
Text S2: Detailed description of the mapping between model and experiments.

I. UNDERLYING BIOPHYSICAL MODEL

We consider the simplest biophysical model model that
incorporates the presence of molecules, S, that interact
with the Bicoid protein according to the scheme:

Bcdf + S
kon−→←−
koff

Bcdb (1)

with dissociation constant, KD = koff/kon. In Eq. (1)
Bcdf stands for Bcd in its free form and Bcdb for the
bcd − S complex. We assume that the S molecules are
more massive than the free Bcd molecules in such a way
that both S and Bcdb have the same diffusion coefficient,
DS , which is in turn smaller than the coefficient of free
Bcd molecules, Df . We assume that all three species
are, on average, uniformly distributed within the volume
of interest for FCS and FRAP experiments. This ap-
proximation is good in the present case. Namely, the
typical lengthscale of the Bcd gradient is of the order of
0.4 times the length of the embryo (i.e., ∼ 150µm), the
size of the region from which fluorescence is collected in
FCS and FRAP experiments is ∼ 0.4µm and ∼ 0.95µm,
respectively [1] and the size of the region from which Bcd
molecules could come into the observation volume during
the time course of the experiments is smaller than 9µm.
Therefore, it is safe to assume a spatially uniform distri-
bution of the mean concentration values of all species.
We call BcdT and ST , the total mean concentrations
(i.e., both in their free and bound forms) of Bcd and
S, respectively. We assume that, during the time course
of the experiments, Bcd and S are in equilibrium, so that
their mean concentrations are given by the equilibrium
concentrations, Bcdfeq, Bcdbeq and Seq which satisfy

Bcdfeq + Bcdbeq = BcdT , (2)
Seq + Bcdbeq = ST , (3)

BcdfeqSeq = KDBcdbeq. (4)

Using all these conditions we obtain:

Bcdfeq =
KDBcdT

KD + Seq
, (5)

Bcdbeq =
SeqBcdT

KD + Seq
, (6)

BcdT /Seq

KD/Seq + 1
+ 1 =

ST

Seq
. (7)

Eq. (7) can be used to write Bcdfeq, Bcdbeq and Seq as
functions of ST and BcdT . Following [2], we will refer to
S as traps and to Bcd molecules as particles.

In order to assess the rate at which Bcd diffuses in
vivo, FCS and FRAP experiments are done using em-
bryos that only express Bcd- GFP. However, it takes

some time for GFP to become mature and, thus, fluo-
rescent. Therefore, we will consider that both fluores-
cent and non-fluorescent Bcd molecules coexist in the
system. We will use the superscript t to indicate that the
molecule is fluorescent (e.g. is “tagged”) and the super-
script u to indicate that is not. Therefore, the problem
that we are dealing with involves the following 5 species:
Bcdt

f , Bcdu
f , Bcdt

b, Bcdu
b and S, where the correspond-

ing equilibrium concentrations satisfy: Bcdt
feq+Bcdt

beq =
Bcdt

T , Bcdt
feq + Bcdt

beq + Bcdu
feq + Bcdu

beq = BcdT and
Seq + Bcdt

beq + Bcdu
beq = ST . We will also analyze the

limiting case in which all Bcd is fluorescent.

II. EFFECTIVE DIFFUSION COEFFICIENTS

The transport of particles in systems like the one we
have just introduced can be described in terms of “ef-
fective” diffusion coefficients which take into account the
effect of free diffusion and of reactions. Following [2] we
define two such coefficients:

Dsm =
Df + Seq

KD
DS

1 + Seq/KD
, (8)

and

Dcoll =
Df + S2

eq

KDST
DS

1 + S2
eq/(KDST )

. (9)

As shown in [2, 3], Dsm is the one that can be ob-
tained from FRAP experiments if reactions occur on a
fast timescale compared to diffusion. As shown in [4],
Dcoll can be derived from FCS experiments under the
same condition. Furthermore, Dsm, can also be obtained
with FCS experiments in certain cases [4].

III. FCS. THEORETICAL RESULTS

Given the biophysical model described in Sec. I it is
possible to compute the quantities that are obtained in
FCS and FRAP experiments. Moreover, under certain
assumptions, analytic expressions can be derived for the
relevant quantities. FCS monitors the fluorescence fluc-
tuations in a small volume determined by the illuminated
region which is commonly approximated by:

I(r) = I(0)e
−2r2

w2
r e

−2z2

w2
z , (10)

where I(0) is the illumination intensity at r = 0, (r, z)
are cylindrical coordinates with z the spatial coordinate
along the beam propagation direction and r a radial co-
ordinate in the perpendicular plane and where wz and wr
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are the sizes of the beam waist along z and r, respectively
(in general, wz > wr). Fluctuations are characterized by
the autocorrelation function (ACF):

G(τ) =
〈δF (t)δF (t + τ)〉

< F (t) >2
(11)

where < F (t) > is the average fluorescence in the volume
and δF (t) is the deviation with respect to this mean at
each time, t.

In the case in which fluorescently labeled (Bcd) parti-
cles diffuse and interact with traps (S) according to the
scheme (1), the fluorescence intensity is given by:

F (t) =
∫

QI(r)(Bcdt
f (r, t) + Bcdt

b(r, t))d
3r, (12)

where Bcdt
f (r, t) (Bcdt

b(r, t)) is the free (bound)
fluorescently-labeled Bcd concentration at time, t, and
spatial point, r, and Q, takes into account the detection
efficiency, the fluorescence quantum yield and the absorp-
tion cross-section at the wavelength of excitation of the
fluorescence.

If all Bcd molecules are fluorescent (i.e., Bcdt
f = Bcdf

and Bcdt
b = Bcdb for all r and t),the ACF can be ap-

proximated by [4]:

G(τ) =
Goef(

1 +
τ

τcoll

) √
1 +

τ

w2τcoll

+
GoS(

1 +
τ

τS

) √
1 +

τ

w2τS

, (13)

where τS = w2
r/(4DS), τcoll = w2

r/(4Dcoll), w = wz/wr

and:

GoS =
(Bcdt

beq)
2

Vef (Bcdt
T )2ST

, (14)

Goef =
1

VefBcdT
−

(Bcdt
beq)2

VefBcd2
T ST

=
Bcdt

feq

Vef (Bcdt
T )2

(
1 +

S2
eq

KDST

)
, (15)

with Vef = πw2
rwz the effective volume.

If fluorescent and non-fluorescent (Bcd) particles co-
exist, with free and bound concentrations Bcdt

f , Bcdu
f ,

Bcdt
b and Bcdu

b , respectively (and with Bcdt
f + Bcdu

f =
Bcdf and Bcdt

b+Bcdu
b = Bcdb for all r and t and mean or

equilibrium values that satisfy: Bcdt
feq +Bcdt

beq = Bcdt
T

and Bcdu
feq + Bcdu

beq = Bcdu
T ), the ACF can be approx-

imated by [4]:

G(τ) =
Gocoll(

1 +
τ

τcoll

) √
1 +

τ

w2τcoll

+
Gosm(

1 +
τ

τsm

) √
1 +

τ

w2τsm

+
GoS(

1 +
τ

τS

) √
1 +

τ

w2τS

, (16)

where

Gosm =
1 − f

VefBcdt
T

, Gocoll = fGoef , (17)

Goef , GoS , τS and τu are defined as before, τt =
w2

r/(4Dt) and f ≡ Bcdt
T /BcdT is the total fraction of

labeled particles (so that Bcdu
T = (1 − f)BcdT ).

The analytic approximations (13)–(16) hold as long as
reactions are fast compared to the diffusion time-scale
over the observation volume and if initial fluctuations in
the number of molecules of each species involved can be
assumed to obey Poisson statistics [5]. This last assump-
tion does not hold for S and Bcdb in the case of immobile
traps given that Bcdb +S = ST is fixed and, therefore, S
and Bcdb are anticorrelated. A binomial [6] or multino-
mial (because ST = Bcdt

b+Bcdu
b +S) distribution should

be used depending on whether all Bcdb is fluorescent or
not. The timescales remain the same as in the case of
Poisson statistics but the various components have differ-
ent weights. Taking into account the binomial or multi-
nomial distributions accordingly, the weights read [7]:

GoS = 0, (18)

Goef =
1

Vef (BcdT )2

(
Bcdfeq +

SeqBcdbeq

ST

)

=
Bcdt

feq

Vef (Bcdt
T )2

(
1 +

S2
eq

KDST

)
, (19)

if all Bcd is fluorescent and:

GoS = 0, (20)

Gosm =
1 − f

Vef (Bcdt
T )

, (21)

Gocoll =
fBcdt

feq

Vef (Bcdt
T )2

(
1 +

S2
eq

KDST

)
. (22)

if fluorescent and non-fluorescent Bcd molecules coexist
in the system. We then observe that using a binomial
or multinomial statistics for Bcdt

b we recover the same
weights as in the case of Poisson statistics with the dif-
ference that GoS = 0. In particular, inserting Eqs. (20)–
(22) into Eq. (16) we obtain that, if traps are immo-
bile and there are fluorescent and non-fluorescent Bcd
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molecules in the system, the ACF can be approximated
by:

G(τ) =
Gocoll(

1 +
τ

τcoll

) √
1 +

τ

w2τcoll

+
Gosm(

1 +
τ

τsm

) √
1 +

τ

w2τsm

. (23)

In the case in which all variables satisfy Poisson statis-
tics the sum of all the weights is equal to the inverse
number of fluorescent particles in the observation vol-
ume. From Eqs.(14)–(15) and (17) we get:

Goef + GoS =
1

VefBcdT
,

Gocoll + Gosm + GoS =
1

fVefBcdT
=

1
VefBcdt

T

,(24)

This does not hold if Bcdt
b does not obey Poisson statis-

tics because in such case the variance and the mean of the
number of bound fluorescent molecules are not equal [7].
Using Eqs. (18)–(22) we get:

GoS + Goef = Gocoll + Gosm + GoS =
1

Vef (Bcdt
T )2

×
(

Bcdt
feq + Bcdt

beq

(
1 −

Bcdt
beq

ST

))
. (25)

The equation GoS = 0 is exact if the traps are immo-
bile. In most cases this is an approximation. In any
case, this shows that there are uncertainties associated
to the weights. For this reason, we derive most of our re-
sults only from the correlation times and not the weights
determined from fits to the experimental ACF’s.

Summarizing, the approximated ACF’s have two com-
ponents in the following cases:

• Case I: All Bcd particles are fluorescent and the
only trap considered is mobile (Eq. (13)) ,

• Case II: There are fluorescent and non-fluorescent
Bcd particles and the only trap considered is im-
mobile (Eq. (23)) ,

while we have found an ACF with three components in
the following case:

• Case III: There are fluorescent and non-fluorescent
Bcd particles and the only trap considered is mobile
(Eq. (16)) .

We only consider cases with two or three components
because the fits presented in [1] were not good for a one
component ACF. Case I, on the other hand, corresponds
to a situation that is not expected to occur. Namely,
the studies of [8] show that there is always a fraction
of immature Bcd-EGFP during the stages at which FCS

experiments are performed in Drosophila embryos. Fur-
thermore, assuming Case I and working as we explain
later we obtained estimates of the diffusion coefficients
and concentrations that did not seem to be realistic. For
this reason, we will only present the results of interpret-
ing the published data in terms of Cases II and III.

The list of possible cases is exhaustive for the simple
biophysical model that we are considering here. It is very
likely that this model be an oversimplification of what
actually happens. In particular, it is probable that there
is more than one type of “trap”. From the analysis we
perform here we expect to extract information on typical
parameter values for the simplest model compatible with
the observations that can yet be used to understand the
dynamics of the Bcd gradient formation.

IV. FRAP. THEORETICAL RESULTS

We show here that the equations that describe the
spatio-temporal distribution of the various concentra-
tions of interest in the case of FRAP experiments give
the same answers whether, before photobleaching, there
are fluorescent and non-fluorescent Bcd molecules in the
same system or if all of them are fluorescent. The anal-
ysis of FRAP experiments does not take concentration
fluctuations into account but rather works with mean val-
ues. We must then recall that at t = 0 (ideally) the sum
of mean concentration values Bcdu

f + Bcdt
f = Bcdfeq,

Bcdu
b +Bcdt

b = Bcdbeq and S = Seq everywhere in space.
Thus, ∂(Bcdu

f+Bcdt
f )/∂t|t=0 = ∂(Bcdu

b +Bcdt
b)/∂t|t=0 =

∂S/∂t|t=0 = 0 so that S = Seq, Bcdu
f + Bcdt

f = Bcdfeq,
and Bcdu

b + Bcdt
b = Bcdbeq for all time everywhere in

space. Therefore, the 5 nonlinear coupled equations de-
scribing the evolution of Bcdu

f , Bcdt
f , Bcdu

b , Bcdt
b and

S reduce analytically, as in [2], to the following linear
equations:

∂Bcdt
f

∂t
= Df∇2Bcdt

f − konBcdt
fSeq + koffBcdt

b(26)

∂Bcdt
b

∂t
= DS∇2Bcdt

b + konBcdt
fSeq − koffBcdt

b(27)

∂Bcdu
f

∂t
= Df∇2Bcdu

f − konBcdu
fSeq + koffBcdu

b(28)

∂Bcdu
b

∂t
= DS∇2Bcdu

b + konBcdu
fSeq − koffBcdu

b ,(29)

while S = Seq everywhere in space for all times. The
only difference between having a mixture of fluores-
cent and nonfluorescent Bcd particles and having all of
them fluorescent before inducing the photobleaching only
changes the initial condition, but the eigenvalues describ-
ing the dynamics remain the same. This means that the
timescale over which the fluorescence recovers after the
bleaching pulse also remains the same.
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V. DESCRIPTION OF PUBLISHED
EXPERIMENTAL RESULTS

We here summarize the experimental results that we
will interpret within the framework of the simple bio-
physical model introduced in Sec. I. The aim is to es-
timate the various parameters of the model, including
diffusion coefficients, reaction rates and concentrations.
In particular, we will look at some results of Abu-Arish
et al [1],Porcher et al [9] and of Gregor et al [10].

In [1, 9] the mobility of two species is probed in em-
bryos of Drosophila melanogaster: Bcd-EGFP and NLS-
EGFP. As mentioned by the authors, NLS-EGFP forms
a gradient that is similar to that of Bcd, but at the same
time “it should be a mostly freely diffusing protein even if
some transient interactions with nuclear transport factors
are expected”. Therefore, we expect to draw information
on the free diffusion coefficient of Bcd-EGFP from the
FCS experiments done with NLS-EGFP. The only dif-
ference between the NLS-EGFP diffusion coefficient and
the free diffusion coefficient of Bcd that we consider is
the one due to the different masses of both molecules.
Namely, we use the Stokes-Einstein relation to obtain:

DBcd−egfp

DNLS−egfp
=

(
MWNLS−egfp

MWBcd−egfp

)1/3

, (30)

where MW stands for the molecular weights of the
corresponding molecules (MWBcd−egfp = 80kDa and
MWNLS−egfp = 30kDa). We further assume that the
labeling with EGFP does not alter the free diffusion co-
efficient of Bcd. Thus, we make the identification:

Df = DBcd−egfp (31)

between one of the model parameters and one that can
be obtained from the experiments.

The FCS experiments that we are looking at were per-
formed in anterior nuclei during cycles 13 and 14 [9] and
in the anterior cortical cytoplasm during interphase at
stage 12 − −14 [1] from which the ACF was computed.
In all cases, the experimental ACF was fitted by a func-
tion of the general form:

G(τ) =
1
N

(
1 +

B

1 − B
e−τ/τB

)
×

n∑

j=1

F (j)

(
1 +

(
τ

τ (j)

)αj
) √

1 +
(

τ
w2τ (j)

)αj
, (32)

where B is the fraction of fluorophore molecules in the
dark state, τB is the relaxation time of the fluorophore
blinking process, n is the number of components being
considered and the exponent αj characterizes the trans-
port process of the j-th component (αj = 1, αj < 1
and αj > 1 for normal, sub- and super- diffusion, re-
spectively). For the Bcd-EGFP experiments performed
in the cytoplasm, the authors tried various fits. In some

of them, they assumed fixed values of B and τB a pri-
ori (B = 0.2, τB = 0.22ms) and in others they included
them among the fitting parameters. From now on we
will restrict ourselves to analyzing the results they ob-
tained setting B = 0.2, τB = 0.22ms. Then, they fitted
their data with either n = 1, 2 or 3 components assuming
that αj = 1 for all the components or including the αj ’s
among the fitting parameters. Keeping the values of the
αj ’s free did not improve the quality of the fits (as mea-
sured by the normalized chi-square function, Ξ2/ν) [1]).
We will only consider the results obtained with αj = 1
for all j’s. Based on its quality, it is clear that the fitting
with n = 1 and α1 = 1 is not very good and we will
not consider this case either. For the experiments per-
formed in nuclei (both for Bcd and NLS-EGFP) [9] and
for the NLS-EGFP experiments performed in the cyto-
plasm [1], the authors only present results with n = 2
and αj = 1 for all j’s. From the various fits, the au-
thors give tables with the values of τ (j) (mean residence
time of the j-th component in the detection volume) and
F (j) (fraction of molecules of the j-th component in the
detection volume) that they obtain for the various cases
considered [1, 9]. τ (j) can be transformed into a (usu-
ally effective) diffusion coefficient by: D(j) = w2

r/(4τ (j))
with wr as in Eq. (10). From a previous calibration,
the values wr = (0.40 ± 0.03)µm and wz = (2 ± 0.5)µm
are determined from which the ratio w = wr/wz = 0.2
is obtained [1]. The values of the various τj that were
obtained in all the cases that we are analyzing here are
much larger than τB. Therefore, we can assume that for
τ of the order or larger than the smallest τj the term
B/(1 − B exp(−τ/τB)) * 1. So, we can replace the fac-
tor 1 + B/(1 − B exp(−τ/τB)) by one in Eq. (32) for
the values of τ for which the ACF becomes “interest-
ing”. Regarding N , the average number of molecules in
the detection volume, (which is not listed in the Table
included in the supplementary material of [1]), the au-
thors infer its value from measurements done inside the
nuclei at the beginning of nuclear cycle 14. The concen-
tration of fluorescent particles inside nuclei and in the
cytoplasm during interphase is different (as may be ob-
served in [10]). Furthermore, N varies between 20 and
150 and the measurements are very sensitive to errors
in the calibration of the detection volume which is deter-
mined only with a ∼ 50% precision [1]). These comments
show that only a rough estimate of N could be obtained
from the experiments.

We also consider some results obtained in embryos of
Drosophila melanogaster using the FRAP technique [1,
10]. The FRAP experiments that we will analyze were
performed in the cortical cytoplasm during the mitosis
following nuclear cycles 12 or 13. In both these works,
the authors fit the recovery curve assuming that the pho-
tobleaching flash is instantaneous. No fitting functions
are presented in [1, 10]. However, based on the refer-
ences cited in those papers we suppose that the fitting
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of [10] is of the form [11]:

F (t) = F0

∑

#≤0

m3/2(−β)#

(!
1

m + b(+ (b(mt/τD)

× 1√
m + b(+ (b(mt/(RτD))

(33)

where τD = w2
r/(8DFRAP ) with DFRAP the diffusion

coefficient that can be obtained with this technique, R =
w2

z/w2
r , wr and wz as in (10), m the number of photons

required to generate a fluorescence photon, b the number
of photons absorbed in a bleaching event, β the bleach
depth parameter that depends on the bleaching action
cross section, the average of the peak intensity at the
center of the focal spot and the bleaching pulse duration.
In [1] we suppose that the fitting is of the form [3, 12]:

FR(t) ≡ F (t) − F (0)
F (∞) − F (0)

= exp(−τD/2t)
(
Io

(τD
2t

)
+ I1

(τD
2t

))
,(34)

with I0 and I1 modified Bessel functions and τD =
w2/DFRAP . Eq. (33) holds for diffusion in three space
dimensions and Eq. (34) for diffusion in two dimensions.
Even if an area of radius 0.95µm is scanned during the
photobleaching process in the experiments of [1] it is ac-
tually a volume that is photobleached the thickness of
which is of the order of 1µm for a confocal microscope.
Given that Bcd diffuses in three dimensions, using a fit-
ting function that holds for two dimensions instead of
three can lead to an overestimate of the diffusion coeffi-
cient. On the other hand, the delay in the bleaching and
in the acquisition that scanning an area with a confocal
microscope introduces can lead to an underestimation of
the coefficient as discussed in [1, 13]. These two artifacts
lead to opposite effects. For this reason we think that
the estimate, DFRAP , derived in [1] is not off by over an
order of magnitude with respect to its actual value.

Tables I, II and III list the main experimentally deter-
mined parameters that we will consider.

We also use some results of [10]. In particular, from
Figs. 3 and 4 of this paper we extract the following ap-
proximate relations between some concentrations of in-
terest in different regions and/or situations:

[Bcd − EGFP]nuc

[Bcd − EGFP]intercyt
∼ 2.3 − 4.5,

[Bcd − EGFP]mito

[Bcd − EGFP]intercyt
∼ 1.2, (35)

where [Bcd − EGFP]nuc and [Bcd − EGFP]intercyt corre-
spond to the total concentration of fluorescent Bcd in the
nucleus and in the cytoplasm during interphase, respec-
tively, and [Bcd − EGFP]mito to the same concentration
during mitosis (in the cytoplasm). Using the range of
possible values of [Bcd − EGFP]nuc estimated in [1] and
considering [Bcd − EGFP]nuc/[Bcd − EGFP]intercyt ≈

TABLE I: Parameters obtained from FCS experiments per-
formed in the cytoplasm during interphase by fitting the ex-
perimental ACF by an expression of the form (32) with αj = 1
and n = 2 or n = 3 [1].

FCS (interphase, cytoplasm)

Bcd-EGFP
Parameters obtained with an n = 3 fit
Diffusion coefficient Relative Weight

D(1) = (14 ± 2) µm2/s F (1) = (63 ± 8) %
D(2) = (1.6 ± 0.5) µm2/s F (2) = (32 ± 6) %

D(3) = (0.095 ± 0.037) µm2/s F (3) = (5 ± 2) %
Parameters obtained with an n = 2 fit
Diffusion coefficient Relative Weight

D(1) = (8.9 ± 0.4) µm2/s F (1) = (82 ± 1) %
D(2) = (0.38 ± 0.03) µm2/s F (2) = (18 ± 1) %

NLS-EGFP
Parameters obtained with an n = 2 fit
Diffusion coefficient Relative Weight

D(1)= (26.5 ± 0.9) µm2/s F (1) = (89 ± 1) %
D(2)= (1.0 ± 0.1) µm2/s F (2) = (11 ± 1) %

TABLE II: Parameters obtained from FRAP experiments per-
formed in the cytoplasm during mitosis fitting the recovery
curve with an expression along the lines of Eq. (33).

FRAP (mitosis)

DF RAP = [0.37 - 1] µm2/s [1]
DF RAP = (0.30 ± 0.09) µm2/s [10]

TABLE III: Parameters obtained from FCS experiments per-
formed in nuclei by fitting the experimental ACF by an ex-
pression of the form (32) with αj = 1 and n = 2 [9].

FCS (nuclei)

Bcd-EGFP
Parameters obtained with an n = 2 fit

Diffusion coefficient Relative Weight
D(1) = (7.7 ± 0.3) µm2/s F (1) = (57 ± 1) %

D(2) = (0.22 ± 0.01) µm2/s F (2) = (43 ± 1) %

NLS-EGFP
Parameters obtained with an n = 2 fit

Diffusion coefficient Relative Weight
D(1)= (28 ± 1 ) µm2/s F (1) = (96 ± 1 ) %

D(2)= (0.51 ± 0.04 ) µm2/s F (2) = (4 ± 1) %

2.4 we obtain the ranges of concentrations values listed
in Table IV. The ratio between [Bcd − EGFP]nuc and
[Bcd − EGFP]intercyt varies within the range given in
(35) as interphase proceeds (see e.g. Fig. 3 of [10]).
The value 4 reported in Fig. 4 of [10] corresponds to
a certain stage during this process. The ratios of con-
centrations and/or dissociation constant that we list
in Table VI are independent of the value that we as-
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sume for [Bcd − EGFP]nuc/[Bcd − EGFP]intercyt. The
absolute values that we list in Tables VIII–IX are not.
Comparing the results that we obtain using different
values of [Bcd − EGFP]nuc/[Bcd − EGFP]intercyt within
the range given in (35) we obtain the most consistent re-
sults for [Bcd − EGFP]nuc/[Bcd − EGFP]intercyt = 2.4.
That is why we used that value in Table IV. Based
on the range of concentrations, [Bcd − EGFP]intercyt,
of Table IV we obtain the values of Tables VIII–IX.
The absolute values of the concentration and dissocia-
tion constant obtained using another estimate for r ≡
[Bcd − EGFP]nuc/[Bcd − EGFP]intercyt can be drawn
directly from the ones listed in Tables VIII–IX by multi-
plying them by 2.4/r.

A comparison of Eq. (32) when 1 + B/(1 −
B exp(−τ/τB)) ≈ 1 and αj = 1 for all j’s and of
Eqs. (13), (16) and (23) shows that they all have the
same τ dependence. The main difference is that our cal-
culations provide analytic expressions for the weights and
residence times in terms of the biophysical parameters of
the simple model that we assume underlies the observa-
tions. Therefore, given the weights and residence times
determined experimentally in [1, 9], we expect to be able
to derive values for at least some of the parameters of
our simple biophysical model. It is clear that, depend-
ing on the situation that we consider (Cases I through
III listed before) the mapping between the numbers ob-
tained in [1, 9] and the biophysical parameters of the
simple model is different. In all the cases, however, there
is enough information to determine all the parameters
of the biophysical model. We discuss the values that we
obtain for each case in the following Sections and which
of all the alternatives is the most plausible one.

VI. USING THE CORRELATION TIMES
DERIVED FROM FCS EXPERIMENTS.

We use the diffusion coefficients obtained with the
NLS-EGFP FCS experiments to estimate the free dif-
fusion coefficient of Bcd-EGFP. These experiments were
fitted in [1, 9] using a two component ACF. The sec-
ond component, however, has a very small weight in
both cases (see Tables I and III). Therefore, we assume
that NLS-EGFP does not interact with binding sites and
that its free diffusion coefficient is the one that can be
extracted from the component with the largest weight.

TABLE IV: Range of total concentration values of fluorescent
Bcd in the nucleus, in the cytoplasm during interphase and
during mitosis, respectively, using estimates from [1] and [10]
and setting [Bcd − EGFP]nuc/[Bcd − EGFP]intercyt ≈ 2.4.

[Bcd − EGFP]nuc [19 – 140] nM
[Bcd − EGFP]intercyt [8 – 58] nM
[Bcd − EGFP]mito [9.5 – 70] nM

TABLE V: Estimates of free and effective diffusion coefficients
derived from FCS experiments performed in the cytoplasm
and in nuclei using a two (Case II) or three (Case III) com-
ponent ACF.

Interphase, FCS location
Cytoplasm Nucleus

[µm2/s] Case II Case III Case II
Df 19 19 20
DS 0 0.095 0
Dsm 0.38 1.6 0.22
Dcoll 8.9 14 7.7

This gives DNLS−egfp ≈ (26.5 ± 0.9)µm2/s for the ex-
periments performed in the cytoplasm during interphase
(see Table I) and DNLS−egfp ≈ (28±1)µm2/s for the ex-
periments performed in nuclei (see Table III). These two
values are very similar. Inserting MWBcd−egfp = 80kDa,
MWNLS−egfp = 30kDa and DNLS−egfp= 26.5 µm2/s in
Eq. (30) we obtain

Df = DBcd ∼ 19µm2/s. (36)

If we use DNLS−egfp= 28 µm2/s instead we obtain Df ≈
20µm2/s.

For the case of Bcd-EGFP, the mapping between the
parameters of our ACF’s (Eqs. (23) or (16)) and those
of Abu-Arish ([1] for experiments performed in the cy-
toplasm and [9] for experiments performed in nuclei) is
done by associating the 2 or 3 components depending on
the relative ordering of their diffusing times. Namely,
for experiments performed in the cytoplasm, considering
the results with the 3-component fit of [1] (see Table I)
and assuming it corresponds to our Case III we obtain:
DS = (0.095 ± 0.037)µm2/s, Dsm = (1.6 ± 0.5)µm2/s,
Dcoll = (14 ± 2)µm2/s. Considering the results with
the 2-component fit of [1] (also see Table I) and assum-
ing it corresponds to our Case II we obtain: Dsm =
(0.38 ± 0.03)µm2/s and Dcoll = (8.9 ± 0.4)µm2/s. The
ranges of values of Dcoll and Dsm that we obtain in both
cases do not overlap. If we consider the full range defined
by both fits we obtain 8.5µm2/s ≤ Dcoll ≤ 16µm2/s
and 0.3µm2/s ≤ Dsm ≤ 2.1µm2/s. Finally, for experi-
ments performed in nuclei, only the results of a 2 com-
ponent fit are presented. In this case, mapping these
results to the ACF of our Case II we obtain: Dsm =
(0.22 ± 0.01)µm2/s, Dcoll = (7.7 ± 0.3)µm2/s. The con-
dition DS = 0 is implicit in all the calculations involving
Case II. The mean values corresponding to these results
are listed in Table V.

Once we have Df , DS and Dsm we can use Eqs. (8)–(9)
to determine the following ratios:

α ≡ Seq

KD
= (Df − Dsm)/(Dsm − DS); ,

γ ≡
S2

eq

KDST
= (Df − Dcoll)/(Dcoll − DS) ,

β ≡ Seq

ST
=
γ

α
, (37)
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TABLE VI: Parameter estimates derived from the residence
times of the ACF’s obtained with FCS experiments performed
in the cytoplasm or in nuclei during interphase. We will later
identify these concentrations with the superscripts c, FCS or
n, FCS to indicate that they correspond to cytoplasmic or
nuclear estimates, respectively, during interphase at the loca-
tion where FCS experiments were performed.

Interphase, FCS location
Cytoplasm Nucleus

Case II Case III Case II
Seq/BcdT 0.023 0.03 0.018

Bcdbeq/BcdT 0.98 0.92 0.99
Bcdfeq/BcdT 0.02 0.08 0.01

ST /BcdT 1.003 0.95 1.007
KD/BcdT 5 10−4 0.0026 0.0002

and combining these expressions with Eqs. (2)–(4) derive
the ratio of the concentrations and of KD with respect
to any concentration, e.g., BcdT :

Bcdfeq

BcdT
= (1 + α)−1,

Bcdbeq

BcdT
=

α

(1 + α)
,

Seq

BcdT
=

γ

(1 + α)(1 − β) ,

ST

BcdT
=

α

(1 + α)(1 − β) ,

Kd

BcdT
=

β

(1 + α)(1 − β) . (38)

We list the mean values obtained using Eqs. (38) for ex-
periments performed in the cytoplasm considering Case
II and Case III and those for experiments performed in
nuclei considering Case II in Table VI.

Notice that the values of Bcdfeq, Bcdbeq and BcdT

in Table VI include both fluorescent and non-fluorescent
Bcd molecules. We must finally mention that, since Bcd
is non-uniformly distributed along the embryo axis, the
estimates of Table VI only hold at the location where FCS
experiments were performed. We will later identify these
concentrations with the superscript c, FCS to highlight
this feature and distinguish them from estimates that
could hold at other locations.

VII. COMPARING THE RESULTS OF FCS
EXPERIMENTS PERFORMED IN NUCLEI AND

IN THE CYTOPLASM.

We can compare the concentrations that we obtain
in the nucleus with those obtained in the cytoplasm
during interphase in Case II. In particular, consider-
ing that KD is the same in the cytoplasm and in
the nucleus, we can compute Bcdn,FCS

T /Bcdc,FCS
T =

(Bcdn,FCS
T /KD) (KD/Bcdc,FCS

T ) using the results of
Table VI. We obtain Bcdn,FCS

T /Bcdc,FCS
T = 2.37

which is within the range estimated from the figures
of [10] given in Eqs. (35). This is the reason why
we use Bcdn,FCS

T /Bcdc,FCS
T = 2.4 to generate the re-

sults displayed in Tables VIII–IX. Again using the
results of Table VI and Bcdn,FCS

T /Bcdc,FCS
T = 2.4

we can compute Sn,FCS
T /Sc,FCS

T = (Sn,FCS
T /Bcdn,FCS

T )
(Bcdn,FCS

T /Bcdc,FCS
T ) (Bcdc,FCS

T /Sc,FCS
T ). We obtain

Sn,FCS
T /Sc,FCS

T = 2.41 which is almost the same as the
value we obtained for Bcdn,FCS

T /Bcdc,FCS
T . As explained

in the main body of the paper, this is an indication that
the change in concentration can be due to a change in
the available volume.

VIII. COMPARING THE RESULTS OF FCS
AND FRAP EXPERIMENTS.

The values of Tables V-VI can be contrasted with
the results obtained with FRAP experiments performed
in the cytoplasm during mitosis. The effective diffu-
sion coefficient determined in these FRAP experiments,
DFRAP , varied between 0.3µm2/s [10] and 1 µm2/s) [1].
The theory indicates that this measurement should cor-
respond to Dsm, as given by Eq. (8) [2, 3]. Now, one of
the effective diffusion coefficients extracted from FCS ex-
periments is also Dsm. The numerical values obtained in
the various cases probed, however, could differ since they
depend on the concentration of the reactants and they
could vary between interphase and mitosis and between
nuclei and cytoplasm. In order to estimate how differ-
ent the cytoplasmic concentrations during interphase or
mitosis should be in order to obtain the values of Dsm

determined with the FCS and FRAP experiments per-
formed in the cytoplasm, we assume that the trap that
is present in the cytoplasm during interphase and dur-
ing mitosis is the same (the same KD) and that the free
diffusion coefficients (Df and DS) are also the same in
both cases. The latter assumption is consistent with the
similarity in the diffusion coefficients of NLS-EGFP de-
termined in the cytoplasm and in nuclei. We assume,
however, that all the concentrations could be different.
In order to check the plausibility of describing the ex-
perimental results within the simple biophysical model
introduced in Sec. I under this assumption, we esti-
mate here how different the concentrations should be
to accommodate the results of FCS and FRAP within
our unified approach. To this end we compute α as in
Eqs. (37) using the free diffusion coefficients, Df and
DS of Table V and the value, Dsm, obtained in FRAP
during mitosis (DFRAP

sm ). We have repeated the calcu-
lation for the two values of DFRAP

sm reported in the lit-
erature: 0.3µm2/s [10] and 1µm2/s [1] and for the two
values of DS (DS = 0 and DS = 0.095µm2/s) always
keeping Df = 19µm2/s. In this way we obtain a set
of possible values for αFRAP = SFRAP

eq /KD. Assum-
ing that the only difference between these ratios and
those obtained from FCS experiments in the cytoplasm
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during interphase is the value of Seq we can then ob-
tain a set of values for the ratios SFRAP

eq /Sc,FCS
eq where

we use the superscripts FRAP and c, FCS to distin-
guish concentration estimates that correspond to the cy-
toplasm during mitosis and during interphase, respec-
tively, at the location where FRAP and FCS experi-
ments are performed. These two types of experiments
are performed at approximately the same region along
the axis of the embryo. Therefore, we think that the
concentration changes we derive in this way are merely
due to the transition from interphase to mitosis and not
to a change of location along the axis. The ratios ob-
tained cam be combined with the results of Table VI
and with the estimates of (35) to obtain how much Seq

and ST in the cytoplasm vary between interphase (as
probed by FCS) and mitosis (as probed by FRAP). To
this end we compute (BcdT /Seq)FRAP = (BcdFRAP

T /

Bcdc,FCS
T )(Bcdc,FCS

T / Sc,FCS
eq )(Sc,FCS

eq /SFRAP
eq ) taking

the first ratio on the r.h.s. from Eq. (35) (assum-
ing that BcdFRAP

T /Bcdc,FCS
T = [Bcd − EGFP]mito/

[Bcd − EGFP]intercyt = 1.2), the second from Table VI
and the third from the ratios SFRAP

eq /Sc,FCS
eq derived as

explained before. We then insert in Eq. (7) the obtained
value of (BcdT /Seq)FRAP and the ratios, αFRAP =
SFRAP

eq /KD derived from DFRAP
sm . Given that we have

considered two possible values for DS and two possi-
ble values for DFRAP

sm , we obtain 4 possible values for
SFRAP

T /Sc,FCS
T :

SFRAP
T

Sc,FCS
T

= 1.21, DFRAP
sm = 0.3, DS = 0, (39)

SFRAP
T

Sc,FCS
T

= 1.14, DFRAP
sm = 1, DS = 0, (40)

SFRAP
T

Sc,FCS
T

= 1.49, DFRAP
sm = 0.3, DS = 0.095,(41)

SFRAP
T

Sc,FCS
T

= 1.26, DFRAP
sm = 1, DS = 0.095, (42)

where all the diffusion coefficients are given in µm2/s.
The ratios (39)–(42) have very reasonable values since
they are similar to the ratio of [Bcd–EGFP] between
mitosis and interphase (see Eqs. (35)). Given that
these results have been obtained under the assump-
tion that (BcdFRAP

T /Bcdc,FCS
T ) = [Bcd − EGFP]mito/

[Bcd − EGFP]intercyt = 1.2 having approximately the
same value for (SFRAP

T /Sc,FCS
T ) can be interpreted very

simply as due to a change in the available volume between
mitosis and interphase.

Finally, we can combine the values of SFRAP
T /Sc,FCS

T

of Eqs. (39)–(42) with those of Sc,FCS
T /Bcdc,FCS

T of Ta-
bles VI to obtain SFRAP

T /Bcdc,FCS
T for Cases II and III.

We must remember that this result is derived under the
assumption that BcdFRAP

T /Bcdc,FCS
T = 1.2 and that

KD/Bcdc,FCS
T is the same during mitosis and interphase

if we remain at the same region along the axis of the em-

TABLE VII: Parameter estimates derived combining results
from FRAP and FCS experiments and assuming DF RAP

sm =
1µm2/s

Mitosis
Case II Case III

SF RAP
eq /Bcdc,F CS

T 0.009 0.05
BcdF RAP

beq /Bcdc,F CS
T 1.14 1.14

BcdF RAP
feq /Bcdc,F CS

T 0.06 0.06
SF RAP

T /Bcdc,F CS
T 1.15 1.19

BcdF RAP
T /Bcdc,F CS

T 1.2 1.2

bryo. Knowing SFRAP
T /Bcdc,FCS

T , BcdFRAP
T /Bcdc,FCS

T

and KD/Bcdc,FCS
T (which we get from Table VI) we can

compute the ratio of all the concentrations during mito-
sis at the location where FRAP and FCS experiments are
performed with respect to Bcdc,FCS

T . We list the results
obtained for DFRAP

sm = 1µm2/s in Table VII.

IX. ESTIMATING EFFECTIVE DIFFUSION
COEFFICIENTS ALONG THE EMBRYO.

We know that BcdT changes along the axis of the em-
bryo, so that the ratios of concentrations of Tables VI and
VII and, consequently, the effective diffusion coefficients,
Dsm and Dcoll given by Eqs. (8)–(9), could vary along
the axis too. Let us call x the spatial coordinate along
the axis of the embryo and xFCS the value of x where
the FCS and the FRAP experiments were done and let us
use the superscripts intercyt and mito to indicate that a
quantity corresponds to the cytoplasm during interphase
and mitosis, respectively, as done in Eqs. (35) and Ta-
ble IV. Although there is not a single value of xFCS ,
we can roughly say that Bcdintercyt

T (xFCS) = Bcdc,FCS
T ,

Sintercyt
T (xFCS) = Sc,FCS

T , Bcdmito
T (xFCS) = BcdFRAP

T
and Smito

T (xFCS) = SFRAP
T . We do not know what the

binding sites are but let us assume that they are uni-
formly distributed along the embryo, i.e., Sintercyt

T (x) =
Sc,FCS

T and Smito
T (x) = SFRAP

T ∀x along the axis. Un-
der this assumption we know Sintercyt

T /Bcdc,FCS
T and

Smito
T /Bcdc,FCS

T everywhere along the embryo. We also
know KD/Bcdc,FCS

T which we assume is constant and
uniform. Let us define ζ(x) ≡ BcdT (x)/Bcdc,FCS

T which
can correspond to either interphase or mitosis depending
on whether the value of BcdT (x) corresponds to inter-
phase or mitosis. Then, inserting Sintercyt

T /Bcdc,FCS
T ,

KD/Bcdc,FCS
T and ζ in Eqs. (2)–(4) we can compute the

ratios with respect to Bcdc,FCS
T of all relevant cytoplas-

mic concentrations during interphase as functions of ζ.
Analogously, we can use Smito

T /Bcdc,FCS
T , KD/Bcdc,FCS

T
and ζ to compute similar ratios but for the concentra-
tions during mitosis. Given these ratios, we can also
compute the corresponding Dsm and Dcoll as functions
of ζ using Eqs. (8)–(9). We show in the main body of
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the paper plots of Dsm(Smito
T , ζ), Dsm(Sintercyt

T , ζ) and
Dcoll(Sintercyt

T , ζ) obtained in this way.

X. ANALYSIS OF SOME APPROXIMATIONS
OF OUR MODEL

A. Timescales.

The analytic expressions of the ACF that we use in
this paper are derived under the assumption that the
transport of Bcd across the illumination volume can
be described in terms of effective diffusion coefficients.
This assumption holds when reactions occur over a faster
timescale than diffusion in the observation volume [4, 14].
The shortest diffusion timescale of the problem is the
one associated to the free diffusion of Bcd. Consider-
ing a mean, (, between the two lengthscales of the ob-
servation volume, wr and wz, i.e. ( ≈ 1.2µm, we ob-
tain τD = (2/(4Df) = 0.02s for the shortest diffusion
timescale. The reaction timescale, τr, can be defined
as τ−1

r = koff (1 + Bcdfeq/KD + Seq/KD). Using the
values of Table VI we obtain: τr = 1/(92koff) and
τr = 1/(146koff) for Case II in the cytoplasm and the
nucleus, respectively and τr = 1/(44koff) for Case III in
the cytoplasm. If τr < 0.1τD the fast reaction approx-
imation holds very well. Even τr ∼ τD, the residence
times associated to effective coefficients can be derived
from the ACF [14]. Thus, if koff > 10/s we can be cer-
tain that the fast reaction approximation holds even in
the worst case scenario (τr = 1/(44koff)), but the esti-
mates should still be good even if koff ∼ 1.2/s.

B. FRAP and the corona effect.

The recovery time derived from FRAP in [1] is of the
same order of magnitude as the time it takes to photo-
bleach the observation volume. This means that once
the photobleaching is over and the recovery is monitored
there is a noticeable fraction of bleached molecules out-
side the observation volume. This leads to the so-called
corona effect [13]. If the data is fitted as if the fraction of
bleached molecules outside the observation volume were
negligible the recovery time and, consequently, the dif-
fusion coefficient, are understimated [15]. In [15] there
is a discussion on how to analyze the data and yet ex-
tract meaningful transport rate estimates. In any case,
it could still be good to analyze the data under the ap-
proximation of an instantaneous bleaching pulse as done
in [1]. In order to test to what extent this effect would
affect the diffusion coefficient estimate in a situation like
the one described by our model we performed numeri-
cal simulations of equations of the form (26)–(29) but
with additional terms to take into account the conver-
sion of the tagged species into untagged ones. Namely,
we added the terms: −ωBBcdt

f , −ωBBcdt
b, ωBBcdt

f and
ωBBcdt

b, to Eqs. (26)–(29), respectively, with ωB /= 0

only for r ≤ rB = 0.95µm and during the duration of
the bleaching pulse (t ≤ tB). For the bleaching pulse
we used the values tB = 0.21, 0.45 and 1s and chose ωB

so that the fluorescence depletion at t = 1s for the case
with tB = 1s was similar to the value displayed in Fig.
S5 of [1] for a similar bleaching pulse duration. For the
initial condition we used:

Bcdt
f = Bcdfeq, Bcdt

b = Bcdbeq , Bcdu
f = Bcdu

b = 0,
(43)

with the values of Case III listed in Table VII and, cor-
respondingly, the dissociation constant and free diffusion
coefficients of Case III, KD = 0.0026, Df = 19µm2/s,
DS = 0.095µm2/s. Thus, we used concentrations and
the dissociation constant in units of Bcdc,FCS

T . We
also used koff = 10/s to guarantee the validity of the
fast reaction limit (reaction dominant case of [3]). We
computed the normalized fluorescence, Fn(t), inside the
sphere of radius rB as a function of time:

Fn(t) =

∫ rB

0 dr r2
(
Bcdt

f (r, t) + Bcdt
b(r, t)

)

∫ rB

0 dr r2
(
Bcdt

f (r, t = 0) + Bcdt
b(r, t = 0)

) ,

(44)
for the simulations with tB = 0.21, 0.45 and 1s and
for one representing a situation of instantaneous bleach-
ing (tB = 0). For the latter, we numerically integrated
Eqs. (26)–(29) with the initial condition:

Bcdt
f = Bcdfeq, Bcdt

b = Bcdbeq , Bcdu
f = Bcdu

b = 0,

for r ≥ rB ;
Bcdt

f = δBBcdfeq, Bcdt
b = δBBcdbeq ,

Bcdu
f = (1 − δB)Bcdfeq, Bcdu

b = (1 − δB)Bcdbeq ,

for r < rB ; (45)

with the equilibrium values as in the simulations with
finite bleaching duration and with δB such that the in-
tegral in the numerator of Eq. (44) at t = 0 had the
same value as the one obtained with tB = 1s at t = 1s
(i.e., at the end of the 1s bleaching pulse). We show with
dashed lines in Fig. S1 the time courses obtained in all
four cases. In this figure we also show with solid lines fits
to the curves of the form

Ffit(t) = A − B exp(−t/tc). (46)

From these fits we obtain the following half recovery
times (t1/2 ≡ tc ln(2)) in seconds: 0.18 ± 0.002, 0.22 ±
0.002, 0.26 ± 0.002 and 0.29 ± 0.003 for tB = 0, 0.21,
0.45 and 1s, respectively. Thus, in these simulations
the half recovery time increases by a factor of 1.3 when
changing the bleaching duration from 0.21s to 1s, while
it increases by a factor ∼ 1.2 when going from the in-
stantaneous bleaching to tB = 0.21s. In the experiments
of [1] it is t1/2 ∼ 0.21s and t1/2 ∼ 0.55s for the small-
est (tb ∼ 0.35s) and the largest (tb ∼ 1.05s) values of
tb probed, respectively. Thus, it increases by a factor of
∼ 2.5 when tb increases by a factor of 3. Based on our



10

simulations, we do not expect that the half recovery time
can decrease by an order of magnitude with respect to the
case with tb ∼ 0.35s if an experiment with instantaneous
bleaching could be performed. Applying the relation-
ship D = 0.224w2/t1/2 to our simulation results, on the
other hand, gives D = 1.16, 0.92, 0.81 and 0.7µm2/s,
for tB = 0, 0.21, 0.45 and 1s, respectively, which is of
the order of magnitude of Dsm at the conditions of the
simulation (Dsm ≈ 1µm2/s).
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FIG. 1: Recovery curves from simulations of FRAP
experiments. The dashed curves correspond to the results
of the simulations and the solid ones to fits of the form (46).
(A) Recovery curves for finite bleaching durations, tB = 0.21,
0.45 and 1s. (B) Comparison of the recovery curves for tB =
1s and for a situation with instantaneous bleaching.

C. Cooperative vs non-cooperative binding to sites.

Our model is very simplified regarding binding since
it assumes that the binding sites act independently of
one another. It has been determined that Bcd binds
cooperatively to multiple sites of DNA [16]. In order
to modify our model so as to include cooperativity we
would have to replace the scheme (1) by one with multi-
ple reaction steps. The model would be very complicated
and it would be impossible with the experimental data
that we have used here to quantify the parameters of
a biophysical model. Our simple model should then be
considered as providing some sort of “effective” descrip-
tion. One could then ask in which ways the estimates
derived from the experiments would change if we used a
binding model that included cooperativity. The simplest
way to approach this question is to consider a scheme
with very high cooperativity between two binding sites,
so that the reaction between Bcd and its binding sites
can be modeled by:

2Bcdf + S

k̂on−→←−
k̂off

Bcdb. (47)

In such a case, the collective effective diffusion coefficient
is given by:

Dcoll =
Df + 2B̂cdfeqŜ2

eq

ST K̂2
D

DS

1 + 2B̂cdfeqŜ2
eq/ST K̂2

D

, (48)

with K̂2
D = k̂off/k̂on and B̂cdfeq and Ŝeq the equilibrium

concentration values of free Bcd and free binding sites in
the case of scheme (47). Given Eq. (48) we conclude
that the quantity γ = (Df − Dcoll)/(Dcoll − DS) which
is given by Eq. (37) in the case of indenpendent binding
sites would be given by:

γ =
2B̂cdfeqŜ2

eq

ST K̂2
D

, (49)

in the case of the scheme (47). If we use the exper-
imental parameter values of Case III, for example, we
obtain γ = (Df − Dcoll)/(Dcoll − DS) = 0.36, which
corresponds to S2

eq/(ST KD) in the case of independent
binding sites and to 2B̂cdfeqŜ2

eq/(ST K̂2
D) in the case

of scheme (47). This implies that the values that we
would derive if we used the cooperative scheme would
be approximately related to those obtained in the case
of independent binding by: B̂cdfeqŜeq/K̂2

D ∼ Seq/KD.
Given that Bcdfeq/KD and Seq/KD are approximately
of the same order of magnitude in Case III (See Ta-
ble VI), we can get a very rough estimate by doing
B̂cdfeq/K̂D ∼

√
Bcdfeq/KD and Ŝeq/K̂D ∼

√
Seq/KD.

Based on this analysis we expect the estimate of the dis-
sociation constant that would be derived for the coopera-
tive scheme (47) to be larger than the one derived in the
independent case (K̂D/BcdT ∼

√
KD/BcdT ∼ 0.05).

Inserting in K̂D/BcdT ∼ 0.05 the dissociation constant
estimated in the experiments that proved that Bcd binds
cooperatively to multiple sites of DNA [16] (K̂D ∼ 5nM)
we obtain BcdT ∼ 100nM which is a reasonable value.
In order to obtain more accurate results, however, we
should study the net transport that results in the case of
scheme (47) in more detail. This study is not completely
trivial and will be left for a future work.

XI. FROM RATIOS TO ABSOLUTE
CONCENTRATIONS.

In order to infer absolute concentrations from the ra-
tios of concentrations estimated in the previous Sections
we need to know [BcdT ]. Optical experiments can pro-
vide estimates of the concentration of fluorescent Bcd,
[Bcdt

T ]. Thus, it is necessary to know the fraction of flu-
orescent to total Bcd concentration to go from the ratios
of Table VI to absolute values. In principle, this fraction
could be derived from some of the weights of the terms of
the ACF (see Eqs. (17)). However, we have avoided using
the weights because we think there are some uncertain-
ties on how they should be modelled. There is, on one
hand, the potential problem associated to photobleach-
ing. Then, there is the problem of what is the correct
statistics that provides a reliable analytical expression of
the weights. The fraction of mature EGFP has been esti-
mated in [8] comparing the fluorescence intensity in fixed
embryos (where it is expected that all EGFP be mature)
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with that observed in live embryos (where only a frac-
tion is mature and thus, fluorescent). The observation
of fixed samples introduces an intensity increase per se
which the authors estimate as a factor of 3 using fluo-
rescent proteins that mature very fast (Fig. 8F of [8]).
Taking this factor into account, the fraction of fluores-
cent to total Bcd-EGFP concentration, f , was estimated
to be ∼ 55−−60% at the tip of the anterior pole (where f
is smallest) and achieve ∼ 100% at a distance of the order
of 20% of the embryo’s length or larger (Fig. 8G of [8]).
There is an uncertainty then on what is the fraction that
should be considered at the region where the FCS experi-
ments were performed. Combining Eqs. (17) and (24) we
obtain Gsm/GoT = (1−f). Thus, f can be derived from
the relative weight of the second component of the ACF
(F (2) in the results derived using Bcd-EGFP as listed
in Tables I and III for the cytoplasm and nuclei, respec-
tively). Eqs. (17) and (24) correspond to Case III and we
obtain f = 0.68. If we assume that the same relation also
holds for Case II, we obtain f = 0.82 in the cytoplasm
and f = 0.58 in nuclei. If we consider Eqs. (20)–(22)
which are the ones that correspond to DS = 0 (Case
II) then we can equate the ratio Gosm/Gocoll to that of

the relative weights F (2)/F (1) obtained experimentally
(Table I). We find f = 0.99 and f = 0.98 using the
results obtained in the cytoplasm and in nuclei, respec-
tively. These are very rough estimates given that they
were obtained using expressions that hold if the traps,
S, are exactly immobile. In particular, this is not the
situation assumed for Case III. Knowing f and the con-
centration of fluorescent Bcd (Table IV) we can go from
ratios of concentrations to absolute values as displayed in
Tables VIII and IX. In order to obtain the estimates of
these tables we have used f = 0.8 which is some sort of
mean of the very rough estimates obtained for Cases II
and III assuming a Poisson statistics for all variables and
a multinomial statistics for Bcdt

b, Bcdu
b and S. For the

concentrations, we have probed the two extreme values
of fluorescent Bcd estimated in nuclei in [1] (19nM and
140nM) and then derived Bcdt

T assuming that KD is the
same in nuclei and in the cytoplasm for Case II. In any
case, the uncertainties on the weight expressions and on
the total number of fluorescent molecules estimated in [1]
points to the need of considering the Tables VIII and IX
with caution.
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