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 A Flexible Two-Dimensional Mortality Model for Use in Indirect Estimation:  

Supplemental materials 

John Wilmoth, Sarah Zureick, Vladimir Canudas-Romo, Mie Inoue, and Cheryl Sawyer 

In this supplemental report, we offer additional information not presented in the main paper on 

the development, implementation, and testing of the log-quadratic model.  First, we present 

possible alternative methods for fitting the log-quadratic model and defend our choice of both the 

data set and the bi-weight method utilized for fitting the model.  In the second section, we offer 

additional evidence of the flexibility of the log-quadratic model by discussing how to utilize the 

model to estimate mortality rates given a variety of input parameters. The third section includes a 

description of the methods used to fit the modified logit model to the HMD data set.  Finally, this 

supplemental report includes a number of figures that provide additional support for arguments 

presented in the main article and/or more detailed descriptions of data patterns by age and sex. 

Alternative fitting methods 

In this section, we discuss alternative statistical methods and additional data that could be 

utilized to fit the log-quadratic model.  The main paper discusses the justification for using the 

log-quadratic rather than the log-linear form of the model.  Estimated coefficients of the 

log-linear model are presented here in Table 1. 

In the main paper, we provide justification for only using the HMD data in the subsection 

“Choice of dataset used for fitting the models”.  Below, we compare the log-quadratic model 

fitted to the HMD data to the log-quadratic model fit to both 719 life tables from the HMD as 

well as the 134 life tables from the WHO collection of 1,802 life tables that do not overlap with 

life tables in the HMD.  (For another set of estimates, the 19 INDEPTH life tables were included 

in addition to those from the HMD and WHO collections; the results were very similar to those 

presented here.)  The life tables from the WHO collection originally only included age groups up 

to age 85+.  In order make the WHO life tables of the same format as the HMD life tables, we 

fitted the Kannisto model (i.e. a logistic curve with an asymptote equal to one) to the death rates 

for ages 65-69 to 80-84 and then extrapolated to higher ages in order to extend the age range of 

life tables in the WHO collection up to age 110+.   

We consider three possible fitting methods:  ordinary least squares (OLS) and two versions of 

weighted least squares (WLS).  With ordinary least squares, each data point is given equal 

weight.  In the first version of weighted least squares, each observation is weighted by the total 

population size (more precisely, the total exposure to risk; thus, for each country-period the 

weight is equal for all ages and both sexes).  Finally, the bi-weight approach is a type of 

weighted least squares, where weights are a function of residual size only (not population size).  

Thus, compared to the OLS fit, observations associated with large residuals receive little or even 

zero weight.  A detailed description of how to fit the log-quadratic model using the OLS and 

bi-weight fitting methods is included in the Appendix of the main paper.   
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Consider the following four combinations of a dataset and a fitting method: 

1. OLS, HMD-719 

2. WLS, HMD-719 

3. Bi-weight, HMD-719 

4. OLS, HMD-719 + WHO-134 

Figure S-1 illustrates the two datasets and the four fitted models (i.e., predicted levels of 

! 

m
x
 

given 

! 

5
q
0
 assuming 

! 

k = 0, according to fitted models derived using a given dataset and method), 

separately by sex and for broad age groups.  Comparing results for the four fitted models, we 

observe the following key differences: 

• The WLS fit is the most distinctive among the four cases examined here.  The predicted 

curves for ages above 30 exhibit much sharper downward concavity compared to the 

other methods.  For ages 30-59, even the direction of the curvature is reversed.  

• The bi-weight fit is almost the same as the OLS for all age groups and both sexes except 

for both females and males aged 15-29 and for males aged 30-59.  Giving less weight to 

extreme observations (e.g. Russia) results in slightly lower values of adult mortality (for a 

given value of k).  Additional details on the differences between the OLS and bi-weight 

fits are included in the Appendix of the main paper.  

• The fit that includes the WHO-134 life tables is only slightly different than the OLS fit to 

only the HMD data except at older ages, especially 80-99.  However, note that “observed 

data” above age 85 in this dataset are extrapolations based on data for age groups 65-69 

to 80-84 (using the Kannisto model).  By comparison, HMD “observed data” above age 

95 (approximately; this age varies by population size) are extrapolations (using the 

Kannisto model) based on single-year data for all ages 80 and above.  Thus, there is no 

strong reason for including these other life tables and a good reason for excluding them 

(to avoid possible bias in the predicted model at older ages). 

Across all age groups, there is very little difference between cases 1, 3, and 4.  Thus, the most 

important choice is whether to assign weights based on population size (case 2) or to treat each 

observation (country-period) as equal.   

Theoretically, the method of weighted least squares is usually justified as a means of equalizing 

the variance of the different observations.  For a dependent variable in the form of log(

! 

m
x
), the 

natural choice for a weight according to the classical theory is 

! 

D
x
, the number of deaths for that 

country-period-age-sex combination (i.e., use of weights equal to 

! 

D
x
 follows from the fact that 

variance of log(

! 

m
x
) equals 1/

! 

D
x
 approximately). In this exercise, we have used the total 

exposure-to-risk rather than the number of deaths by age and sex.  This simplification has little 

importance for the current discussion, because of the fact that within each age group 

! 

D
x
 is 

highly correlated with total exposure-to-risk for the population. 

It is not clear that the usual theoretical considerations are of major importance in this case.  

Although it is true that the natural variability of death rates is affected by population size, for 

most of the observations here (except at very old ages and ages 10-14, and for a few very small 

countries like Iceland), the number of deaths is so large that random variation is not a major 

issue.  Thus, rather than correcting for differential variability (heteroscedasticity) across 

observations, the main impact of using weights in the current example is to assign extra influence 

to the mortality patterns experienced by the largest populations. 
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For this reason, it is helpful to recall the relative population sizes of the various countries/areas 

represented in the HMD dataset. Japan, Russia, and the United States are by far the most 

populous countries included in the data set.  For each of the three largest populations, there are 

features of their historical mortality patterns that must be considered extreme:  very high 

mortality among young and middle-aged adults in Russia (especially for males), and very low 

old-age mortality in Japan and the USA (in all cases, relative to levels of 

! 

5
q
0
).  Figure S-1 shows 

the observed data for these three countries separately (denoted by “J’, “R”, and “U”).  It seems 

clear that the data points for Japan and the USA are pulling the fitted model downward at very 

low mortality levels (especially for older ages), whereas the data points for Russia are pulling the 

fitted model upward at medium-low levels of 

! 

5
q
0
 (across a broad adult age range).  Given the 

substantial differences in population size, it seems plausible that the combined effect of these 

two forces may account for the substantially greater curvature in the predicted trends from the 

WLS model. 

Theoretically, from a demographic rather than a statistical perspective, it is not clear that larger 

populations should receive more weight in the process of determining the fitted model.  It is a 

question of whether the unit of observation is an individual or a population.  Arguably, each 

country/area in the HMD is the relevant unit of observation – whether a country is large or small, 

it exists within a common political system and a shared epidemiologic environment.  And since 

large populations in this dataset tend to be extreme (each in its own manner), it seems that there 

is a strong argument against the use of weights based on population size. 

In conclusion, there are important arguments against the use of population weights or the 

additional life tables from the WHO-1802 collection.  There is no argument against use of a 

bi-weight procedure and a modest argument in its favor (slight change in estimate of 

! 

n
m

x
 for 

ages 15-59 for males, up to 10 or 15% difference).  Therefore, we conclude that the bi-weight fit 

using the HMD dataset is the preferred method for fitting the log-quadratic model.  

Input parameters 

In the main paper, we mainly discuss utilizing the log-quadratic model to estimate mortality 

given either 

! 

5
q
0
 or both 

! 

5
q
0
 and 

! 

45
q
15

 as input parameters; however, as noted in the section, 

“Age patterns of mortality implied by the models”, it is possible to specify the model by pairing 

any two of the following five inputs except for 

! 

1
q
0
 and 

! 

5
q
0
:  

! 

1
q
0
, 

! 

5
q
0
, k, 

! 

45
q
15

, and 

! 

e
0
.  Consider 

the following possible pairings:  

Case 1: 

! 

5
q
0
 & k 

Case 2: 

! 

5
q
0
 & 

! 

e
0
 

Case 3: 

! 

5
q
0
 & 

! 

45
q
15

 

Case 4: 

! 

1
q
0
 & k 

Case 5: 

! 

1
q
0
 & 

! 

e
0
 

Case 6: 

! 

1
q
0
 & 

! 

45
q
15

 

Case 7: k & 

! 

e
0
  

Case 8: k & 

! 

45
q
15

 

Case 9: 

! 

e
0
 & 

! 

45
q
15

 

We have written a function in R that fits the log-linear or log-quadratic models for all nine cases 

(available from the authors upon request).  The function works well except in extreme cases 

(some pairings of values for these 5 indicators may be impossible).  In general, we have tried to 

choose input values that lie within the range of documented historical experience, or not too far 

outside that range. 

Figures S-2 and S-3 include graphs resulting from calculations for six cases only:  1, 2, 3, 7, 8, 

and 9 (cases 4, 5, and 6 are conceptually identical to 1, 2, and 3).  For each case, there are (a) and 
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(b) versions of these graphs.  In the (a) version, the first value of the pair (as listed above) is held 

constant while the second value is varied; in the (b) version, these roles are reversed. 

Determining an appropriate range of values for the variable parameter, which sometimes 

depends also on the value of the constant parameter, was somewhat challenging.  The final 

results, as presented here, were achieved partly by trial and error. 

When k is the variable parameter in the given pair, we have tried to use values from -4 to +4.  In 

other cases, we tried to confine the range of values for this parameter within +/- 4 approximately.  

The shape of the mortality curve often becomes unrealistic when k lies outside this range, as can 

be seen in Figure S-4.   

Results were derived first for 5-year age groups.  Death rates for 1-year age groups were found 

by means of spline interpolation of the 5-year data.  Figure S-2 shows results for 1-year age 

groups alone while Figure S-3 shows the same curves overlying the values for 5-year age groups. 

There appear to be 3 basic patterns: 

Pattern I: Cases 1b, 7a, 8a (k is held constant) 

Mortality goes up and down with no major change of shape, except a gradual tilt in the curve 

(because the change is greater at younger ages).  Note also the increased prominence of the 

accident hump at lower mortality levels (for both males and females).  No crossovers. 

Pattern II: Cases 1a, 2a, 3a (

! 

5
q
0
 is held constant) 

There is no variation in child mortality and only slight variation on old-age mortality.  The age 

curve changes shape in the middle age range as adult mortality moves higher or lower.  No 

crossovers. 

Pattern III: All other (

! 

e
0
 or 

! 

45
q
15

 is held constant) 

Unlike the previous two patterns, in this one there are lots of crossovers in each set of mortality 

curves.  The crossovers reflect the fact that 

! 

5
q
0
 and k are changing in opposite directions: in 

order to maintain a constant 

! 

e
0
 or 

! 

45
q
15

, one of them (

! 

5
q
0
 or k) has to move up as the other 

moves down. 

Additional commentary on the results of this analysis are included in the subsection of the main 

paper entitled “Age patterns of mortality implied by the model”. 

Fitting algorithm for modified logit model 

In this section, we describe the methods utilized for fitting the modified logit model to the HMD 

dataset and the methods used to model the relationship between survivorship to age 5,

! 

l(5), and 

survivorship to age 60, 

! 

l(60). We re-estimated the modified logit model using HMD data in 

order to compare the log-quadratic and modified logit models on an equal basis.  The estimated 

coefficients for the modified logit model fitted to the HMD data are presented in Table S-2.   

In its original form, the modified logit model was fitted to a large collection of empirical life 

tables by Murray et al. (2003).  The details of their fitting method are not entirely clear from the 

published paper, however, and may have been unnecessarily complicated (it is reported that the 

method involved “repeated sampling of a randomly selected subset” from their collection of life 

tables).  We devised the following simple method for fitting this model.  When applied to the 

same set of life tables used by Murray et al., this method produces nearly identical parameter 

values for the fitted model. 
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We start with a set of life tables characterized by survival probabilities, 

! 

l
i
(x) , for ages 

! 

x = 0 , 1, 

5, 10, …, and for populations 

! 

i =1, 2, …, I, where 

! 

l
i
(0) =1 for all i.  The model will be fitted to 

this collection of life tables. 

The modified logit model has the following general form: 

! 

logit l
i
(x)( ) ="

i
+ #

i
logit l

S
(x)( ) + 1$

logit l
i
(5)( )

logit l
S
(5)( )

% 

& 
' 

( 

) 
* +(x) + 1$

logit l
i
(60)( )

logit l
S
(60)( )

% 

& 
' 

( 

) 
* ,(x)  

for ages 

! 

x = 1, 5, 10, …, where the logit function is defined as follows: 

! 

logit(y) =
1

2
ln

y

1" y

# 

$ 
% 

& 

' 
(    for 

! 

0 < y <1. 

In this equation, the parameters 

! 

"
i
 and 

! 

"
i
 vary across populations or life tables, whereas 

! 

l
S
(x) , 

! 

"(x), and 

! 

"(x) , are constant across all populations.  Thus, fitting the model consists of 

determining appropriate values for these three sets of age-specific parameters based on a given 

collection of data.  The first of these three, 

! 

l
S
(x) , describes the life table for a standard (i.e., 

typical or average) population.  The other two, 

! 

"(x) and 

! 

"(x) , are adjustment factors used (in 

conjunction with 

! 

"
i
 and 

! 

"
i
) to transform the standard life table so that it resembles a wide 

variety of observed life tables.  Following Brass (1971), Murray et al. (2003) defined their model 

in terms of 
  

! 

logit 1" !(x)( ) .  We prefer the formulation presented here, 
  

! 

logit !(x)( ), for its 

simplicity.  However, as noted also by Brass, it makes no difference for outcomes of interest 

whether the model is based on the logit of 

! 

l(x) or 

! 

1" l(x) .!

We derived the standard life table by computing the average value of all survival functions in the 

dataset after applying the logit transformation.  Thus: 

! 

logit l
S
(x)( ) =

1

I
logit l

i
(x)( )

i=1

I

"  . 

Although it would also be possible to use some pre-determined standard life table, the strategy 

proposed here is likely to produce a closer fit for the given collection of data. 

For convenience of notation, also define the following special functions: 

! 

Y
i
(x) = logit l

i
(x)( )   and  

! 

Y
S
(x) = logit l

S
(x)( ) . 

Using this notation, the modified logit model can also be written as follows: 

! 

Yi x( ) ="
i
+ #

i
Y
S
(x) + 1$

Y
i
(5)

Y
S
(5)

% 

& 
' 

( 

) 
* +(x) + 1$

Y
i
(60)

Y
S
(60)

% 

& 
' 

( 

) 
* ,(x) . 

Following Murray et al. (2003), we constrain four of the model parameters as follows: 

! 

"(5) = "(60) = #(5) = #(60) = 0 . 

This constraint assures that the collection of fitted parameter estimates will be unique.  Given 

these constraints the fitted values, 

! 

ˆ " 
i
 and 

! 

ˆ " 
i
 can be computed directly from the original and 

standard life tables as follows: 

! 

ˆ " 
i
=
Y
i
(5)Y

S
(60) #Y

i
(60)Y

S
(5)

Y
S
(60) #Y

S
(5)

  and  

! 

ˆ " 
i
=
Y
i
(60) #Y

i
(5)

Y
S
(60) #Y

S
(5)

 . 
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This result is obtained by setting x equal to 5 and 60 in the original model and solving those two 

equations for 

! 

"
i
 and 

! 

"
i
. 

The remaining two sets of parameters, 

! 

"(x) and 

! 

"(x) , can be found by means of linear 

regression.  Define the dependent variable of this regression as follows: 

! 

W
i
(x) =Y

i
(x) " ˆ # 

i
" ˆ $ 

i
Y
S
(x) , 

for ages 
  

! 

x =1, 5,10,….  Define two independent variables as follows: 

! 

Z
i1 =1"

Y
i
(5)

Y
S
(5)

  and  

! 

Z
i2 =1"

Y
i
(60)

Y
S
(60)

 . 

Then fit the linear regression model, 

! 

W
i
(x) = "(x)Z

i1
+ #(x)Z

i2
+ $

i
 , 

separately for each age x, in order to obtain parameter estimates, 

! 

ˆ " (x) and 

! 

ˆ " (x) , for 

  

! 

x =1, 5,10,… (note that this model has no intercept term).
 
  In fact, it is not necessary to fit this 

regression model for ages 5 and 60, since the parameter values for those ages are constrained to 

equal 0.  However, making these calculations can also serve as a confirmation of the internal 

consistency of the methods, since the regression procedure should return estimates of 

! 

"(x) and 

! 

"(x)  for these two ages that are numerically indistinguishable from 0.  This outcome is 

inevitable, if the calculations are done correctly, since the equations for 

! 

ˆ " 
i
 and 

! 

ˆ " 
i
 given above 

were derived using the assumption that 

! 

"(5) = "(60) = #(5) = #(60) = 0 . 

The fitting method described here can be applied separately by sex (male, female) or for both 

sexes combined (total).  Given estimates for the three sets of fixed parameters, 

! 

l
S
(x) , 

! 

"(x), and 

! 

"(x) , the model can be fitted to life tables for populations 
  

! 

j =1,…, J  from outside the original 

sample simply by computing 

! 

ˆ " j  and 

! 

ˆ " j  according the equations given above.  Thus, a full life 

table for population j can be derived using only two input values, 

! 

l j (5)  and 

! 

l j (60) . 

In some of the tests used to compare the performance of the log-quadratic model with that of the 

modified logit model, the only input parameter used is the probability of dying below age 5, 

! 

5
q
0
.  

Whereas the log-quadratic model can be used directly to estimate a life table given this 

information, a separate (or side) model is needed in order to derive an estimate of 

! 

l j (60)  from 

! 

l j (5)  for use in the modified logit estimation procedure.   

The MODMATCH program, written in STATA and available for download on the WHO 

website (http://www.who.int/healthinfo/global_burden_disease/tools_software/en/), is used by 

the WHO to estimate the modified logit model given various input parameters such as 

! 

5
q
0
 alone 

or in combination with another parameter.  Using a similar approach, we propose the following 

model to describe the relationship between 

! 

l j (5)  and 

! 

l j (60): 

For 

! 

l j (5) < c , 

! 

l j (60) ="1 +#1 l j (5)( ) . 

For 

! 

l j (5) " c , 

! 

logit(l j (60)) ="2 +#2log logit l j (5)( )( ). 

This model differs only slightly from original methods used by the developers of the modified 

logit procedure to model the relationship between 

! 

l j (5)  and 

! 

l j (60)  in two respects:  (1) it does 
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not include an indicator variable to describe whether a country is a former state of the Soviet 

Union, and (2) the cutoff point, c, is not fixed at 0.95.   

We estimated this new model using both the HMD and WHO collections of life tables for use in 

testing the re-estimated modified logit model and the original modified logit model, respectively.  

The model was estimated separately by sex using a constrained linear regression algorithm in 

STATA so that the two parts of the model produce the same value of 

! 

l j (60)  at 

! 

l j (5) = c .  The 

constraint was chosen based on predicted values of 

! 

l j (60)  at 

! 

l j (5) = c  using the model 

! 

l j (60) ="1 +#1 l j (5)( )  fitted to observations where 

! 

l j (5) < c .  The cutoff point, c, was chosen to 

minimize the sum of squared errors and varies by sex and data set.  Our two sets of parameter 

estimates for the modified logit side model are presented in Table S-3. 

Other supplemental figures 

The following figures provide additional detail beyond what is presented in the main paper: 

• Figure S-5 shows the relationship between child and adult mortality implied by the five 

families of the UN model life tables for less developed countries (compare to Figure 1 of 

the main article, which presents similar information for the Coale-Demeny tables). 

• Figures S-6, S-7, and S-8 compare the predictions of the log-linear and log-quadratic 

models.  Figure S-6 makes the comparison in terms of age-specific probabilities of dying 

within six broad age groups.  Figure S-7 presents a similar comparison in terms of 

age-specific death rates (compare to Figure 2 of the main article, which presents such 

information for the two sexes combined but not separately by sex as shown here).  

Figure S-8 compares predicted death rates of the log-linear and log-quadratic models 

within 5-year age groups for females and males separately. 

• Figures S-9, S-10, and S-11 illustrate the range of predictions associated with values of 

the k parameter, for 

! 

k = "2, -1, 0, 1, and 2.  Figure S-9 shows the effect of varying k on 

predicted age-specific probabilities of dying for six broad age groups.  Figure S-10 

presents a similar set of results in terms of age-specific death rates (compare to Figure 6 

of the main paper, which presents such information separately by sex but not for sexes 

combined as shown here).  Figure S-11 illustrates the effect of varying k on predicted 

death rates within 5-year age groups for females and males separately. 

• Figure S-12 depicts the historical trajectories of child (

! 

5
q
0
) versus adult mortality (

! 

45
q
15

) 

for a variety of countries grouped by region.  This figure offers more detail on 

country-specific trends within regions in comparison to Figure 10 in the main paper, 

which documents these trajectories at the regional level.    
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Table S-1 

Coefficients for log-linear model, estimated using HMD life tables (

! 

n = 719) 

 

  Female   Male  

Age 

! 

a
x
 

! 

b
x
 

! 

v
x
 

! 

a
x
 

! 

b
x
 

! 

v
x
 

0 -0.3329 0.9684 0.0000 -0.2383 0.9873 0.0000 

1-4 -- -- -- -- -- -- 

5-9 -3.4361 1.1034 -0.3250 -3.6541 1.0265 0.1950 

10-14 -4.1152 0.9705 -0.3617 -4.4284 0.8470 0.1861 

15-19 -4.0162 0.8438 -0.4113 -4.4827 0.5845 0.2291 

20-24 -3.7625 0.8612 -0.4014 -4.1096 0.5862 0.3163 

25-29 -3.6613 0.8515 -0.3665 -4.1028 0.5877 0.3686 

30-34 -3.6205 0.7922 -0.3302 -4.0417 0.5743 0.3858 

35-39 -3.6407 0.7041 -0.2781 -3.9224 0.5413 0.3786 

40-44 -3.6847 0.5975 -0.2260 -3.8047 0.4805 0.3515 

45-49 -3.7326 0.4858 -0.1658 -3.6920 0.3991 0.2989 

50-54 -3.5757 0.4240 -0.1293 -3.5188 0.3238 0.2429 

55-59 -3.3363 0.3835 -0.0987 -3.3122 0.2602 0.1824 

60-64 -2.9276 0.3720 -0.0604 -2.9746 0.2277 0.1420 

65-69 -2.5609 0.3411 -0.0247 -2.6561 0.1896 0.0991 

70-74 -2.1192 0.3161 0.0071 -2.2485 0.1754 0.0671 

75-79 -1.7692 0.2640 0.0293 -1.8662 0.1549 0.0352 

80-84 -1.4554 0.2089 0.0341 -1.4828 0.1389 0.0168 

85-89 -1.1650 0.1567 0.0290 -1.1390 0.1178 0.0000 

90-94 -0.9061 0.1120 0.0000 -0.8464 0.0921 0.0000 

95-99 -0.6531 0.0766 0.0000 -0.5730 0.0761 0.0000 

100-104 -0.4635 0.0448 0.0000 -0.3866 0.0546 0.0000 

105-109 -0.3236 0.0211 0.0000 -0.2526 0.0365 0.0000 

110+ -0.2297 0.0084 0.0000 -0.1682 0.0250 0.0000 

Notes:   

(1) Estimated coefficients shown here were derived using the bi-weight method (see 

Appendix of the main paper). 

(2) There are no estimated coefficients for ages 1-4 by design.  Since 

! 

5
q
0
 is an input to 

the model, the age group 1-4 is excluded when fitting the model.  After using the 

model to estimate mortality for age 0, we derive the mortality level for ages 1-4 as a 

residual component of 

! 

5
q
0
.  This procedure assures that the input and output values 

of 

! 

5
q
0
 are identical. 
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Table S-2 

Fitted coefficients for WHO relational mortality model fitted to HMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  Estimated coefficients shown here were derived using an OLS fitting procedure (see 

Appendix of the main paper). 

  Female   Male  

Age      

! 

"
x
      

! 

"
x
 

  

! 

!
x

S       

! 

"
x
      

! 

"
x
 

  

! 

!
x

S  

0 0.0000 0.0000 100000 0.0000 0.0000 100000 

1-4 0.0984 0.0844 97119 0.2317 -0.0029 96401 

5-9 0.0000 0.0000 96025 0.0000 0.0000 95153 

10-14 0.0142 -0.0337 95577 -0.0350 -0.0019 94592 

15-19 0.0357 -0.0555 95224 -0.0445 -0.0012 94139 

20-24 0.0995 -0.0936 94637 -0.0009 -0.0062 93076 

25-29 0.1373 -0.1222 93923 0.0675 -0.0286 91574 

30-34 0.1568 -0.1420 93112 0.1230 -0.0513 90090 

35-39 0.1783 -0.1588 92107 0.1698 -0.0717 88460 

40-44 0.2024 -0.1700 90771 0.2067 -0.0877 86444 

45-49 0.2203 -0.1688 88945 0.2276 -0.0955 83743 

50-54 0.2050 -0.1407 86423 0.2103 -0.0857 80019 

55-59 0.1372 -0.0860 82944 0.1385 -0.0550 74871 

60-64 0.0000 0.0000 78212 0.0000 0.0000 67966 

65-69 -0.2523 0.1318 71495 -0.2064 0.0718 58820 

70-74 -0.6273 0.3119 62026 -0.4893 0.1607 47434 

75-79 -1.1467 0.5403 48875 -0.8687 0.2643 34075 

80-84 -1.8189 0.8158 32790 -1.3830 0.3913 20443 

85-89 -2.6447 1.1300 17130 -2.0759 0.5476 9342 

90-94 -3.7500 1.5356 6227 -3.0637 0.7697 2884 

95-99 -5.1937 2.0530 1408 -4.3913 1.0735 536 

100-104 -7.2044 2.8091 170 -6.2513 1.5277 54 

105-109 -9.7272 3.8002 10 -8.6069 2.1335 3 

110+ -12.6981 5.0068 0 -11.3918 2.8748 0 
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Table S-3 

Fitted coefficients for model of the relationship between 

! 

l(5) and 

! 

l(60)   

 

  c 

! 

"
1
 

! 

"
1
 

! 

"
2
 

! 

"
2
 

Male 0.98 -0.870 1.682 -0.185 1.222 WHO 

(

! 

n =1802) Female 0.85 -0.402 1.130 0.266 1.051 

Male 0.98 -0.735 1.527 -0.317 1.345 HMD 

(

! 

n = 719) Female 0.88 -0.600 1.318 0.208 1.107 
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Figure S-1  

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
), log scale, six age groups,  

observed data from HMD-719 and WHO-1802 (non-overlap only),  

with predicted levels (

! 

k = 0) according to four methods of fitting the log-quadratic model  
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Figure S-1 (cont.) 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
), log scale, six age groups,  

observed data from HMD-719 and WHO-1802 (non-overlap only),  

with predicted levels (

! 

k = 0) according to four methods of fitting the log-quadratic model  
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Figure S-1 (cont.) 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
), log scale, six age groups,  

observed data from HMD-719 and WHO-1802 (non-overlap only),  

with predicted levels (

! 

k = 0) according to four methods of fitting the log-quadratic model  
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Figure S-2 

Age patterns of mortality implied by various selections of two input parameters  

(1-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-2 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-2 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-2 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-2 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-2 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-3 

Age patterns of mortality implied by various selections of two input parameters 

(1-year and 5-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 

 



Supplemental Report Wilmoth, Zureick, Canudas-Romo, Inoue, and Sawyer 

 21 

Figure S-3 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year and 5-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-3 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year and 5-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-3 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year and 5-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-3 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year and 5-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-3 (cont.) 

Age patterns of mortality implied by various selections of two input parameters 

(1-year and 5-year age groups, 

! 

Q5=5q0, 

! 

QQ=45q15) 
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Figure S-4 

Distortions in patterns of age-specific mortality for k outside the range of -4 to 4 
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Figure S-5 

Relationship between child and adult mortality levels, 

! 

5
q
0
 and 

! 

45
q
15

 (in logarithmic scale), 

observed data (

! 

n = 719) and UN model life tables for less developed countries (5 regional families) 
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Figure S-6 

Age-specific probability of dying (

! 

nqx) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-6 (cont.) 

Age-specific probability of dying (

! 

nqx) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-6 (cont.) 

Age-specific probability of dying (

! 

nqx) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-7 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-7 (cont.) 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-8 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-8 (cont.) 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-8 (cont.) 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-8 (cont.) 

Age-specific death rates (

! 

n
M

x
) vs. child mortality (

! 

5
q
0
) 

log-linear vs. log-quadratic models (logarithmic scales) 
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Figure S-9 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for 6 age groups, 

with observed values (

! 

n = 719) of 

! 

nqx vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-9 (cont.) 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for 6 age groups, 

with observed values (

! 

n = 719) of 

! 

nqx vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-9 (cont.) 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for 6 age groups, 

with observed values (

! 

n = 719) of 

! 

nqx vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-10 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for 6 age groups, 

with observed values (

! 

n = 719) of 

! 

n
M

x
 vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-11 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for detailed age groups, 

with observed values (

! 

n = 719) of 

! 

n
M

x
 vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-11 (cont.) 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for detailed age groups, 

with observed values (

! 

n = 719) of 

! 

n
M

x
 vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-11 (cont.) 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for detailed age groups, 

with observed values (

! 

n = 719) of 

! 

n
M

x
 vs. 

! 

5
q
0
 (logarithmic scales) 
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Figure S-11 (cont.) 

Log-quadratic model (

! 

k = "2, "1, 0,1, and 2) for detailed age groups, 

with observed values (

! 

n = 719) of  vs.  (logarithmic scales) 
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