
Text S3. Mean square displacement and second moments of particle distributions.

We compute the mean square displacement (MSD) as:

〈r2〉Σ =
1
N

N∑

i=1

(xi(t) − xi0)2 (1)

where the subscript, i, refers to each particle for which
the mean square displacement is computed, xi(t) and xi0

are the i-th particle positions (in three space dimensions)
at time, t, and at the initial time, respectively, and N
is the total number of particles over which the sum is
performed. In all the particle simulations performed in
this paper 〈r2〉Σ eventually scales linearly with time

〈r2〉Σ = 2dDt (2)

with D a diffusion coefficient and d = 3 the number of
space dimensions in the simulations.

For the simulations with added particles we also
compute the second moment of the particles distri-
bution. This is obtained by performing an integral:∫

V r2ρX(r, t)dV over the simulation volume where ρX is
proportional to the concentration of molecules of type X
at position r and time t. In this expression r is the d-
dimensional position measured from the origin (d = 3).
In all the cases that we consider in the paper, the devia-
tion of ρX with respect to a spatially uniform equilibrium
value, i.e. δρX ≡ ρX − ρXeq, eventually is governed by
the diffusion equation:

∂δρX

∂t
= D∇2δρX . (3)

Then, if δρX is negligible at the borders of a volume V ,
the integral

∫
V r2δρXdV scales linearly with time with

a constant of proportionality that depends on D as we
show now. To this end, we multiply both sides of Eq. (3)
by r2 and integrate over space to obtain:

d

dt

∫

V
r2δρXdV = 2Dd

∫

V
δρXdV. (4)

For this derivation, the divergence theorem has been used
twice and boundary terms neglected. The latter implies
that, at the border of the volume, n̂ · ∇δρX = 0 with n̂
the normal to the border and that the integral of rδρX

over the volume’s surface be negligible with respect to∫
V δρXdV . The former is satisfied for no-flux boundary

conditions and the latter pertains when the perturbation
is due to the spread of a bolus of particles on top of a
spatially uniform background as considered in the parti-
cle simulations. Given that n̂ · ∇δρX = 0 at the border,

∫
V δρXdV is a constant. We then conclude that

∫
V r2δρXdV∫

V δρXdV
= 2Ddt + K (5)

where K is a constant. Now, given that
∫

V r2δρXdV =∫
V r2(ρX −ρXeq)dV and that

∫
V r2ρXeqdV is a constant,

we then conclude that:

〈r2〉R
X ≡

∫
V r2ρXdV∫
V δρXdV

= 2Ddt + K (6)

with another constant, K. This is the second moment
that we compute using all the particles or only the added
(or fluorescent) ones in the added bolus simulations.
We approximate the integrals by partitioning space into
boxes and counting the particles in each box. We denote
the number of particles in the ith box by ni. The squared
distance of the geometric center of the ith box from the
origin is denoted r2

i . Then we approximate 〈r2〉R
X by:

〈r2〉R
X ≈ 1

N

∑

i

nir
2
i (7)

where N is the number of added particles. When X refers
to the fluorescent (i.e. added) particles, ni is the number
of fluorescent particles in the ith box at each time and it
is the number of all particles in this box when X refers to
both fluorescent and non-fluorescent (i.e. all) particles.

In the paper we present the results of three sets of
particle simulations: (1)Free particles in the absence of
binding sites, (2)Simulated FRAP-like experiment and
(3)Simulated particle bolus experiment. In the last two
sets binding sites are present and free particles react with
them. We compute the MSD for the three sets. In the
absence of binding sites Eq. (2) holds with D = Df ,
the free diffusion coefficient of the particles. When bind-
ing sites are present, the diffusion coefficient that enters
Eq. (2) is D = Dsm as shown in [1]. We compute the
second moment, 〈r2〉R

X for the added bolus simulations
both in the presence and in the absence of binding sites.
We do this both for all the particles (X = all) and just
for the added ones (X = fluo). In the absence of bind-
ing sites the diffusion coefficient that enters Eq. (6) is
D = Df both for X = all and X = fluo. As shown
in [1], in the presence of binding sites, the perturbation
with respect to equilibrium eventually evolves according
to Eq. (3) with D = Dcoll for X = all and with D = Dsm

for X = fluo.
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