
Text S1: Diffusion, length and time-scales

I. FREE DIFFUSION

Particles in solution move erratically due to the con-
tinuous collisions with solvent molecules. In the case of
a simple solvent this erratic movement is referred to as
Brownian motion [1]. The first theoretical description
of this behavior was presented by Einstein[2, 3]. Ein-
stein’s analysis is based on the assumption that the par-
ticle “forgets” its direction of motion after a certain time
and that the mean distance it travels during this time is
finite. Thus, there is a finite time interval, τ , and the
direction of motion during each τ -interval is independent
of one another [4]. There is a fundamental mathemati-
cal result, the central limit theorem, that states that the
sum of many independent random variables with finite
variance is a Gaussian-distributed random variable (see
e.g. [5]). Thus, since the displacement of the Brownian
random walker after a time t ! τ , r(t), is the sum of
many independent (random) displacements (those per-
formed during the intervals, τ), the probability that r(t)
be within a volume of size d3r around the value r is
Gaussian-distributed:

P (r, t)d3r =
1

(4πDt)d/2
exp(− r2

4Dt
)d3r. (1)

In Eq. (1) d is the number of dimensions of the space
over which the particle travels (e.g., d = 2 if it is a sur-
face or d = 3 if it is a volume) and D is the so called
diffusion coefficient which is related to the variance of
the independent displacements. In the simple random
walker picture in which the mean time between collisions
is τ and the mean length traversed during such time is
λ, it is D = λ2/(2τ). The probability density given by
Eq. (1) allows the calculation of all the statistical prop-
erties of the particle displacement. In particular, one
obtains:

〈r(t)〉 = 0, (2)
〈|r(t)|2〉 = 2dDt. (3)

This implies that the mean square displacement of the
particle after a time t, 〈|r(t)|2〉, grows linearly with the
elapsed time. This is characteristic of a normal diffusive
behavior. If one considers many particles that perform
their random walks independently of one another, then,
the probability P given by Eq. (1) also serves to describe
the concentration of these Brownian random walkers as
a function of position and time, c(r, t), for an initial con-
dition in which all the particles are located at the origin
(so that the displacement after a time t of each of them
is equal to its position). Namely,

c(r, t) = NP (r, t) =
N

(4πDt)d/2
exp(− r2

4Dt
), (4)

with N the total number of particles. This concentration
is in fact a solution of the diffusion equation:

∂c

∂t
= D∇2c. (5)

This equation was introduced in 1855 by the German
physiologist Adolf Fick in a phenomenological way to
describe how water and nutrients travel through mem-
branes. It is a macroscopic equation that involves a cer-
tain degree of coarse-graining. Namely, it provides a law
for the dynamics of the local changes in the mean num-
ber of particles (or, equivalently, its concentration) inside
a region that is macroscopically small but microscopi-
cally large. In one space dimension, for example, it is
∇2c = ∂2c/∂x2. If one thinks of the spatial domain as
divided in macroscopically small regions of size ∆x, then
∂2c(x, t)/∂x2 ≈ ((c(x +∆x, t)− c(x, t))− (c(x, t)− c(x−
∆x, t)))/∆x2. Thus, according to Eq. (5), c(x, t) will
change in time if the concentrations in the surrounding
regions (x+∆x and x−∆x) are different from it. Eq. (5)
is a transport equation, it describes “local” concentration
changes due to particles movement in or out of the macro-
scopically small (i.e., local) region. The second derivative
in this type of equation is characteristic of diffusive trans-
port in which there is not a mean velocity (see Eq. (2)):
the individual particles move at random with equal prob-
ability of stepping to the right or the left (in one space
dimension) after bumping onto a solvent molecule. The
solution of Eq. (5) given by c(r, t) = NP (r, t) with P (r, t)
as in Eq. (1) shows that the diffusion coefficient, D, can
in principle be estimated from the mean square displace-
ment of a single particle (Eq. (3)) or from the spread of
a population of particles whose concentration evolves ac-
cording to Eq. (4). This is illustrated in Video S1 and in
Fig. 1 of the accompanying manuscript where we present
the results of a particle simulation of molecules that move
randomly in a (20 µm)3 cube with diffusion coefficient
D = 20µm2/s. In the example a bolus of 1875 “fluo-
rescent” particles is added to the central (5µm)3 cube
in a background of 20,000 particles that are uniformly
distributed in the simulation volume. Since the diffusion
equation is linear, the time evolution of the concentration
of all the particles or of the deviation of this concentra-
tion with respect to the initial equilibrium condition is
ruled by Eq. (5). In this example, the deviation with
respect to equilibrium is the same as the concentration
of added particles. The total concentration perturbation
and the added particles concentration depicted, respec-
tively, in the left and middle panels of Video S1, spread
out with time at the same rate. This becomes clearer in
Figs. 1A and 1B where we can observe that the quan-
tity 〈r2〉 (computed using these two concentrations as de-
scribed in Materials and Methods) depends linearly with
time with the same slope in both cases. As explained in
supplementary text S3 the slope of the 〈r2〉 vs t curve is



2

2dD with d = 3 the number of dimensions of the simu-
lation (notice that the Videos correspond to projections
on the z = 0 plane of a three-dimensional simulation).
2dD is also the constant of proportionality between the
mean square displacement of each added particle (aver-
aged over all of them) and time as shown in Fig. 1C. In
fact, this is reproduced by the simulations. We obtain
D = 19.3, 20.3 and 20.2µm2/s from the curves in Figs.
1A, 1B and 1C, respectively.

II. ANOMALOUS DIFFUSION

This first discussion shows that diffusion involves a
coarse-grained description. Namely, it does not hold at
timescales at which the particles have a well-defined ve-
locity (≤ τ). In most applications the limiting length-
scale is the mean-free path which is usually a fraction of
the molecule diameter [6]. It also shows that diffusion can
either be described in terms of the behavior of a single
particle or of a collection of particles (i.e., by means of
their concentration). It finally shows that in the case of
“free”, normal, diffusion, the (“long”) time dependence
of a single particle mean square displacement (Eq. (3))
or the rate at which the concentration of the particle
species spreads out with time (Eq. (4)) is determined by
the same (free) diffusion coefficient, D. However, in the
crowded environment of a cell’s interior, the transport
of molecules hardly ever corresponds to free diffusion in
which the dynamics of the molecules is solely determined
by their collisions with a simple solvent [7]. The exis-
tence of obstacles or of other interactions, in principle,
can give rise to what is called anomalous diffusion a situ-
ation in which the mean square displacement of a particle
grows with time as ∼ tγ with γ )= 1. In fact, subdiffusive
transport (i.e. with γ < 1) has been observed experi-
mentally in porous systems and on cell membranes [6].
Now, the linear scaling between 〈|r|2〉 and t of normal
diffusion is based on a mathematical theorem. Thus, in
order for the mean square displacement to have a depen-
dence other than linear with respect to time some of the
assumptions of the theorem must not hold. In particu-
lar, subdiffusion is obtained with random walks in which
there is not a well-defined mean time, τ , between colli-
sions, but rather those times are taken from a long-tailed
distribution [8]. This type of behavior can be due to the
presence of certain type of “traps” that hold the parti-
cles for a while or restrict their movement [9, 10]. In
many occasions, however, the anomalous transport only
holds within a certain time window. In those cases, if one
computes the mean square displacement of a particle af-
ter a long enough time (i.e. for enough averaging over
the individual random steps of the particle of interest)
the behavior of the linear dependence between the mean-
square displacement and the elapsed time predicted by
the central-limit theorem is recovered [1]. The “diffusion
coefficient” in this long time limit, however, is smaller
than the one that is obtained in the absence of traps or

movement restrictions. This discussion shows that bind-
ing can lead to a type of transport that is transiently
anomalous but that eventually recovers the properties of
normal diffusion.

III. EFFECTIVE DIFFUSION

Binding/unbinding corresponds to a chemical reaction.
The dynamics of a system in which particles perform
a “normal” random walk due to non-reactive collisions
with molecules of a simple solvent and undergo bind-
ing/unbinding with other molecules can be described by
reaction-diffusion equations. For example, in the case of
a single species, Pf , that reacts with binding sites, S, to
form a complex Pb, according to

Pf + S
kon−→←−
koff

Pb, (6)

the reaction-diffusion equations are:

∂[Pf ]
∂t

= Df∇2[Pf ] − kon[P ]
f [S] + koff [Pb]

∂[Pb]
∂t

= DS∇2[Pb] + kon[Pf ][S] − koff [Pb]

∂[S]
∂t

= DS∇2[S] − kon[Pf ][S] + koff [Pb], (7)

if Pf diffuses with coefficient Df due to their collisions
with solvent molecules and Pb and S do it with coefficient
DS . It is implicit in the latter that S is much more mas-
sive than Pf so that binding with Pf does not change
its free diffusion coefficient. Eqs. (7) are macroscopic
equations that can be derived from a more detailed de-
scription of the particles dynamics (see e.g. [5, 6, 11]). As
with Eq. (5) they involve a degree of coarse-graining and
describe the average behavior of the individual molecules
of the participating species. It is clear from Eqs. (7) that
they model a situation in which “local” changes in the
concentrations occur because particles enter and leave
the macroscopically small region as they bump onto sol-
vent molecules (represented by the terms ∝ ∇2 as in
Eq. (5)) and due to their chemical transformations into
one another. We call Df and DS free diffusion coeffi-
cients because they are due to the non-reactive collisions
of the corresponding species with the solvent. Concen-
tration changes due to chemical reactions are modeled
in Eqs. (7) in the usual way. This implies that there
is a probability per unit time that the binding occurs
once the two molecules are close enough (in the example
of (6), kon/d3

i with di a typical distance within which the
molecules can interact and react) and that the time for
unbinding follows an exponential distribution (in the ex-
ample of (6) of mean 1/koff). As in the case of pure (free)
diffusion (Eq. (5)), the macroscopic description holds for
timescales that are much larger than the characteristic
time, τ , between non-reactive collisions. The dynamics
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prescribed by reaction-diffusion equations is not purely
diffusive and, thus, local inhomogeneities in the concen-
trations do not spread out following Eq. (4). Further-
more, the reactions that lead to Eqs. (7) are nonlinear in
the concentrations and this introduces important differ-
ences with respect to the linear Eq. (5).

As in the case of free diffusion in which particles only
collide non-reactively with the molecules of a simple sol-
vent, when particles also bind or react, two types of de-
scriptions are possible. One may look at how the various
species concentrations change with time, as done when
using Eqs. (7). One may also “follow” an individual par-
ticle as it moves around bumping onto solvent molecules
and binding/unbinding to/from other molecules or sites
and then compute some statistical quantities such as the
particle mean square displacement. Of particular interest
is the situation in which this analysis is done when the
system is in equilibrium. This is the case of the experi-
ments that we are interested in. In particular, the situa-
tions probed by the experiments that we analyze in the
accompanying paper are such that the concentrations are
approximately uniform, time-independent and in chemi-
cal equilibrium with one another inside the region of in-
terest during the observation time. This does not mean
that there is no movement. The equilibrium refers to
the average behavior of the species populations. One can
then still follow an individual particle as it moves around
or one can analyze how a small local change in the con-
centration (a fluctuation) spreads out with time. Even in
a case in which diffusion in a simple solvent and reactions
are involved, the long time behavior of the mean-square
displacement of an individual particle or of a perturba-
tion in the concentration have the same time-dependence
as the ones encountered when the molecules only suffer
non-reactive collisions with a simple solvent, i.e. in the
purely diffusive (normal) case characterized by Eq. (3)
and Eq. (4). The time after which these relationships
hold depends both on the (free) diffusion coefficients and
on the reaction rates. The diffusion coefficients that enter
the relationships, on the other hand, do not correspond
to any of the free diffusion coefficients of the species in-
volved (Df or DS in Eqs. (7)) but are weighted aver-
ages of them that depend on the species concentrations.
We call them “effective” diffusion coefficients. Due to
the nonlinearity of the equations, the effective coefficient
that rules the time-dependence of the mean-square dis-
placement is different from the one that determines the
rate at which local perturbations in the species concen-
trations spread out with time [12]. We call them single
molecule (Dsm) and collective (Dcoll), respectively, and
for the simple model described by Eqs. (7) they are given
by:

Dcoll =
Df + [S]2

KDST
DS

1 + [S]2

KDST

, Dsm =
Df + [S]

KD
DS

1 + [S]
KD

, (8)

In the case analyzed in the accompanying paper, as in
most cases, the binding sites (S) are either immobile or

have a very small free diffusion coefficient (DS) com-
pared to that of the free particles (Df ) because they
are assumed to be more massive. In such a case it is
DS ≤ Dsm ≤ Dcoll ≤ Df . Distinguishing between Dsm

and Dcoll is important because, depending on the values
of the free diffusion coefficients, concentrations and reac-
tion rates, the ratio Dcoll/Dsm can be arbitrarily larger
than one [12].

The weighted average that gives Dsm has a simple in-
tuitive explanation. Let us assume that we follow an
individual particle that bumps into the molecules of a
simple solvent diffusing with coefficient, Df , while it is
free, that binds/unbinds to sites, S, according to the
scheme (6) in a medium in which the concentration of
sites is [S] and that, when bound to S, it also bumps
into the solvent molecules but with the diffusion coeffi-
cient of the sites, DS . In view of the scheme (6) we expect
that, on average, it takes a time 1/(kon[S]) for the par-
ticle in its free form to bind to a site and a time 1/koff

for the particle in its site-bound form to become free.
This means that, when observed during a long enough
time, t, we can expect the particle to spend, on aver-
age, a fraction of time tf/t = 1/(kon[S])/(1/(kon[S] +
1/koff) in its free form (and, equivalently, a fraction
tb/t = 1/(koff )/(1/(kon[S] + 1/koff) in its site-bound
form). We can then compute its effective diffusion coef-
ficient as (tf/t)Df + (tb/t)DS . This gives exactly the
single-molecule effective diffusion coefficient, Dsm, de-
fined in (8). Why do small fluctuations in the particles
concentrations eventually spread out with a different ef-
fective coefficient? Mathematically, this can be traced
back to the nonlinearity of the chemical reaction. In par-
ticular, if instead of binding to sites the particles suffer
spontaneous transformations between two states (“free”
and “bound”) characterized by two free diffusion coeffi-
cients, Df and DS , then both the eventual diffusive be-
havior of the mean square displacement of an individual
particle and the rate of spreading of a concentration per-
turbation is ruled by Dsm = (tf/t)Df + (tb/t)DS with
tf/t and tb/t the fractions of time that each particle is
free or bound, respectively. The chemical reaction intro-
duces a coupling between the individual particles which
is mediated by the sites. Thus, what happens to a collec-
tion of particles is not simply the “sum” of what happens
to each of them. Let us illustrate the nonlinearity with an
example in one space dimension to make the discussion
simpler. Consider a pipe with a solution at equilibrium
inside it. As we mentioned before, diffusion involves a
certain degree of coarse graining. So, let us imagine di-
viding the pipe into segments of length, ∆x, and let us
focus on a segment whose center is located at a particular
position, x. Let us compare two situations, one in which
the (solute) particles diffuse freely and one in which they
also bind/unbind to immobile traps. In both cases, par-
ticles are continuously moving in and out of the segment
centered at x = 0. How many particles leave or enter
it during a certain time interval, ∆t, depends on how
many (free) particles there are in the neighboring seg-
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ments. Since everything is in equilibrium the segment at
x = 0 receives, on average, during ∆t, the same num-
ber of particles from the left as from the right. Similar
numbers leave the segment at x = 0 to the left and to
the right during ∆t and the mean number of particles it
contains remains approximately constant. Suppose that
some particles are added to the segment whose center is
located at x = −∆x and consider what happens in the
segment centered at x = 0 a time ∆t after the addition of
the particles. Assume that ∆x and ∆t are such that the
free particles can diffuse over a distance ∆x during ∆t.
Suppose further that we color the added particles but
that, otherwise, they behave in the same way as those
that there were already inside the pipe. The addition of
particles alters the equilibrium situation in such a way
that, during ∆t, the segment at x = 0 receives more
particles from the left than from the right and the total
number of particles it receives is larger than the number
that leave it. Thus, during ∆t, there is a net flux of par-
ticles as a result of which the segment at x = 0 ends up
having a surplus of free particles. In the case in which
the particles are free all the time, the fraction of all the
particles that enter the segment at x = 0 from the left
during ∆t that are colored is the same as the fraction of
colored particles that were in the segment at x = −∆x
just after they were added. Thus, the constant of propor-
tionality between the flux of particles from left to right
and the number of particles at x = −∆x is the same re-
gardless of whether they are colored or not. In this case
there is a unique diffusion coefficient, the free coefficient
of the particles. In the case in which particles bind to
sites, some of the added (colored) particles become bound
during ∆t. This additional binding is compensated by a
release of some of the site-bound particles. Most likely,
the particles that are released at x = −∆x during ∆t
are those that were already bound when the free colored
particles were added, i.e. they are not colored. It is then
likely that the fraction of colored to non-colored parti-
cles that are bound in the segment at −∆x during ∆t
be larger than the equivalent fraction of free particles.
Thus, while the number of free particles that enter the
segment at x = 0 during ∆t will be proportional to the
mean number of free particles that are inside the segment
at −∆x during ∆t, the fraction that enter which are col-
ored will be smaller than the fraction of colored particles
that remain in the segment at −∆x (because they be-
came trapped). Thus, the constant of proportionality
between the flux of particles from left to right and the
number of particles at x = −∆x is smaller for colored
particles than if we consider all of them without distin-
guishing their color. In this case there are two “effective”
diffusion coefficients. If we take this example to the limit
of having added only one (colored) particle we arrive at
the conclusion that the time it takes for an individual
particle to diffuse from −∆x to x = 0 is different than
the rate at which the concentration difference between
−∆x and x = 0 decays by diffusion: while the first one is
characterized by the single-molecule diffusion coefficient,

Dsm the second is determined by the collective diffusion
coefficient, Dcoll. We illustrate the meaning of these two
effective diffusion coefficients in Video S2 and Fig. 2.
This video and its corresponding figure are equivalent to
Videos S1 and Fig. 1 but for a system of particles that
diffuse freely with Df = 20µ2/s and react with immobile
sites according to scheme (6) (see Materials and Methods
for simulation details). The left most panel in Video S2
depicts the deviation of the concentration of all the par-
ticles with respect to equilibrium, regardless of whether
they are fluorescent or not while the middle one shows the
concentration of added (i.e. fluorescent) particles. We
can observe that the former spreads out faster with time
than the latter. This becomes clearer in Figs. 2A and 2B
of the accompanying paper where we can observe that the
quantity 〈r2〉 (computed using these two concentrations
as described in Materials and Methods) changes faster
in A than in B. This is due to the effect that we have
described in the one-dimensional example: the pertur-
bation of the colored particles diffuses more slowly than
that of all the particles because non-fluorescent particles
become unbound at the front of the perturbation making
it spread out faster. We must remember that in this ex-
ample the dynamics is effectively diffusive when observed
over a long enough time. A transient non-diffusive be-
havior can in fact in be observed in all three plots in
Fig. 2. As explained in supplementary text S3 in this
case 〈r2〉 eventually becomes linear with t with a slope
that is 2dDcoll if we consider all the particles and 2dDsm

if we only consider the fluorescent ones. Given the pa-
rameters of the simulation, it is Dcoll = 10µm2/s and
Dsm = 0.7µm2/s. From the slopes of the curves in Figs.
2A and 2B we obtain diffusion coefficients ≈ 10µm2/s
and ≈ 1µm2/s, respectively. In text S3 we explain that
2dDsm is also the constant of proportionality between the
averaged mean square displacements of the added parti-
cles and time once the diffusive behavior sets in. This
averaged MSD is shown in Fig. 1C. From its slope we
obtain a diffusion coefficient ≈ 1.06µm2/s which agrees
with the one derived from Fig. 2B and is of the order of
magnitude of the expected value, Dsm = 0.7µm2/s.

In the examples discussed in the previous paragraph
there is a site-mediated interaction between the parti-
cles and this explains why Dsm < Dcoll. How large this
difference is depends on the timescales and concentra-
tions involved. There are two limits in which the site-
mediated coupling does not affect differently the single
particle and collective diffusion coefficients. If there are
very few particles then most binding sites will be empty
at any given time and the individual particles will not
compete with one another for the sites. Most of the par-
ticles, on the other hand, will be bound to sites diffus-
ing with diffusion coefficient, DS (will stay immobile in
the example). In this limit, Dsm ≈ Dcoll ≈ DS . The
other limit holds when there are so many particles that
almost all sites are occupied (bound). The effective dif-
fusion coefficient is then determined by the very large
number of particles that remain free. In this limit it is
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Dsm ≈ Dcoll ≈ Df . Outside these limits the difference
between Dsm and Dcoll can be observable. The existence
of one coefficient ruling the diffusion of individual parti-
cles and another one ruling the decay of concentration
gradients also occurs in the context of non-ideal solu-
tions [13] particularly those involving polymers [1, 14].
Also in this case it is the interaction between the diffus-
ing particles that occurs when solutions are too concen-
trated or when the molecules are too large that causes
concentration gradients to relax with one diffusion coef-
ficient (“mutual” or “cooperative” diffusion) that differs
form the one that characterizes the mean square displace-
ment of individual particles (“self-diffusion”) [13, 14]. It
is important to point out that the existence of binding
sites provides an interaction mechanism even for dilute
solutions of very small molecules. We must also remem-
ber that the normal diffusive behavior only holds in the
“long time limit”, i.e., if the mean-square displacement
is computed over very long times or if the decay of a con-
centration perturbation is observed when it is reaching
the new equilibrium condition.

IV. EFFECTIVE DIFFUSION, FRAP AND FCS

The previous discussion shows that indistinguishabil-
ity and nonlinearity are related. Namely, by distinguish-
ing the particles one can “break” nonlinearity and dif-
fusion is then governed by the effective coefficient, Dsm

that is obtained within the framework of linear equa-
tions [15]. Particles can be individualized if one could
“tag” and follow them. In fact tagging is what underlies
the applicability of optical techniques that use fluores-
cently labeled molecules. Tagging, however, not always
induces distinguishability (i.e. if all molecules of inter-
est are tagged). Thus, the interpretation of the trans-
port rates that can be inferred from different optical
techniques requires great care. In this paper we are in-
terested in two techniques, Fluorescence Recovery After
Photobleaching (FRAP) and Fluorescence Correlation
Spectroscopy (FCS). The application of these techniques
to study the dynamics of Bicoid involves working with
transgenic embryos that express Bcd with an Enhanced-
Green-Fluorescence-Protein (EGFP) tail [16]. Even if all
Bcd had an EGFP tag, the fact that it takes a while for
GFP to become mature and, thus, fluorescent, both fluo-
rescent and non-fluorescent versions of Bcd-EGFP coex-

ist in the embryos [17]. In Eqs. (6) of the accompanying
paper we distinguish the fluorescent and non-fluorescent
versions of the species involved by means of the super-
scripts t and u, respectively. In FRAP a region of in-
terest is observed in which it is assumed that the various
species that determine the dynamics of Bcd-EGFP are
in equilibrium. At the beginning of the experiment, the
region of interest is illuminated with an intense laser so
as to bleach the fluorescence inside it. The fluorescence
is subsequently recovered due to the transport of fluores-
cently labeled molecules into the region of interest. Fit-
ting the fluorescence recovery curve one can obtain an
estimate of the rate at which the fluorescent molecules
are transported into the region. This entails having a
model of the dynamics that underlies this recovery. If
the bleaching occurs during a much shorter time than
the one it takes for the fluorescent to recover, there is
a simple analytic relationship between the recovery time
and the transport rate [18–20]. If this is not the case,
the interpretation of the observations requires a more so-
phisticated model [21]. In any case, if the particles diffuse
and react with binding sites as in the model described by
Eqs. (7), the recovery eventually occurs at a rate that is
determined by Dsm [13, 22]. As explained in [12] and
in supplementary text S2, the equations that rule the
fluorescence recovery are linear. In such a case the effec-
tive coefficient is given by Df (tf/t) + DS(tf/t) = Dsm.
The fact that Dsm is recovered in FRAP is illustrated
in Video S3 and Fig. 3 of the accompanying manuscript.
In FCS the time course of the fluorescence coming from
a small observation volume is monitored. The dynamics
of the fluorescence fluctuations around the mean is as-
sessed by computing their auto-correlation function. In
a system in which fluorescent particles diffuse and in-
teract with binding sites without altering their emission,
fluorescence fluctuations in an observation volume are
mainly due to changes in the number of fluorescent par-
ticles inside it. Thus, information on the transport rate
of the fluorescent particles can be inferred from the au-
tocorrelation function. Unless the observation volume
is very small, in the case in which particles react and
diffuse FCS provides information on Dcoll if all parti-
cles are fluorescent (and there is no distinguishability).
If both fluorescent and non-fluorescent particles coexist,
FCS gives information on both Dcoll and Dsm [23]. For
a more detailed explanation on FCS, see supplementary
text S2.
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