (weak) mutual best responses. For the Inspection game,
denote NE Matcher P(Left) by p* and Mismatcher P(Left) by q*. The values of p* and
q* will satisfy 2p*=2(1-p*) and 4q*=1(1-q*), or p*=.5, q*=.2.

Note that the mixture probabilities for one player depend only on the payoffs of the
other player. For example, if the (Left, Left) Matcher payoff was X (rather than 4),
the NE mixtures would be p*=.5 (i.e.,, the Matcher is not predicted to change
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behavior at all) and gq*=1/(X+1) (i.e., the Mismatcher is predicted to choose Left less
often, as if to deny the Matcher the high X payoff). This is a counter-intuitive feature.
Any learning algorithm that is guided by received payoffs (such as reinforcement
learning) will therefore adapt, at least in the short-run, in the wrong direction.

Besides learning theories (1), two prominent types of boundedly rational theories
have been explored since the mid-1990s (and see (2) for newer theories; but cf. (3)).

“Quantal response equilibrium” (QRE) retains assumption (a) but relaxes the
optimization condition (b) to allow “softmax” stochastic imperfections in perceiving
and responding to payoff differences (4). This can be seen as a biologically plausible
hybrid that combines the formal precision of assumption (a) with a reasonable
psychophysical constraint on the ability to produce a perfectly optimizing response.
QRE typically uses a single parameter (A) to encode sensitivity of responses; when
the parameter is at its maximal value then QRE is equivalent to NE.

Another class of “cognitive hierarchy” (CH) (or level-k) theories accounts for limited
strategic thinking by maintaining the optimality condition (b) and relaxing the
assumption of accurate beliefs (a) (5-8). Simple level-0 subjects choose using an
intuitive heuristic with no cognition about likely choices of others. Higher level
subjects guess accurately what lower-level subjects are likely to do and optimize.
More levels of strategic thinking generally correspond to a more accurate model of
the social environment and higher rewards. In the Camerer, Ho, and Chong (7)
variant the frequency of subjects at each level corresponds to a Poisson distribution
with mean and variance of t.

Our paper includes the first test of this wide range of rational and boundedly
rationality game theory models using nonhuman behavioral data. Figures S1a-d
show the QRE prediction set. It is graphed as a continuous curve spanning values of
A=0 (random play, P(Left)=.5 for both players) to A—o (NE). CH predictions are
graphed for a single value, T=1.5 (which fits many experimental and field data sets
reasonably well). NE, QRE, and CH all make the same prediction in symmetric
matching pennies. For the other two games, the QRE and CH are actually not more
accurate than NE for the chimpanzees. However, QRE fits the human Inspection
game data more closely.
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Fig. S1: Frequencies of R choices for all pairs in both roles compared to NE, QRE, and
CH predictions. CH predictions are for t=1.5, while QRE predictions trace out a curve
based on the range of values of A from 0 to oc.

These results are surprising because QRE and CH typically reliably fit human data as
accurately as NE (correcting for their extra degree of freedom, of course). The fact
that the chimpanzees are so close to NE in general, and their behavior is not well
described by QRE and CH, also supports our conclusion that the experienced
chimpanzees seem to have some ability to choose NE mixtures which is apparently
superior to that of humans, at least in these simple games.

II. Previous lab and field evidence from humans

Many studies with human subjects have examined how well behavior corresponds
to NE predictions. This section is abridged from a longer discussion in Camerer (1)
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(chapter 3). The empirical background is important for establishing that, for
humans, there are typically substantial deviations between NE predicted
frequencies and human choices, and that choices are typically not independent over
time either.

The earliest studies were conducted in the 1950s, shortly after many important
ideas were consolidated and extended in Von Neumann and Morgenstern’s (1944)
landmark book. John Nash himself conducted some informal experiments during a
famous summer at the RAND Corporation in Santa Monica, California. Nash was
reportedly discouraged that subjects playing games repeatedly did not show
behavior predicted by theory: “The experiment, which was conducted over a two-
day period, was designed to test how well different theories of coalitions and
bargaining held up when real people were making the decisions. ... For the
designers of the experiment ... the results merely cast doubt on the predictive power
of game theory and undermined whatever confidence they still had in the
subject.”(9)

In the 1960s similar early experimental results were discouraging. However,
subjects were often not financially motivated and sometimes played computerized
opponents. One striking result (10) showed that people were capable of mixing
game-theoretically in a special setting: In their experiment subjects chose first,
picked an explicit distribution of strategies (a truly mixed strategy), then the
computer observed their mixture and selected a best response. The only way for
subjects to win is to choose the equilibrium mixture (since any other choice will be
instantly exploited by the computer). In this special setting, they were able to hone
in very precisely on NE mixing (65% were playing the exact mixture by the end of a
five-game sequence).

These discouraging results turned attention away from mixed-strategy games. Game
theorists began to actively research games with private information, and repeated
games. A revival of interest in competitive games began with O’Neill’s (11) elegant
design, a 4x4 game played 500 periods. He reported overall frequencies of play that
were much closer to those predicted by NE than the early c. 1960s studies.

However, O’Neill’s data were reanalyzed by Brown and Rosenthal (12). They used
more careful tests to show that choices often depend strongly on previous choices
and previous outcomes (i.e., independence is violated). (The tests they used are the
same ones we conducted, reported below in this Supplemental material section III).
Others closely replicated these results in games similar in structure.

While there are clearly reliable deviations between NE and human choice, it is
notable that the deviations are often small in magnitude, and across different
strategies and games there is a substantial correlation between NE predictions and
actual choice frequencies. Intuitively, if one strategy X is predicted to be chosen
more often than another strategy Y, then X is almost always chosen more often. A
glimpse of several studies illustrating the accuracy of this theory-behavior
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correspondence comes from a figure in Camerer (1), reprinted with our human data
added as Fig. S2 below.

The correlation between predictions and behavior is .84. The mean absolute
deviation between predictions and data is .067. Furthermore, keep in mind that
predictions usually depend on auxiliary assumptions like neutrality toward risk; if
those assumptions are violated then the behavior should be a little different than
predicted. These results are therefore quite positive in establishing some predictive
value of Nash equilibrium predictions. A notable set of experiments with a similarly
positive conclusion is Binmore et al. (13). One lesson from these data, then, is that
under some experimental conditions behavior close to Nash equilibrium choice can
occur.
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Fig. S2: A cross-study comparison of actual strategy choices frequencies with
predictions from Nash mixed-strategy equilibrium (MSE). Each data point is one
strategy from one study. The light blue circles represent human data reported in
this study. See Camerer (1, chapter 3) for details.

The next important wave of research sought to test whether typical findings in
highly-controlled lab settings were also evident in naturally-occurring settings
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where randomization is expected. (The quality of field-lab correspondence is often
of interest, since economists hope to discover theories which work equally well in
highly-controlled artificial lab settings and in field settings with similar features.
Camerer (14) discusses the ideas and debate about this topic within experimental
economics (see also Heckman and Falk (15)). He also surveys the best available
studies. Those studies generally show good correspondence between patterns in
field data and patterns in closely-matched lab settings.) Most of the studies use zero-
sum competitive sporting events, in which repeatedly playing the same strategy
predictably—such as always serving to the same side of the service box in tennis—
would typically be noticed and exploited by an opponent.

Early studies of tennis (16-17) and soccer (18-22) found that players’ frequencies
corresponded fairly closely to those predicted by a NE analysis, and that choices
were also roughly independent. The Palacios-Huerta and Volij study is particularly
impressive because they are able to match data from actual play on the field from
one group of players (in European teams) with laboratory behavior of some players
from that group (although not matching the same players’ field and lab data).
Importantly, PHV also found that high school students as a group behaved less game
theoretically than the soccer pros, except that high school students with substantial
experience playing soccer were much closer to game-theoretic. However, a
reanalysis by Wooders (1) later showed a higher degree of statistical dependence
than shown by PHV.

Levitt, List, and Reiley (24) compared behavior of poker, bridge, and soccer players
(from US teams) in abstract games conducted off the field. They find substantial
deviation from NE and violations of independence. However, PHV noted (personal
communication) that the soccer players playing for US teams in the sample were
less likely than their counterparts in PHV to actually randomize independently in
the field. (The key point here is that the best players, and perhaps the best
randomizers, play in soccer-crazy Europe rather than in the US.)

Another field study used a simple lottery played in Sweden by about 50,000 people
per day, over seven weeks (25). Participants in the “LUPI” lottery paid 1 euro to pick
an integer from 1 to 99,999. The lowest unique positive integer won 10,000 euros.
The symmetric NE has a dramatic shape, with numbers from 1 to 5513 being chosen
almost equally often, but with slightly declining probability (i.e., 1 is most probable,
2 is slightly less probable, etc.). A bold prediction is that numbers above 5000—a
range that includes 95% of all available numbers—should rarely be chosen. The
actual behavior is not far from the NE prediction and converges over the seven
weeks toward the statistical prediction of the NE prediction (e.g., the mean, variance,
and other statistics all move toward NE). In a scaled-down laboratory replication
behavior is even closer to NE, even before there is much feedback to learn from.

The general picture from these decades of field and lab studies is that people are
capable of approximating Nash mixtures (and certainly of moving in their direction
with learning), but that substantial deviations are to be expected. For simple matrix
games like those we study, an absolute deviation of 0.05-0.10 between NE
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prediction and actual frequency is to be expected for human subjects. The average
absolute deviations in the Inspection Game 3 are 0.05 and 0.22, which are
comparable to these guesses from many other studies. For chimpanzees, the
average across all roles and games is 0.033 (compared to 0.135 for humans).

Table S1: Absolute deviations between NE predictions and average overall
frequencies by role, game and species

Deviation (to 2 digits) Matcher Mismatcher
Sym Chimps 0 0

Asym Chimps 0.14 0.02

Insp Chimps 0.03 0.01

Insp Humans 0.05 0.22

III. Temporal dependence regression

The histograms (Figs. S3, S4) show the results of a simple test comparing the
number of switches in each subject’s time series of L-R responses to the number of
expected assuming statistical independence. The switching rate histograms for the
game-role pairs from the symmetric and asymmetric matching pennies payoff
games are shown in Fig. S3 below. They show a little more deviation from random
independent play.

Individual 95% confidence intervals for each subject-session uses the mixture
probabilities for that subject-session, which imply the mean and variance of the
number of runs under the hypothesis of independence (the basis for a Wald-
Wolfowitz runs test: Let the number of L choices = n, R choices = m. Then the mean
=2nm/(n+m) + 1 and variance = 2Znm(2nm - n - m)/((n + m)? (n + m - 1))) . The
number of runs is asymptotically normal, providing a 95% confidence interval for
each subject-session with that mean and variance. These 95% confidence intervals
were averaged to produce the confidence intervals shown in Figs. S3 and S4.

Our version of the Brown-Rosenthal (BR) equation is
Rt+1 == aO + alRt + ath_l + bOR:-I-l + blR;:-k + bZRZ—l + C1Wt + C2Wt_1

where R; is the player’s choice, R; is the opponent’s choice, and W, denotes the
winner in period t. This logit regression tests for a variety of temporal dependence
effects.

Table S2 shows the percentage of role-subject session time series which yield BR
coefficients that are significant at the 5% level, for each group of coefficients. For
example, for human matchers (role m), 50% of the 16 subjects’ regressions
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indicated significant dependence of a player’s choices on the previous two opponent
choices. A joint test for all effects of previous outcomes and choices (the bottom row
of the Table) indicates that in almost all cases some of the coefficients are
significantly nonzero, when tested together jointly.
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Importantly, however, the human and chimp percentage differences in significant
dependence rates (shown in the right-hand columns) are generally close together. Z-
tests of the difference in percentages across chimps and humans do not indicate any
strong differences which persist for both roles.

Table S2: Percentage of significant temporal dependence effects for chimp and
human inspection games

humans chimps Difference (chimps - human)

Type of temporal dependence  Coefficient m mm m mm m  z-score mm  z-score
Clairvoyant guessing b0 0.13 0.13 0.00 0.00 -0.13 -091 -0.13 -0.91
Previous opponent choices b1, b2 0.50 0.63 0.33 067 -0.17 -0.70 0.04 0.17
Previous outcomes cl, c2 0.25 0.25 0.00 0.67 -0.25 -1.35 0.42 2.26
Previous choices and outcomes b1, b2, c1, c2 0.63 0.63 050 0.67 -0.13 -053 0.04 0.18
Previous own choices al, a2 0.38 0.31 0.50 0.83 0.13 0.53 0.52 2.21
All of the above effects ai, bi, ci 0.75 0.69 0.83 1.00 0.08 042 031 1.56
sample size 16 16 6 6

Note: "m" and "mm" denote matcher and mismatcher roles.

Table S2 shows corresponding percentages (averaging across both Matcher and
Mismatcher roles) for the symmetric and asymmetric matching pennies games, and
for Brown and Rosenthal’s (12) original analysis of human data (playing 500 trials).
Both human data results, and the chimp inspection game, are comparable in the
rates of significant dependence.

Table S3: Percentage of significant temporal dependence effects for all chimp and
human games, and original Brown-Rosenthal (1990) human data

Symmetric Asymmetric Inspection Inspection BR (1990)

Type of temporal dependence  Coefficient Chimps Chimps Chimps ~ Humans  Humans
Clairvoyant guessing b0 0.17 0.33 0.00 0.13 0.08
Previous opponent choices b1, b2 0.83 0.83 0.50 0.56 0.30
Previous outcomes cl, c2 0.67 0.33 0.33 0.25 0.42
Previous choices and outcomes b1, b2,c1,« 0.83 0.92 0.58 0.63 0.44
Previous own choices al, a2 1.00 0.83 0.67 0.34 0.48
All effects ai, bi, ci 1.00 1.00 0.92 0.72 0.62
sample size 12 12 12 32

IV. Learning and history-responsiveness

In this section we present binned data showing the entire time series of behavior
(averaged across subjects within each species) as evidence about learning.

First we simply present frequencies P(R) in blocks of 10 trials, averaged across all
participants within each species, in Figs. S5-6. There is clearly some movement
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toward the Nash equilibrium (denoted by the solid line marked NE). Sometimes
there is overshooting. Recall that the three games for chimpanzees were presented
in order (not counterbalanced, to avoid confusion) as described in the text materials.
Therefore, the Inspection game came last for chimpanzees and first (and only) for
humans. To control for experience it is therefore useful to examine P(R) for the
mismatchers (who play unequal frequencies in NE) in the earliest learning trials.

Figure S6 indicates just a modest amount of human learning across trials. A linear
regression has a slope over 40 blocks of 0.0015 (p =.051). The corresponding
learning rate for the first chimpanzee game with unequal NE predictions (the
asymmetric MP game) is six times higher, 0.0089 (p < 10e-9),

Together, these comparisons show that looking at the first 400 trials played by
humans in the Inspection game, and by chimpanzees in the Inspection game or
Asymmetric matching pennies, it is not the case that the humans learn quickly in
400 trials but cannot catch up to the longer stretch of trials available to the
chimpanzees. The chimpanzees learn faster in the first 400 trials of each game they

play.

10
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marked with a solid line). In the asymmetric game, Mismatcher chimpanzees adjust
close to NE after 300 trials.
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What is crucial for present purposes is what the overall chimpanzee frequencies
look like for the first 400 trials of each game they play. This comparison is different
than in Fig. 2d, because it matches the human experience with the comparable first
400 trials of chimpanzee behavior. Figure S7 shows the analogous graph using only
400 trials. The 400-trial Inspection game results are almost identical to those using
all the trials, and are still close to NE and far from the human data. Thus, the
conclusion of the paper that chimpanzees behave more game-theoretically than
humans (in the sense of being closer to NE) still holds.
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Fig. S7: Analogous reporting to text Fig. 2d using only the first 400 trials of all games.

Figures S5-6 show that variation occurs across time, but does not indicate how
learning occurs. A core prediction of the cognitive tradeoff or social protean view is
that the chimpanzees may actually be superior to humans in tracking short-term
histories and responding to them. From this perspective, the temporal dependence
of choices shown in Tables S2-S3) is not necessarily unstrategic, since subjects who
are learning by payoff reinforcement or belief updating should make choices that
depend on histories. To see whether the participants’ choices depend on learning

studied commonly in human game theory, we use a method developed by Hampton
et al. (26).

Fictitious play and estimation

Under (first order) fictitious play, an agent presumes his opponent is playing a
mixed strategy where the mixing probability for a given action is inferred from the

13
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history of the opponent's plays. These beliefs are updated based on prediction error
- in this case, the difference between the actual action taken and the belief about the
probability of that action. The agent then best-responds - chooses the strategy with
highest expected payoff - to that opposing mixed strategy. (Our use of the logistic
choice rule implies that the agent "better-responds” by playing better actions more
often and not always taking the absolute best choice.)

Choice rule: Supposing there are two possible actions, a and b, the probability of
choosing action a is given by the logistic function operating on the difference in
anticipated values:

a — a __ by — 1
p- = f(V |4 ) 1+e—(Va—Vb)+a'

In this model, the anticipated value of an action is equal to the expected value of the
action given the opponent's mixing probability:

Ve = q*n(a,a) + (1 —q*)n(a,b)

where q” is the player's belief (probability estimate) about his opponent's mixing
probability for action a (and hence 1 — g~ is the player's corresponding belief about
b), and (a, a) and m(a, b) are the player's payoffs from the (a,a) and (a, b)
outcomes. « is a role-dependent lever bias term.

In our matching pennies game, let p be the probability that the Matcher plays Left,
and let g be the probability that the Mismatcher plays Left. Further, let p* be the
Mismatcher's belief about the Matcher's probability of playing Left, and let g* be the
Matcher's belief about the Mismatcher's probability of playing Left. The decision of
player 1, the Matcher, as a function of his belief about player 2, is

p= f(VL _ VR)Matcher
= f(ln(L, L)q" + n(L, R)(1 = ¢)] = [7(R,L)q" + n(R,R)(1 = g")])

and the decision of player 2, the Mismatcher, as a function of her belief about player
1,is

q= f(VL _ VR)Mismatcher
= f(ln(L, L)p™ + m(R,L)(1 = p")] = [ (L, R)p™ + (R, R)(1 — p7)])

Updating rule: Calling p; the player's belief about her opponent's probability of
playing action a in trial ¢, the player's belief is updated as follows:

* _ * p
Piy1 = Pt + 16,
where the prediction error

55): P, —p¢

14
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is the difference between an indicator representing whether action a was taken by
the opponentin trial t (P, = 1) or not (P, = 0) and the belief p;. Hence

Pi+1 = Pt + (P — ).

We estimate the learning rate parameter 7 for each agent by fitting the choice
probabilities predicted by the model, p, and p,, to the actual choices made by the
agents, y, and y;, (indicator variables describing whether or not the corresponding
action was taken). The parameters were estimated separately for each pair, for each
agent in that pair, by maximizing the log likelihood:

log L

Chimp 1
= Z (2  Yalogp, +yp logpb>
games trials

Chimp 2
+Z (2  Yalogps +yp logpb>
games trials

using numerical optimization with starting values from a grid with boundaries (0, 1)
for n and (-0.25, 0.25) for a, with increments of 0.25.

Model fits which are consistent with payoff-responsive learning will have
substantial values of the learning rate n (above 0.10), typically small lever bias (a
<.5in magnitude) and a substantial mean predicted probability. Although some
blocks were excluded in estimation due to excessively perseverative runs, the
overall mixture probabilities excluding these blocks remain close to NE, as Fig. S8
shows.

15
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Fig. S8: Analogous reporting to text Fig. 2d using only the blocks included in the
learning model estimation.

While the sample sizes are obviously small, there is more evidence of payoff-
responsive learning by the chimpanzees. The median learning rate is 0.181 and the
median predicted probability is 0.566. For human participants, the median learning
rate is only 0.041 and the overall mean predicted probability is 0.512. This
difference is not conclusive because of the challenges (described in the main text) of
closely matching chimpanzee and human experiments on comprehension and
incentives. However, it is consistent with the hypothesis that the chimpanzees are
more inclined to using histories of opponents’ choices to adjust their own strategy
choices (as evidenced by higher learning rates and higher predictability of choices
based on opponent history). This difference is consistent with the cognitive tradeoff
and social protean hypotheses.

Table S4: Best-fitting learning parameters, Inspection game data only (ordered
from low to high learning rate within species).

Pair, Learning | Matcher Mismatcher | Exp(LL/N) | -LL
player # | rate (1) “lever bias” | “lever bias”
(aMat) (aMi5)
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Chimpanzees
1,2 0.014 -0.121 -1.259 0.575 443.1
3,1* 0.022 -0.239 -0.601 0.539 370.6
3,2* 0.121 0.160 -1.842 0.600 306.3
2,1** 0.241 -1.627 -1.545 0.612 196.6
2,2%* 0.262 -0.104 -1.524 0.558 233.3
1,1 0.485 0.251 -0.007 0.534 502.4
Median 0.181 0.566
Humans

7,2 -0.002 -1.910 -0.226 0.502 275.4
1,2 0.001 -1.690 -0.426 0.508 271.2
2,1 0.002 -1.320 -0.236 0.504 274.3
3,1 0.003 -1.036 -0.084 0.505 272.9
4,1 0.009 -1.525 -0.187 0.509 270.5
6,1 0.011 -0.604 -0.102 0.529 254.4
8,2 0.018 -0.967 -0.633 0.509 269.8
6,2 0.039 -0.920 0.735 0.505 273.0
5,2 0.043 -1.072 -0.085 0.509 269.9
7,1 0.055 -0.721 -1.387 0.558 233.1
4,2 0.066 -0.977 -0.673 0.519 262.7
2,2 0.149 -0.550 -0.239 0.516 264.6
1,1 0.154 -0.657 -0.733 0.517 263.8
3,2 0.313 -1.241 -0.007 0.522 260.1
51 0.599 -0.565 -0.394 0.549 240.2
8,1 0.734 -1.903 0.141 0.604 201.9
Median 0.041 0.512

Note: *denotes 600 observations ** denotes 400 observations (all other chimpanzee
players have 800 observation). Some games were excluded due to long
perseverative runs of identical choices. The overall chimpanzee analysis uses 3600
out of 4800 available observations. Human data are 400 observations per subject
(overall 6400 observations).

Since the humans tend to generate poor model fits, the distribution of estimated
learning rates 7 is skewed and non-Gaussian, so a two-sample t-test assuming
Gaussian data is inappropriate.! A nonparametric approach compares the two
population learning rates by comparing their distributions of likelihood ratio (LR)
statistics. The LR statistic (normalized by sample size) calculated for each subject is
—2(LL, — LL,, ), where the restricted model allows lever bias to be a free parameter,
but requires the learning rate to be 0. Comparing the LR then measures how much
better-fitting a model with unrestricted learning is. That is, the restricted model just

1 While the parametric basis for a t-test is unsound, readers might want to know
that the resulting p-value for the difference in the human and chimpanzee learning
rates has a p-value of .119.
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fits the empirical frequencies from players in both roles, but does not allow any
dependence on history. The unrestricted model allows both role-dependent
frequencies and learning. This procedure creates a sample of LR statistics {yX} for
each group K € {H, C} (human and chimpanzee), from which we remove a human
outlier (p<10-15, Dixon test). Then we test for the first-order stochastic dominance of
chimps over humans. First-order stochastic dominance implies that for any level of
improvement in fit from allowing learning, more chimpanzees have an LR statistic
higher than that level than humans do. That is, we use the Davidson-Duclos (27)
empirical likelihood ratio (ELR) statistic which satisfies

1

= NlogN — Ny log Ny — N:log N; + Ny (2) log Ny (z) + No(z) log N-(2)
+ My (z) logMy(z) + Mc(z) log M (2) — (NH(Z) + NC(Z)) log(NH(Z) + NC(Z))
— (My(2) + Mc(2)) log(My (2) + Mc(2))

where Ny is the size of sample K, N (z) = Y., I(y¥ < z) (in the continuous case) is
the number of points less than or equal to z in sample K, and My (z) = Ny — Nk (2).
The ELR statistic is LRY/2(%), evaluated at the value of z within the interior of the
joint support which minimizes it. Bootstrap samples can be constructed by
resampling using probabilities

Mg (2)+M_g(2)

Kk _ Ng(@)+N_g(2)
t NM (2)

= KK foryK < Zand

K ~
NNR®) fory; > Z

p

where Z is the ELR-statistic-minimizing value of z, and denoting the other group by

- K. For each bootstrap sample, the ELR statistic can be calculated at the minimizing
value of z for that sample independently. The ELR statistic from the original data is
tested against the distribution consisting of this set of bootstrapped statistics. Doing
so yields a p-value of .040. Including the outlier human value yields a p-value of .073,
which remains strongly suggestive of a replicable difference (particularly
considering the test is conservative, i.e., it has a tendency to under-reject the null
hypothesis of nondominance).

The t-test for predictability (exp(LL/N)) works as follows: The numbers in the
column (5) for both human and chimp predictability are used as statistics. TTEST in
Excel is used, setting optional values to 2-tailed tests for a 2-sample test with
unequal variances. The p-value (Welch’s t-test) is .013.

V. An interesting difference between Matcher and Mismatcher response
times (RTs)

There are some interesting patterns in response times (RTs). Each point in Fig. S9
shows the pair of averaged RTs for each subject, when playing as both Matcher (x-
axis) and Mismatcher (y-axis). One evident result is that Mismatcher RTs are nearly
always longer (i.e., slower) than Matcher reactions. One theory to account for this
difference is that, in equilibrium, the Mismatchers have to choose unequal portions
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of L and R responses. However, the slight RT difference is even evident in the
symmetric games, where L and R responses are predicted to be equally common
(and actually are, empirically) for both Matcher and Mismatcher.

Within Subject Role-Based Reaction Time Differential
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Fig. S9: Average reaction times for individual subjects when playing as Matcher (x-
axis) and Mismatcher (y-axis).

We speculate that the RT differential might indicate some kind of highly evolved
(and conserved across species) speed for physical imitation of movements,
compared to anti-imitation.

Since each subject participated in both roles, as Matcher and Mismatcher, we can
compare their RTs in the two different roles. (There is no experience confound,
because half of the subjects were in the Matcher role first and half in the Mismatcher
role first). A paired sign test for differences in medians for these within-subject RTs
rejected the hypothesis of equal medians (median difference 127ms, p<10-8) even
when including an outlier (Matcher RT 1748ms, Mismatcher RT 1086ms; not shown
in Fig. S9).

VI. Histograms of payoffs across subjects and games
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Fig. S10: Average payoff distributions across all chimpanzee-sessions in Matching
Pennies and Asymmetric Matching Pennies games.
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Fig. S11. Average payoff distributions for (A) Matchers and (B) Mismatchers of both
species in Inspection games. The only systematic deviation from Nash equilibrium (NE)
payoffs is that human Matchers earn more. Grayscale heatmaps (C,D) show payoff
contours (higher payoffs are lighter regions). (C) This heatmap for Matcher payoffs
shows that human Mismatchers deviate more from NE, which benefits Matchers (i.e. the
blue triangle is in a lighter region—a higher payoff-- than the NE). (D) This heatmap for
Mismatcher payoffs shows that human Matchers are empirically close (the blue
triangle) to the NE prediction of P(R|Matcher)=.5. As a result, there is no substantial
difference in payoffs to Mismatchers. Note: Both heatmaps assume that there is no
ability coordinate choices between Matchers and Mismatchers in order to maximize
joint payoff.

VII. A simple model of genetic relatedness does not explain the chimpanzee-
human difference
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Because the mother-child chimpanzee pairs are genetically related (and the humans
are likely much less related) it is useful to analyze whether the chimpanzee-human
differences could be due to departures from self-interest in payoff gain due to
relatedness. A natural simple model is to assume that one player earns a fraction r of
the other player’s payoff, where r is a relatedness coefficient (or, in a model of
human altruism, interpreted as sympathy or personal gain from another person’s
earnings).

Then the payoff matrix looks like this:

mismatcher
L R
matcher L X, rX 2r, 2
R 2r, 2 Y, rY

Table S5. Matching pennies variants with altruistic spillover of payoffs.

When r=0 it reduces to the purely selfish games. Denote p(R|matcher)=p*(r) and
q(R|mismatcher)=q*(R). When the Nash equilibrium probability mixtures are
computed for this game, we see:

p*(r)=(2-rX)/(4-r(X+Y)) and q*(r)=(X-2r)/(X+Y-4r)

When X=Y=2 (pure matching pennies Game 1) p*(r)=q*(r)=.5 for all r. In this game,
altruism plays no role.

However, for X=3,Y=1 (Game 2, also denoted AMP), changing the value of r traces a
continuous line from the selfish (r=0) equilibrium to a point on the boundary. The
notation (x,y) denotes (P(R|matcher)=x, P(R|mismatcher)=y. For Game 2, changing
the value of r traces an arc from (.5,.75) to the boundary p*(R|matcher)=.25,
q*(R|mismatcher)=1.

For X=4, Y=1 (Inspect. Game 3) changing the value of r traces a continuous line from
the equilibrium (.5,.80) to the boundary p*(R|matcher)=.0, g*(R|mismatcher)=1.

For both games 2-3, however, something interesting also happens when r>1/2.

In Game 2 (X=3), when r=1/2 choosing L becomes a strictly dominated strategy for
the matcher (since Y=1). Then p*(R|matcher)=0 and the mismatcher column player
chooses q*(R|mismatcher)=1 for ¥%2<r<2/3. However, when r>2/3 the pair (L,L)
becomes dominant for both players so there is a jump in the altruism-adjusted Nash
equilibrium to (0,0).

In Game 3 (X=4), when r=1/2 the pair (L,L) becomes dominant for both players so
there is a jump in the Nash equilibrium to (0,0).

All these effects are shown in Figure S12.
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Fig. S12: Nash equilibrium paths (black lines) when utility payoffs are influenced by
a parameterized degree of pure altruism. The altruism weight, r, is the weight each
player places on the other player’s direct reward. Increasing altruism moves
equilibrium pairs toward (L, R) (up to a point), hitting a boundary in which
g(R|mismatcher)=1. In game 2, when r>.5 the choices jump to (0,1), then jump again
to (0,0) when r>2/3. In game 3, when r>.5 the choices jump to (0,0) because the
(L,L) is dominant (adjusting for altruism r>.5). This simple model cannot explain
why chimpanzee pairs (who higher genetic relatedness than the human groups),
move, across games, toward higher frequencies P(R|mismatcher) with no
substantial movement in P(R|matcher). That is, this graph shows why the
hypothesis that the chimpanzee-human difference is due to genetic relatedness
cannot account for the main difference in choice frequencies.

VIII. Further Details on Methods

Players made choices on pairs of computer touch-panel screens. Each screen
displayed two identical stimuli (45mm light blue square buttons) on the left and
right sides of the screen (text Figure 1a). If both subjects chose the button on the
right, or if both subjects chose the button on the left, then the “Matcher” was
rewarded. If the subjects chose buttons on different sides, then the “Mismatcher”
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was rewarded. At the end of each trial as the winner was rewarded, a blinking
stimulus appeared on the side of each screen that had been pressed by the opponent.
No control tests were made to assess the players’ comprehension of the meaning of
the blinking stimulus as an indication of “other’s choice”, though use of opponent
feedback without comprehension testing is a standard practice for non-human
primate decision making tasks (28). The chimpanzee subjects had some visual and
much audible feedback about the outcomes of each round, as the winner’s feeder
made noises to dispense the food. While humans had no visual feedback about the
other’s payoff, they had audible feedback in the form of the sound of coins dropping
into their opponent’s food tray. Payoff structures changed across three kinds of
games (Figure 1c). Pairs played 200 rounds of a game per session. Chimpanzees
switched roles between sessions and played game 1 (symmetric matching pennies)
for 10 sessions, game 2 (asymmetric matching pennies) for 5 sessions, and game 3
(inspection game) for 4 sessions. Pairs of humans played game 3 (inspection game)
for 2 sessions, switching roles once. The primary aim of the current study was to
assess the chimpanzees’ behavior in competitive games, with the comparison to
humans as a secondary goal. Therefore, the chimpanzees played more games, and
more sessions of each game compared to humans. The lack of perfect
methodological matching in the number of games and sessions between human and
chimpanzee conditions was also due to logistical difficulties, including the
possibility of experimental attrition that may have resulted from having humans
participate in repeated sessions over the course of many days. During the games,
players were seated in an experimental booth facing away from each other (Figure
1b). Universal feeding machines (Biomedica Model BUF-310), delivered 8 by 8mm
cubes of apple (or tokens in the case of humans) on a trial-to-trial basis. Humans,
but not chimpanzees, had an opaque barrier between them to limit communicative
exchanges that likely would have affected their behavior. Since chimpanzees show
little or no communication during the games, the barrier was placed for humans in
an attempt to replicate the non-communicative context of the chimpanzee condition.
A single PC running a Visual Basic 6 program controlled all experimental events
involving the two touch-screens and feeders.

Subjects

Six chimpanzees (Pan Troglodytes) at the Kyoto University Primate Research
Institute voluntarily participated in the experiment. The subjects were three
mother-offspring dyads (Ai, a 31 year old female and her 9 year old son Ayumu;
Chloe, a 30 year old female and her 9 year old daughter Cleo; and Pan, a 27 year old
female and her 9 year old daughter Pal). The mother-offspring dyads were pair-
matched with each other for all of the experimental games in this study. All
participants had previously taken part in cognitive studies, including social tasks
involving food and token sharing (29-30), and a dual touch-panel study in which
they observed and copied the behavior of a conspecific model (31). However, the
dual touch-panel competitive game in this study was novel to the participants. The 6
participants lived with 7 other chimpanzees in a semi-natural enriched enclosure,
and were not food or water deprived during the period of the study. The
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chimpanzee study lasted over a period of 30 days, with experimental sessions
occurring on average 4 times a week for each subject pair. The use of the
chimpanzees during the experimental period adhered to the Guide for the Care and
Use of Laboratory Primates (2002) of the Primate Research Institute of Kyoto
University.

16 human Japanese participants (13 female) participated in the experiment. The
participants were undergraduate and graduate students of Gifu University and
Kyoto University. In a player-matched design, pairs of subjects were exposed to 50
training trials in each of the Matcher and Mismatcher roles in order to gain
familiarity with the task and payoff structure of the game. Training trials were given
to humans, but not to chimpanzees, because the chimpanzees experienced multiple
role-reversals between sessions that humans did not, thus allowing the
chimpanzees a greater opportunity to identify the payoff structures of each role
without explicit training sessions. After the training rounds, humans played 200
rounds in each of the two roles. The experimental design and procedure was
identical to that of the chimpanzee task, except that coin tokens were dispensed
from the feeders instead of apple pieces, and an opaque barrier was placed between
the stations to prevent collusion. In order to maximize parity between chimpanzee
and human conditions, the human subjects were not given any verbal instructions
prior to the task, and were not told that they were to play a competitive game
against each other. After completing the task, participants were given 500-yen
(approximately 6 US dollar) gift-cards. The ethical committee of Primate Research
Institute of Kyoto University approved the use of human subjects. Methods used
with Bossou in Guinea, Africa are described in the main text.

1. Camerer CF (2003) Behavioral Game Theory: Experiments in Strategic
Interaction (Princeton Univ Press, Princeton, NJ).

2. Selten R, Abbink K, Buchta ], & Sadrieh A (2003) How to play (3 x 3)-games. A
strategy method experiment. Game Econ Behav 45(1):19-37.

3. Brunner C, Camerer CF, & Goeree JK (2011) Stationary Concepts for
Experimental 2 x 2 Games: Comment. American Economic Review
101(2):1029-1040.

4. McKelvey RD & Palfrey TR (1995) Quantal Response Equilibria for Normal
Form Games. Game Econ Behav 10(1):6-38.

5. Nagel R (1995) Unraveling in Guessing Games: An Experimental Study. The
American Economic Review 85(5):1313-1326.

6. Stahl D, 0. & Wilson P, W. (1995) On Players' Models of Other Players: Theory
and Experimental Evidence. Game Econ Behav 10(1):218-254.

7. Camerer CF, Ho TH, & Chong JK (2004) A cognitive hierarchy model of games.

Quarterly Journal of Economics 119(3):861-898.

Crawford V, Costa-Gomes M, & Iriberri N (2010) Strategic Thinking.

9. Nasar S (1998) A Beautiful Mind: A Biography of John Forbes Nash Jr (Simon &
Schuster, New York).

o

25



Chimp game theory

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Kaufman H & Becker GM (1961) Empirical Determination of Game-
Theoretical Strategies. Journal of Experimental Psychology 61(6):462-&.
O'Neill B (1987) Nonmetric Test of the Minimax Theory of Two-Person
Zerosum Games. Proc Natl Acad Sci U S A 84(7):2106-2109.

Brown JN & Rosenthal RW (1990) Testing the Minimax Hypothesis: A Re-
Examination of O'Neill's Game Experiment. Econometrica 58(5):1065-1081.
Binmore K, Swierzbinsk, ], Proulx, C. (2001). Does Minimax Work? An
Experimental Study, Economic Journal, 111: 445-464.

Camerer C (2012) The Promise and Success of Lab-Field Generalizability in
Experimental Economics: A Critical Reply to Levitt and List.

Falk A & Heckman J] (2009) Lab Experiments Are a Major Source of
Knowledge in the Social Sciences. Science 326(5952):535-538.

Walker M & Wooders ] (2001) Minimax Play at Wimbledon. American
Economic Review 91(5):1521-1538.

Hsu SH, Huang CY, & Tang CT (2007) Minimax play at Wimbledon: Comment.
American Economic Review 97(1):517-523.

Palacios-Huerta I & Volij O (2008) Experientia Docet: Professionals Play
Minimax in Laboratory Experiments. Econometrica 76(1):71-115.

Chiappori PA, Levitt S, & Groseclose T (2002) Testing Mixed-Strategy
Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in
Soccer. American Economic Review 92(4):1138-1151.

Palacios-Huerta I (2003) Professionals play minimax. Review of Economic
Studies 70(2):395-415.

Moschini GC (2004) Nash equilibrium in strictly competitive games: live play
in soccer. Economics Letters 85(3):365-371.

Azar OH & Bar-Eli M (2011) Do soccer players play the mixed-strategy Nash
equilibrium? Applied Economics 43(25):3591-3601.

Wooders ] (2010) Does Experience Teach? Professionals and Minimax Play in
the Lab. Econometrica 78(3):1143-1154.

Levitt SD, List JA, & Reiley DH (2010) What Happens in the Field Stays in the
Field: Exploring Whether Professionals Play Minimax in Laboratory
Experiments. Econometrica 78(4):1413-1434.

Ostling R, Wang JT-y, Chou EY, & Camerer CF (2011) Testing Game Theory in
the Field: Swedish LUPI Lottery Games. American Economic Journal:
Microeconomics 3(3):1-33.

Hampton, AN, Bossaerts, P & O'Doherty, JP. Neural correlates of mentalizing-
related computations during strategic interactions in humans. Proc Natl
Acad Sci USA 105, 6741-6746 (2008)

Davidson, R & Duclos, J-Y. Testing for restricted stochastic dominance.
Econometric Reviews, 32(1):84-125, 2013

26



Chimp game theory

28.

29.

30.

31.

Lee D, Conroy ML, McGreevy BP, Barraclough D] (2004) Reinforcement
learning and decision making in monkeys during a competitive game.
Cognitive Brain Research, 22(1), 45-58

Tanaka, M. & Yamamoto, S. Token transfer between mother and offspring
chimpanzees (Pan troglodytes): mother-offspring interaction in a competitive
situation. Anim Cogn. 12, S19-26 (2009)

Yamamoto, S. & Tanaka, M. Do chimpanzees (Pan troglodytes) spontaneously
take turns in a reciprocal cooperation task? J Comp Psychol. 123, 242-249 (2009)

Martin, C.F., Biro, D. & Matsuzawa, T. Chimpanzees' use of conspecific cues in
matching-to-sample tasks: public information use in a fully automated testing
environment. Anim Cogn. 14, 893-902 (2011)

27



