Virus-Inspired Membrane Encapsulation of DNA Nanostructures to Achieve *In Vivo* Stability

Authors

Steven D. Perrault,^{1,2} William M. Shih^{1,2,3}*

b

Supporting Information Fig. 1. Schematic of the DNO design and scaffold routing. (a) Schlegel diagram illustrating the routing of the p7308 scaffold through the 12 struts. **(b)** Staple oligonucleotide strand and scaffold organization from caDNAno. **(c)** Numerical organization of helices into six-helix bundles for the 12 struts. **Note**: the aspect ratio of the strut width (estimated to be 7.5nm based on known helical properties) to the DNO diameter shown illustrated in **Figure 1** is not meant to be to scale. Discrepancies between the illustrated model and TEM data could be due to less actual curvature in struts than anticipated from design, expansion of the DNO due to the presence of 5T linkers between struts, and errors in experimental measurement of DNO diameter.

Supporting Information Fig. 2. Synthesis and purification of the DNO. (a) Folding of the DNO was tested over a range of 10-22mM Mg^{2+} , and 14mM was chosen as the best condition based on analysis from agarose gel electrophoresis and negative stain TEM. (b) Large quantities of structures were folded, concentrated, and separated *via* ultracentrifugation through glycerol gradients. The gradients were fractionated and an aliquot of each fraction was loaded into an agarose gel for analysis. This representative gel shows the excess staples remained at the top (fractions 1 ~ 12), and folded product migrated into the lower half of the gradient. Appropriate fractions were combined and run through a second glycerol gradient to achieve a high purity. (c) The final product was analyzed by agarose gel electrophoresis, showing a single product band, (d) as well as by TEM, which revealed a homogenous population of nanostructures. Scale bar = 200nm.

Supporting Information Fig. 3. Encapsulated-DNO sizing data. (a) Measurements of the inner and outer membrane diameters from TEM images. (b) Dynamic light scattering data of 50nm vesicles (—), the naked 48x-outer handle curved octahedron (—), and the enveloped, purified nanostructures (—). (c) Dynamic light scattering measured the N-DNO hydrodynamic diameter to be 93 ± 0.3 nm, slightly smaller than for E-DNO and 50nm vesicles at 113 ± 1.3 and 115 ± 1.0 nm, respectively (Error bars indicate SEM).

Supporting Information Fig. 4. Encapsulation yield dependence on membrane formulation. Two membrane formulations were compared for encapsulation yield using the PicoGreen dye exclusion assay; PC/PS/PEG-PE/Rhodamine-PE (84.1, 15.0, 5.0, 0.9%) (\blacksquare) and PC/PEG-PE/Rhodamine-PE (94.1, 5.0, 0.9%) (\blacksquare). Inclusion of negatively-charged PS reduced encapsulation yield with 0, 12 and 24 handles (p<0.05), but did not have an effect on the 48-handle version. (*Student's t-test, p<0.05, error bars indicate SEM).

Supporting Information Fig. 5. Negative stain TEM images of DNO 0-24 outer handle variants after lipid treatment. (a) The 0-handle variant displayed some non-specific interaction with liposomes. (b) The 12-handle variant displayed a stronger interaction overall, but liposomes formed primarily away from the DNA surface, rather than around it. (c) The 24-handle variant showed greater capacity for encapsulation in membranes, but most cases were within larger liposome bodies, rather than tight-wrapping of the nanostructure.

Supporting Information Fig. 6. Negative stain TEM Imaging of vesicle fusion. Low magnification (a) and high magnification (b) images of the post-encapsulation DNO after altering the lipid formulation to include 15% cholesterol. This resulted in a population of reconstituted vesicles of ~20nm, smaller than in the absence of cholesterol. Neighboring vesicles on the DNO were inhibited from fusing and fully encapsulating the nanostructures. Scale bars = 500nm (a) and 100nm (b).

Supporting Information Fig. 7. Float-up purification of E-DNO. (a) An iodixanol gradient with encapsulation product is prepared, centrifuged overnight, and fractionated. 50μ L of each fraction is transferred into a 96-well fluorescence plate, which is imaged for fluorescence in the Alexa Fluor 750 (DNO) and rhodamine (vesicles) channels. (b) Analysis of rhodamine and (—) and Alexa Fluor 750 (—) fluorescence in the fractions shows separation of the excess vesicles higher and DNO lower in the gradient. (c) A second float-up is prepared with appropriate fractions from the first float-up, and measured by fluorescence in a 96-well plate. (d) Analysis of the second float-up shows further enrichment for E-DNO into lower fractions, which are collected for use in *in vitro* and *in vivo* experiments. (e) Negative stain TEM of purified E-DNO. Scale bar = 500nm.

Supporting Information Fig. 8. Imaging, measurement of DNO fluorescence and confocal microscopy of splenocytes. (a) Total internal reflectance fluorescence microscopy was used to image Cy5-labeled E-DNO. (b) Measurement of E-DNO Alexa Fluor 750 emission intensity, relative to a standard curve (upper right) of fluor-labelled oligonucleotides in encapsulation buffer. (c) The rhodamine emission profile was measured for the E-DNO (—) and a prepared solution of 50nm vesicles (—) used for *in vitro* and *in vivo* experiments. (d) The Cy5 emission profile was measured for N-DNO (—) and E-DNO (—) samples prepared for *in vitro* experiments. Scale bar = 10µm. (e) Splenocytes stained with Hoechst 33342 (blue, nucleus) and incubated with Cy5-labeled N-DNO (red) show rare, bright phagocytic cells (scale bar = 50μ m), (f) higher magnification of same (scale bar = 50μ m). (g) Splenocytes incubated with E-DNO showed no highly bright cells (scale bar = 50μ m).

Supporting Information Fig. 9. Biodistribution profiling of the E-DNO membrane and nanostructure, and of the E-DNO vs. 50nm liposomes. (a) Organs were harvested 120 minutes post-injection of EDNO, and were imaged for Alexa Fluor 750 (\blacksquare) and rhodamine (\blacksquare) to profile nanostructure and membrane distribution, respectively. No significant differences were observed in distribution. (b) Organs were harvested 120 minutes post-injection of EDNO (\blacksquare) and 50 nm liposomes (\blacksquare) and imaged for rhodamine fluorescence to profile distribution (*Student's t-test, p<0.05, error bars indicate SEM).

Supporting Information Table 1. DNA NanoOctahedron Staple Sequence List. Lipid handle sequences are in red, fluorophore handle sequences in blue. The "Start" and "End" columns correspond to the helix number and [nucleotide position] along the helix (see Supporting Fig. 1).

Start	End	Sequence	Length
69[78]	70[62]	CCAGCGAGTTACTTAGCCGACTAAAGACACTCATCAGCGCTAATTTTTTCTTCACACCACACTCCATCTA	70
40[61]	39[77]	TTCTTAACAGGGAGTTAAATAGAAAGGAGCTTTCGATCATCATTTTTTTT	70
33[78]	34[62]	GAAAACACCTTGCTTCTGTCATCGGGAGTGAAACATTTTCCCA TTTTTTCTTCACACCACAC	70
4[61]	3[77]	CCTGCCTCGGCAAAATCCCTTATAAATCAAACAGTTGGTAATA TTTTTTTTCTTCACACCACAC	70
67[105]	58[104]	ACCGAACATATTGAATAACTTTTCTCAGAGCCGGAACCCGTAACAAATTTTTTCTTCACACCACCACTCCATCTA	74
0[34]	27[35]	CTCAGTGCCAGCAGAATGGTTTTAGCTACACTTAAATCCGCCACCCTTTTTTTCTTCACACCACACTCCATCTA	74
37[105]	28[104]	GTAGATATTTTGTTTTCACTTTTACAGACAACCAGTACATCAGATAT TTTTTTTCTTCACACCACAC	74
66[34]	39[35]	GGAAACGCATCGGGTAAAATTTTAACCGATGCCGACAAATTATCATT TTTTTTTCTTCACACCACAC	74
9[78]	10[62]	GGCTTTTTCATTGAATCCCTAGGAATACACCAAAATTTGACGA TTTTTTCTTCACACCACAC	70
16[61]	15[77]	AAACTTTAATAAGAATAAATAGTGAATTACAAAGAGATTAGAGTTTTTTTT	70
12[34]	22[104]	TTTAGTAAATCACCGAAAGTTTTGTATTGGAATCGGCCTCGAGCCAGTTTTTTCTTCACACCACACTCCATCTA	74
70[61]	69[77]	TATCAGATTTTTAAGAAAATTAACGTCAGTAATTGTTTGACCCTTTTTTCTTCACACCACACTCCATCTA	70
63[78]	64[62]	AATTCATTAAAGGTGAATTTTAAGACTCTCACAATACAAAGGCTTTTTTTCTTCACACCACCACTCCATCTA	70
13[105]	45[35]	CATATAAACATACTTTTTATTTTGTAATAATTACATTGGGTGGCATCTTTTTTCTTCACACCACACTCCATCTA	74
27[78]	28[62]	ACCCATGATCTAAAGTTTTCGGAATAGGGCAAGCCTTTAGCGATTTTTTTCTTCACACCACCACTCCATCTA	70
15[78]	16[62]	AGTACCTTTTTAAATATGCAGCAAAGCGAGGTCAGACGCGAGATTTTTTCTTCACACCACACTCCATCTA	70
61[105]	46[104]	TTAGAGCTCATAATCACCATTTTTGTACCAAATAAAGCATATTACCGTTTTTTCTTCACACCACACTCCATCTA	74
22[61]	21[77]	TCCAGACATCCCATCCTAAAACAGTAGGGGTAAAGTCCAGTCGTTTTTTCTTCACACCACACTCCATCTA	70
18[34]	33[35]	GGCTGTAATTCGAGCATAATTTTCCTTTGACCAAGCTTGAATTATTC TTTTTTCTTCACACCACAC	74
60[34]	69[35]	AAATATGAAACGGAAAATATTTTAATAGCATTAAGCCCCAACCTAAATTTTTTCTTCACACCACCACCACTCTA	74
19[105]	4[104]	GCCCTGTATGCGACGCCAATTTTATCACCCGGGCGAAATAAAGAACGTTTTTTCTTCACACCACCACTCCATCTA	74
21[78]	22[62]	GGAAACCTCACCAGTGAGATTATCCGCTCCCGCTTTAATTCTGTTTTTTCTTCACACCACCACTCCATCTA	70
28[61]	27[77]	ACCTCCCACGCTAACGAGCTCATCGAGAGAGGCGTCAATAGGATTTTTTCTTCACACCACCACTCCATCTA	70
64[61]	63[77]	TATCAGGTTGATAATCAGAAAGATTCAAGAGATCTCAATAGAA <mark>TTTTTTCTTCACACCACAC</mark>	70
57[78]	58[62]	CGTTTGCCCCTCAGAGCCAACGTCACCATAGCCCCAAACACCATTTTTTTCTTCACACCACCACTCCATCTA	70
24[34]	70[104]	AATAAAGGCGGACCGCCACTTTTTTGTGTCTACAACGGCGGGAGAATTTTTTTCTTCACACCACCACTCCATCTA	74
31[105]	16[104]	AATCCTCACCGCGCGGGCCTTTTGCTGAATGGTCATTTTAACTATAT TTTTTTTCTTCACACCACAC	74
25[105]	21[35]	TCTGTACCTTATAGGAATCTTTTTAGATAAAGCTAATGGAGTGAGCT TTTTTTCTTCACACCACAC	74
55[105]	3[35]	CAGAGCCCAACTACAAGAATTTTAAGAGAAAACATGAATTCCAGTAATTTTTTCTTCACACCACACTCCATCTA	74
43[105]	9[35]	TTTTAGTCCATCACTATCGTTTTAGGGATTTCAGAGCGACACTATCATTTTTTTCTTCACACCACACTCCATCTA	74
34[61]	33[77]	GTCACGAGACCGTATACGCCATTCAGGCGCCAGGGAACATCAATTTTTTCTTCACACCACACTCCATCTA	70
54[34]	64[104]	GAACTACAAAATCAGTAGCTTTTAAGGTAAAAAAGGGCGCTGATAAA TTTTTTCTTCACACCACAC	74
30[34]	40[104]	ACCGAGAGGTTTTGAATACTTTTCTGAATATCAATATATCCAAAAGGTTTTTTCTTCACACCACACTCCATCTA	74
10[61]	9[77]	GCACGTAGAATCCTGAGAAAGAAAGCGATGGTTGCTAGCGAGA TTTTTTCTTCACACCACAC	70
1[105]	10[104]	GATTTAAGTTGCGTTGTTCTTTTTCCAATAGGGTAATACCCGCCGCG <mark>TTTTTTCTTCACACCACAC</mark>	74
58[61]	57[77]	GAACGAGTACCAGTCAGGACGCATAGGCTGACGAGCTTATTAGTTTTTCTTCACACCACACTCCATCTA	70
Start	End	Sequence	Length

Start	End	Sequence	Length
47[49]	43[62]	CCAACAGTCAATCGTAGCATTAACATTTTCGCAGATTTA	42
50[48]	48[35]	ACCAATAAACATTAATTGCTGAACCTCAAAAACAGTTTAATAGA	44
47[91]	43[104]	GTAGAAGATTGCAACTTAGCAAAATTAAGCAAAACATTAAAAAAT	44
43[63]	44[49]	GTTTGACATTCTGACCTGAAAGCGTAAACGAGTAAATGGTC	41
54[76]	59[90]	CAGACCAAACCACCCTCAGAGCCGCCAGATGAACCCTTCAT	41
55[63]	56[49]	AGGCCGGGGCGTTGGGAAGAAAAATCTATTACCACATCGAT	41
42[76]	47[90]	TTCTTTGCAGAAGCCTTTATTTCAACGGTTGTAGTGCCTGA	41
38[48]	36[35]	TAAATCCAACAAAGAGATACCGATAGTTGCATATTCGCTCAGCA	44
66[76]	71[90]	ATTTTTTGGGAACGAGGCGCAGACGGTCAAATAAAAATAGC	41
59[49]	55[62]	CTCATTATAGTAAACGGCATTTTCGGTCAATGAAACTTAGCA	42
31[63]	32[49]	TACCTTTGCATGGCTAGTACCCGTATATATACAGAACGGAT	41
30[76]	35[90]	GCCATTCTAAAATCGTCGCTATTAATTAACCAGGCTGTTGG	41
59[91]	55[104]	CAAGAGTCATTCAGTTCATAATCAAAATCACCGCCACCACCAC	44
35[91]	31[104]	GAAGGGCGCAAGGCGTTACATTTAACAATTTCAATATCCCTTAG	44
49[63]	50[49]	ATTAAATCCAATATCTTTAGGAGCACTTGTTAAATTTTTTA	41
34[103]	32[91]	TGTGCTGATCGGTTTCTGGTGCCGGAAATTTTATGTGAG	39
27[36]	29[48]	CAGAGCTTTAGTATAAGTGCCGTCGATTGCCACCTGAAT	39
14[90]	12[77]	CAACATGTTAATTGAAATCCAATCGCAAGTATCAAAGCTGAGAAATTATCTACCACAACTCAC	42
26[90]	24[77]	CGTAACGTACCGTAGTATTCTAAGAACGCACAAGCAAACCAAAAATTATCTACCACAACTCAC	42
2[90]	0[77]	GGGGTCGACGGGGTTAACAGTGCCCGTATAAAAGAATTGCCCAAATTATCTACCACAACTCAC	42
38[90]	36[77]	ACCTACCATTATCATCGGTTTATCAGCTTACAACTATCAGCGAAATTATCTACCACAACTCAC	42
20[90]	18[77]	TTTCTTTTGTCGTGAAAGTACCGACAAAAGCTTAATATAAAGAAATTATCTACCACAACTCAC	42
68[90]	66[77]	GCTCCATTTATACCGAACAAAGTCAGAGGAAAATGAGAAACGAAATTATCTACCACAACTCAC	42
32[90]	30[77]	TGAATAAAAATTAAATTAAGTTGGGTAACTGCGCAACAAAGCAAATTATCTACCACAACTCAC	42
8[90]	6[77]	TAAATATGCAAAAGACAGGGCGCGTACTAAAGGAGCCGAGAAAAATTATCTACCACAACTCAC	42
50[90]	48[77]	GTTTGAGAACAAACCCACGCTGAGAGCCAGCCATTAGCGAACAAATTATCTACCACAACTCAC	42
44[90]	42[77]	CTGTAATCAAAGAAAGGAAAAACGCTCATCATCACTCAATACAAATTATCTACCACAACTCAC	42
62[90]	60[77]	TATTCATATGGTTTGGTAGCTATTTTTGAAAGGGTGAGTAATAAATTATCTACCACAACTCAC	42
56[90]	54[77]	ACCGCCACATCTTTGAATAAGGCTTGCCCTGGCTGAGGTGTAAAATTATCTACCACAACTCAC	42
45[78]	46[62]	GGCAAGGACTTTTGCGGGATTAGATACACCAATAACCTACATT TTTTTTTCTTCACACCACACTCCATCTA	70
52[61]	51[77]	TCTAAAGAAGGTTATCTAATAAAACATCGCAGCAACGGATTCTTTTTTTCTTCACACCACCACTCCATCTA	70
46[61]	45[77]	TTGACGCAGATAGAACCCTTAGTAATAAGGAAATAATCATACATTTTTTTT	70
42[34]	52[104]	AGACAATTGATTCTATATTTTTATCGTAAATGGGATATATTAACACTTTTTTCTTCACACCACACTCCATCTA	74
48[34]	63[35]	TTAGAGATTGTACATCAAATTTTACTAGCAAAACAAGAAAAGAAACG TTTTTCTTCACACCACCACTCCATCTA	74
7[105]	15[35]	GAATGATTGACGTGTAGCGTTTTTACCGACTCATCTTCGAGCTTCAA TTTTTTTCTTCACACCACAC	74
36[34]	51[35]	GCGAAACAATAGGAACGTTTTTTGCAAATCTATCAAACTAGCCAGCT TTTTTTCTTCACACCACAC	74
49[105]	34[104]	AGCTTTTTTGAAGCAGAAGTTTTACATAAATCATTTGAAAAGGGGGGATTTTTTCTTCACACCACACTCCATCTA	74
39[78]	40[62]	ATTCCTGATATCAAAATTAACAAACAATCGGAATTAGGTGAATTTTTTTT	70
6[34]	57[35]	AAAGAGAACAACCCAAAAGTTTTTTATGCGTTTAATTTGTCAGACTGTTTTTTCTTCACACCACACTCCATCTA	74
3[78]	4[62]	AGTTTTAAGGTGCCGTAAACTTGATATTAGTGTACTAATGCCCTTTTTTCTTCACACCACACTCCATCTA	70
51[78]	52[62]	CCGTGGGGGGGACGACGACATTGTTAAATAACCCGTATGAAAAA TTTTTTCTTCACACCACAC	70

48[76]	53[90]	TGATAGCTTGTATCGGCCTCAGGAAGATTAATGCAAAATAC	41
53[91]	49[104]	CGAACGACAACAGTGGGCGGATTGACCGTACCGTGCATCCAGCC	44
45[36]	47[48]	AATTCTTGTTTAGCCCAATTCTGCGAGAATACATTCTGG	39
46[103]	44[91]	CCAGCCAACTCAAACGCAAATTAACCCAAGGATATGACC	39
53[49]	49[62]	ATTGAGGCATCACCATGTGAGCGAGTAACCAGCTCAATTCGC	42
39[36]	41[48]	TTGCGGTTTGCCCATAATACATTTGAGTCACCGTCGCTG	39
52[103]	50[91]	CGCCTGACCACCATGGCTATTAGTCTTCGCACTCTGCCA	39
51[36]	53[48]	TTCATCGGAACGCAACGTTAATATTTAACAACGAAAGGA	39
44[48]	42[35]	AATAACCACTAATAGTCTGAAATGGATTATAAGGGACGTGGCAC	44
56[48]	54[35]	AGCAGCAGTTTTCATTTGGGCTTGAGATGGATTTTAAATAAA	44
25[63]	26[49]	AGTATAGACGTCTTTCCAGAGCCTAATGAGGGTTCCGTACT	41
24[76]	29[90]	GTACCGCCCGTCGTCTTTCCAGACGTTGGTATTAAGCCGTT	41
57[36]	59[48]	TAGCGCCCGTAATCACCAGTAGCACCACGTTAGAACTGG	39
29[91]	25[104]	TTTATTTCTTATCCGACACTGAGTTTCGTCGCCCTCATGAATTT	44
29[49]	25[62]	CTTACCAGACTTGCTCATTTTCAGGGATATGTATCAGATATA	42
28[103]	26[91]	AGAAGGTCATCGTCATTCCAAGAACGAGTAAATAGTTAG	39
64[103]	62[91]	TTAATGCAGTCAATATTTTAAATGCAAGCCATCGGAAAT	39
65[49]	61[62]	ACCCCGGTCATTGCAATAAGTTTATTTTGCTTATTAAAAGAA	42
21[36]	23[48]	AACTCAAGCCGGATAATCATGGTCATCCAATCACAAGAA	39
32[48]	30[35]	TCGCCTGATTACCTGAAACGACGGCCAGTGTAGCGAGCCCGGGT	44
20[48]	18[35]	ACATACGCATTAATTATAAACAACATGTTCGTCCTGAAATAATC	44
65[91]	61[104]	CCGGAGACCGGAGAGACCAGCGCCAAAGACATATTGATTG	44
19[63]	20[49]	GTGAAATTCTTTACGAGCATGTAGAAAAGCTGTTCCACACA	41
18[76]	23[90]	CCAACGCTGCGGGCAACAGCTGATTGCTACCAGTTGAGAAT	41
60[76]	65[90]	GTGTAGGGAATCACCGTCACCGACTTGATGCCTGAGAAAGG	41
23[91]	19[104]	CGCCATAGAGAATATCCAGCTGCATTAATGGCGCCAGCCGCCTG	44
23[49]	19[62]	AAATAATGACGACAGCGTTGCGCTCACTGCACAATTTCCTGT	42
22[103]	20[91]	TAATAATTTAACATTATACAAATTCTCCTTCAGGTGGTT	39
61[63]	62[49]	CTGGCATTAAAAGCCCCAAAAACAGGAATACCCACGCAGTA	41
62[48]	60[35]	TGTTAGCCACCACGGCTGAGAGTCTGGAGCTGTCAATTATAAGC	44
15[36]	17[48]	AGCGAAAGGAAGCAAAATCAGGTCTTTAGAAATAAATAA	39
35[49]	31[62]	CGCTAGCCGTTGTAAGCAAAAGAAGATGAAAACAATTAACAG	42
14[48]	12[35]	GATTAAGCCAGACCGATATTTTAGTTAATTCGTGTGAAAGCCTG	44
63[36]	65[48]	CAAAGAAAACGTACAATAATAACGGAAGATTGCATATGT	39
13[63]	14[49]	ATAGTCAAACACCGGAATCATAATTACTACCCTGTCAAAAA	41
12[76]	17[90]	AAGAGTCGAAACTAAAGTACGGTGTCTTTAAGACATCATAG	41
70[103]	68[91]	TAACTGACAGAGAATTTATCCCAATCCAATCAGCGACCT	39
17[91]	13[104]	GTCTGAGGCTGATGCCTCCTTTTGATAAGAATAATGCTTCATTC	44
17[49]	13[62]	GGCGTTATTCAAATGAAGCAAACTCCAACGATTGCAACTATT	42
16[103]	14[91]	GTAAATAGACTACGCGATAGCTTAGAGGAAGTTGTAGCT	39
71[49]	67[62]	GAAGCCCGAGATAAAGAATACACTAAAACTTTTTCAACAGAG	42
Start	End	Sequence	Length

1			
71[91]	67[104]	AGCCTTTAACACCCTAAGCGCGAAACAAAGGAAATCCTAAGGGA	44
9[36]	11[48]	TAACCCCATAACGATTATTACAGGTAAGGCCAGGAACGG	39
26[48]	24[35]	CAGGAGGCACCACCCGGGAGGTTTTGAAGCATTTTATGTTACAA	44
8[48]	6[35]	GCAGATATCGTTTACCTTTCCTCGTTAGAATTAGACACCGAGTA	44
37[63]	38[49]	TTAGACTAAGGCCGCTTTTGCGGGATCGGATTTACTCGTAT	41
7[63]	8[49]	GTTGAGAGAGTGTTTTTATAATCAGTGGAAAGATAACTAAT	41
6[76]	11[90]	AGGAAGGTTCCTCAAATGCTTTAAACAAACGTGGGGGGCGCT	41
36[76]	41[90]	GAGTGAGTTTTTGCACGTAAAACAGAAAACAGTTAAGGAAT	41
11[91]	7[104]	AGGGCGCGCGCCGCTAAGTTTTGCCAGAGGCTGCGGAAAAACGA	44
11[49]	7[62]	TACGCCATAACGTGCAGACGACGATAAAACACATTCTCATCA	42
10[103]	8[91]	CTTAATTGGCAAGGGGAAAGCCGGCGGTTCAGATCGTCA	39
41[91]	37[104]	TGCGAATTAATTGTAGATGATGGCAATTCAATGGAAGAAATTGC	44
41[49]	37[62]	AGGCTTGACAGCTTAACCACCAGAAGGAGTCGACAAGAAGTA	42
3[36]	5[48]	GCGTCATAAAGCCATTGACAGGAGGTGGGCGGGGATTATT	39
40[103]	38[91]	AGCCTTAATAATTCTAAACAACTTTCATAAAGGGTTAGA	39
2[48]	0[35]	TCCTCATTACATGGCAACCTATTATTCTGAGGATTAGGGTTTTG	44
68[48]	66[35]	GTTTCCAGAGGCAAACCCACAAGAATTGAGATAGCTAACCAGAA	44
1[63]	2[49]	ACGATTGCGAAAATCCTGTTTGATGGTTGAGGCAAAATAAA	41
0[76]	5[90]	CAGCAGGGCGCACTAAATCGGAACCCTCGCTGGTTAGCCCG	41
69[36]	71[48]	ACGAAATTAAACGGAACGAGGGTAGCAAAGTTTCTTACC	39
5[91]	1[104]	AGATAGGCCCTTGAGCAGTGCAACGTCAAAAAATCAAAGCCCCC	44
5[49]	1[62]	CCGAAATATTTCGGTTTTGATGATACAGGCACAAACGGTCAG	42
4[103]	2[91]	TGGACTGTTGAGTAGCAAGCGGTCCAAAAGGGGTTTTTT	39
33[36]	35[48]	ATTTCAATTGCTTAACGTCAGATGAAAGGATCGCAAGTC	39
67[63]	68[49]	GCTTTGAGTGTAAGCAGATAGCCGAACAACGGCTTGAGGAA	41
58[103]	56[91]	GCTGCTAATCTTGTTGAAAGAGGACACCAGAACCTCAGA	39

Supporting Information Note 1: Prediction of DNO Six Helix Bundle Curvature Analytical Derivation

Approximation of Energy for bending DNA bundle:

Please see Dietz *et al.*, Supporting Figure 1 for additional data¹.

$$E_{total} = E_{stretch/compression} + E_{bend}$$

$$E_{stretch/compression} = \frac{1}{2} \frac{S}{d_{eq}} \sum_{i} n_i (d_i - d_{eq})^2$$

$$E_{bend} = \frac{1}{2} B d_{eq} \sum_{i} \frac{n_i}{r_i^2}$$
where $r_i = r_{ref} \left(\frac{delta_i}{r_{ref}} + 1 \right)$

$$\theta_i = \frac{n_i d_{eq}}{r_i}$$

$$E_{bend} = \frac{1}{2} \frac{B}{d_{eq}} \sum_{i} \theta_i^2 \frac{1}{n_i}$$
but $\sum_i \theta_i^2 \frac{1}{n_i} \approx \theta^2 \sum_i \frac{1}{n_i}$

$$\therefore E_{bend} \approx \frac{1}{2} \frac{B}{d_{eq}} \theta^2 \sum_i \frac{1}{n_i}$$

The rationale for the above approximation is based on the idea that the underestimate in bending energy for the convex-face helices will be mostly offset by the overestimate in bending energy for the concave-face helices.

$$E_{total} = \frac{1}{2} \frac{S}{d_{eq}} \sum_{i} n_i (d_i - d_{eq})^2 + \frac{1}{2} \frac{B}{d_{eq}} \theta^2 \sum_{i} \frac{1}{n_i}$$

Please note that for this approximation of energy, the following relations hold:

At fixed values of
$$d_i$$

$$\frac{\partial E_{stretch/compression}}{\partial \theta} = 0$$

At fixed values of θ $\frac{\partial E_{bend}}{\partial d_i} = 0$ **Step 0**: Obtain an expression for the length $n_{ref}d_{ref}$ of a reference double helix in the curved bundle as a function of angle, assuming the bundle is at the equilibrium length for that angle. Do this by letting $\partial E_{\text{stretch/compression}}/\partial n_{ref}d_{ref} = 0$ and solving for $n_{ref}d_{ref}$ (recall from the previous page that $\partial E_{\text{bend}}/\partial d_{ref} = 0$). The position in the bundle of the reference double helix is encoded in the *delta_i* offset values. The reference helix could be imaginary, the position within the bundle is arbitrary, and the value of n_{ref} never has to be specified (it cancels out during Step 1).

$$\begin{split} E_{stretch/compression} &= \frac{1}{2} \frac{S}{d_{eq}} \sum_{i} n_{i} \left(d_{i} - d_{eq} \right)^{2} \\ d_{i} &= \frac{n_{ref} d_{ref}}{n_{i}} \left(\frac{delta_{i}}{r_{ref}} + 1 \right) \\ r_{ref} &= n_{ref} d_{ref} / \theta \\ E_{stretch/compression} &= \frac{1}{2} \frac{S}{d_{eq}} \sum_{i} n_{i} \left(\frac{n_{ref} d_{ref}}{n_{i}} \left(\frac{delta_{i}}{n_{ref} d_{ref} / \theta} + 1 \right) - d_{eq} \right)^{2} \\ E_{stretch/compression} &= \frac{1}{2} \frac{S}{d_{eq}} \sum_{i} n_{i} \left(\frac{1}{n_{i}} \left(n_{ref} d_{ref} + \theta \cdot delta_{i} \right) - d_{eq} \right)^{2} \\ \frac{\partial E_{stretch/compression}}{\partial (n_{ref} d_{ref})} &= \frac{S}{d_{eq}} \sum_{i} n_{i} \left(\frac{1}{n_{i}} \left(n_{ref} d_{ref} + \theta \cdot delta_{i} \right) - d_{eq} \right) \frac{1}{n_{i}} \\ &= \frac{S}{d_{eq}} \sum_{i} \left(\frac{1}{n_{i}} \left(n_{ref} d_{ref} + \theta \cdot delta_{i} \right) - d_{eq} \right) \\ 0 &= \frac{S}{d_{eq}} \sum_{i} \left(\frac{1}{n_{i}} \left(n_{ref} d_{ref} + \theta \cdot delta_{i} \right) - d_{eq} \right) \\ &= n_{ref} d_{ref} \sum_{i} \frac{1}{n_{i}} + \theta \sum_{i} \frac{delta_{i}}{n_{i}} - d_{eq} \sum_{i} 1 \\ n_{ref} d_{ref} &= \frac{1}{\sum_{i} \frac{1}{n_{i}}} \left(d_{eq} \sum_{i} 1 - \theta \sum_{i} \frac{delta_{i}}{n_{i}} \right) \end{split}$$

Step 1: Use the expression for the length $n_{ref}d_{ref}$ from Step 0 to obtain an expression for the length d_i of double helix_i in the curved bundle as a function of angle, assuming the bundle is at its equilibrium length for that angle.

$$n_{ref}d_{ref} = \frac{1}{\sum_{i}\frac{1}{n_{i}}} \left(d_{eq} \sum_{i} 1 - \theta \sum_{i}\frac{delta_{i}}{n_{i}} \right)$$

$$\begin{split} d_{i} &= \frac{n_{ref}d_{ref}}{n_{i}} \left(\frac{delta_{i}}{r_{ref}} + 1 \right) \\ \theta &= \frac{n_{ref}d_{ref}}{r_{ref}} \\ d_{i} &= \frac{1}{n_{i}} \left(\theta \cdot delta_{i} + n_{ref}d_{ref} \right) \\ &= \frac{1}{n_{i}\sum_{i}\frac{1}{n_{i}}} \left(\theta \cdot delta_{i}\sum_{i}\frac{1}{n_{i}} + d_{eq}\sum_{i}1 - \theta \sum_{i}\frac{delta_{i}}{n_{i}} \right) \\ d_{i} &= \frac{1}{n_{i}\sum_{i}\frac{1}{n_{i}}} \left(\theta \left(delta_{i}\sum_{i}\frac{1}{n_{i}} - \sum_{i}\frac{delta_{i}}{n_{i}} \right) + d_{eq}\sum_{i}1 \right) \end{split}$$

Python Script:

deq = 0.335S = float(660) B = float(230) num_helices = 6

n is the number of basepairs installed in region with

a default of nref base pairs # *e.g.* nref = 105 n = [0 for i in range(num_helices)] n[0] = 96n[1] = 99 n[2] = 104n[3] = 106n[4] = 111n[5] = 114#190 degrees #n[0] = 59#n[1] = 70#n[2] = 92#n[3] = 106#n[4] = 129#n[5] = 140

delta is the distance in nm from an arbitrary axis delta = $[0 \text{ for i in range(num_helices)}]$ delta[0] = 3.5delta[1] = 2.5delta[2] = 0.5delta[3] = -0.5delta[4] = -2.5delta[5] = -3.5 for i in range(num_helices): delta[i] *= -1.125

total_n = 0
for i in range(num_helices):
 total_n += n[i]
average_n = float(total_n)/num_helices
print "average n is", average_n, "\n"

Calculate delta_div_n_sum, one_div_n_sum, and beta values
delta_div_n_sum = 0
one_div_n_sum = 0
for i in range(num_helices):
 delta_div_n_sum += delta[i]/n[i]
 one_div_n_sum += float(1)/n[i]

```
beta = [0 for i in range(num_helices)]
```

for i in range(num_helices):

```
beta[i] = (delta[i]-delta_div_n_sum/one_div_n_sum)/n[i]
```

```
# Calculate theta
```

```
beta_n_sum = 0
```

 $beta_delta_sum = 0$

for i in range(num_helices):

```
beta_n_sum += beta[i]*n[i]
```

```
beta_delta_sum += beta[i]*delta[i]
```

 $numerator = deq*beta_n_sum$

denominator_term_0 = beta_delta_sum

denominator_term_1 = (B/S)*(one_div_n_sum)

 $denominator = denominator_term_0 + denominator_term_1$

```
theta = numerator/denominator
```

print "theta is", theta_in_degrees, "degrees or ", theta, "radians"

Calculate d
d = [0 for i in range(num_helices)]
for i in range(num_helices):
 factor_0 = theta*(delta[i] - delta_div_n_sum/one_div_n_sum)
 factor_1 = deq*num_helices/one_div_n_sum
 d[i] = (factor_0 + factor_1)/n[i]

for i in range(num_helices):

print "helix", i, "\tlength per bp is", d[i]

print

print "delta_div_n_sum is", delta_div_n_sum print "one_div_n_sum is", one_div_n_sum print "beta_n_sum is", beta_n_sum print "beta_delta_sum is", beta_delta_sum print "numerator is", numerator print "denominator_term_0 is", denominator_term_0 print "denominator_term_1 is", denominator_term_1 print "denominator is", denominator