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1 Supplementary Methods

1.1 Fragment count and FPKM calculation

For each gene in the gene annotation, we counted the number of sequenced fragments of which
one or other sequenced end lay within an annotated ENSEMBL gene exon. Let Yij be the frag-
ment count of the gene j (j = 1, . . . , L) for a sample i (i = 1, . . . , N). We had a total L = 55, 804
genes from our gene annotation and a sample size of N = 46. We calculated log2 FPKM (frag-
ments per kilobase of exon per million fragments mapped), yij, for sample i at gene j as follows:

yij = log2

(
Yij + 1

ljYi

)
,

where lj is the mean spliced transcript length in kilobase of gene j calculated from the gene
annotations and Yi = ∑L

j=1 Yij/106 is the total fragment count in megabase for the sample i.

1.2 GC correction

We corrected for varying amplification efficiency of different GC contents using the method
described in [2]. We first calculated mean GC content for each gene, which is mean G/C base
counts over mean cDNA length from all possible transcripts of a gene in our annotation. Then
we assigned all genes to 200 approximately equally sized bins {B1, . . . ,B200} based on the GC
content. Let Sil = ∑j∈Bl

Yij be the number of fragments in bin l from sample i. For each bin, for
each sample, we calculated the log2 relative enrichment, Fil , of fragments in each GC bin, such
that

Fil = log2

(
Sil/S·l
Si·/S··

)
,

where S·l = ∑i Sil , Si· = ∑l Sil and S·· = ∑i,l Sil . For each sample, we fitted a smoothing spline
to the plot of Fil against the mean GC content for the bin. We used the R function smooth.spline

with a smoothing parameter of 1. The result showed significant GC effect on each sample
(Supplementary Figure 18).

Letting F̂il be the predicted value of the smoothing spline for bin l in sample i, we set cij =

F̂il , where cij is the predicted log2 over/under-representation of fragment count of gene j ∈ Bl

in sample i. Then the normalised FPKM was obtained by

ỹij = yij − cij.

For simplicity, we calculated FPKMs based on genes instead of exons.

1.3 Variance component analysis using a linear mixed model

Although hierarchical clustering illustrated major sources of transcriptional variations between
adult and stem cells or between tissues in adult cells, more subtle sources of variation, such as
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tissue of origin variation in iPSCs or ES/iPS variation, were difficult to discern. To provide
quantitative information on the relative importance of different sources of variation we em-
ployed the following variance components analysis using a linear mixed model. We assumed
that the normalised log2 FPKMs for gene j, ỹj = (ỹ1j, . . . , ỹNj)

>, can be modelled as a linear
combination of fixed and normally distributed random effects, such that

ỹj = Z1b1j + Z2b2j + Z3b3j + Z4b4j + Z5b5j + ε j (j = 1, . . . , L) (1)

where

b1j
i.i.d.∼ N (β1, D1/τj) : Mixed intercept (Adult cell/Stem cell)

b2j
i.i.d.∼ N (β2, D2/τj) : Between stem cell types (iPSC/ESC)

b3j
i.i.d.∼ N (β3, D3/τj) : Between tissues for adult cells (F/K/E)/tissue of origin for iPSCs (iF/iK/iE)

b4j
i.i.d.∼ N (β4, D4/τj) : Between individual for adult cells (S2/S4/S7) and iPSCs (S2/S4/S5/S7/H9)

b5j
i.i.d.∼ N (β5, D5/τj) : Between sequencing batches (B1/B2)

ε j
i.i.d.∼ N (0, Σ/τj) : Biological and Technical Error

with variance-covariance matrices

D1 =

(
δ2

11 δ2
12

δ2
12 δ2

13

)
,

D2 = δ2
2 I2,

D3 =

(
δ2

31 I3 0
0 δ2

32 I3

)
,

D4 =

(
δ2

41 I3 0
0 δ2

42 I5

)
,

D5 = δ2
5 I2,

Σ = σ2 IN ,

where Z1, . . . , Z5 are design matrices of 0/1 values, in each of which ith row specifies the cate-
gory that the sample i belongs to, and Id indicates the d-dimensional identity matrix.

The first term in the model was an intercept, b1j. Because the primary goal of this part of
our analysis was to quantify variation rather than estimate mean expression levels, we esti-
mated the parameters of the distribution from which the means were drawn, rather than the
means themselves. The intercept term captures three properties of the distribution of gene ex-
pression levels, subdivided into two groups for adult and stem cells: the grand means of gene
expression across all genes, corresponding to the two elements of the vector β1, the variances of
gene expression across all genes corresponding to the first and second diagonal elements of the
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two-dimensional variance matrix D1, δ2
11 and δ2

12 and the covariances in expression levels corre-
sponding to the off-diagonal elements of the variance matrix D1, δ2

12. The second term, b2j, was
specific to only stem cells and captured variation between iPS and ES cells (variance parameter
δ2

2) The third term, b3j, captured variation between the different adult somatic cells (variance
parameter δ2

31) and between different somatic tissues of origin for iPSCs (variance parameter
δ2

31). The fourth term, b4j captured the variation between individuals. We were specifically
interested in whether between-individual variation differed between adult and iPS cells and
so we assigned different variance parameters for each, δ2

41 and δ2
42 for adult and stem cells,

respectively. The final term, b5j, captured variation between different sequencing batches. We
assumed sequencing batch was independent of cell or tissue type, and so we introduced a com-
mon variance parameter δ2

5 for this term. The fixed effect parameters β2, . . . , β5 captured grand
means of expression levels under specific conditions (cell type, tissue type, etc.). However, be-
cause of our unbalanced study design, the fixed effect parameters are not uniquely determined
and their biological interpretability is therefore limited. We note that estimates of the variance
parameters are still uniquely determined in an unbalanced sampling design.

Computation of variance Explained (intraclass correlation)

Between Stem Cell Type

iPSC/ESC
δ2

2

δ2
2 + σ2

Between Adult Somatic Tissue Type

Fibro/Kerat/EPC
δ2

31

δ2
31 + σ2

Between iPSC Tissue of Origin

F/K/E-iPSCs
δ2

32

δ2
32 + σ2

Between Individual

iPSC/ESC
δ2

41

δ2
41 + σ2

Fibro/Kerat/EPC
δ2

42

δ2
42 + σ2

Between Sequencing Batch

B1/B2/B3
δ2

5

δ2
5 + σ2

1.3.1 Scaling of gene expression levels

A standard feature of gene expression data is a greater variance in expression in lowly ex-
pressed genes (see e.g., [8]). To capture this aspect of our data, all variance parameters δ =
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(δ11, δ12, δ13, δ21, δ22, δ31, δ32, δ41, δ42, δ5, σ) were scaled by precision

τj
i.i.d.∼ G(ν/2, ν/2)

for each gene j, which is identically and independently Gamma distributed.
In our data, the posterior mean of τj given by (2) clearly showed that the higher the expres-

sion level is the higher the precision is (Supplementary Figure 19). Technically, the assumption
that τ follows a Gamma distribution provided two advantages. First, this limited the range
of τj in (0, ∞) thereby avoiding parameter uncertainty. Second, the Gamma distribution is a
conjugate prior distribution for ỹj given τj, such that

ỹj|τj ∼ N (Zβ, V/τj),

where V = ZDZ> + Σ with the block diagonal matrix D = diag(D1, . . . , D5), the compound
fixed effect vector β> = (β>1 , . . . , β>5 ) and the combined design matrix Z = (Z1, . . . , Z5), so that
the marginal distribution of ỹj is the multivariate student t distribution

ỹj ∼ T (Zβ, V, ν)

with mean Zβ, variance V and the ν degrees of freedom. The multivariate student t distribution
is convenient for parameter estimation using an EM algorithm.

1.3.2 Parameter estimation

We used a standard EM algorithm [10] to estimate all parameters θ = {β, δ, ν}, where τj

(j = 1, . . . , L) are thought to be unobserved variables. Because the Gamma distribution on
τj is a conjugate prior for ỹj given τj, the posterior distribution of τj given ỹj is also a Gamma
distribution such that

τj|ỹj ∼ G
(

N + ν

2
,
(ỹj − Zβ)>V−1(ỹj − Zβ) + ν

2

)
.

Therefore the posterior means

E[τj|ỹj] = τ j =
N + ν

(ỹj − Zβ)>V−1(ỹj − Zβ) + ν
(2)

E[log τj|ỹj] = log τ j = ψ[(N + ν)/2]− log[{(ỹj − Zβ)>V−1(ỹj − Zβ) + ν}/2]

can be obtained without any numerical integration in each E-step, where ψ[·] is the digamma
function.
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In the M-step, we alternatively maximised a series of Q-functions using a Newton-Raphson
method with the posterior means of τj and log τj, such that

Q(β|θ̂) = −
L

∑
j=1

τ j

2
(ỹj − Zβ)>V−1(ỹj − Zβ),

Q(δ|θ̂) = −
L

∑
j=1

τ j

2
(ỹj − Zβ)>V−1(ỹj − Zβ)− L

2
log |V|,

Q(ν|θ̂) =
L

∑
j=1

ν

2
log τ j −

L

∑
j=1

τ j

2
ν + L

ν

2
log

ν

2
− L log Γ(ν/2),

with respect to the parameters β, δ and ν. Although the mean Zβ̂ is not of interest here, it is
required to estimate δ and ν. Because Z is essentially degenerate, β is not uniquely determined
and, therefore, to maximise the likelihood function, we use a generalised inverse matrix A+ =

A+AA+ to obtain the maximum likelihood estimator

β̂ = (Z>V−1Z)+Z>V−1η

where

η =
∑L

j=1 τ jỹj

∑L
j=1 τ j

.

1.3.3 Heteroscedastic model

Our initial model assumed that the residual error has the same variance for all factors in the
model (homoscedasticity). We next extended this model to allow the residuals in different
cell types to take different variances, known as heteroscedasticity.We incorporated a variety of
different error parameters on each ε ij according to the cell/tissue type of the sample i, including

Var(ε ij) =


σ2

adult/τj Sample i is an adult cell
σ2

iPS/τj iPS cell
σ2

ES/τj ES cell

or

Var(ε ij) =



σ2
F/τj Sample i is fibroblast

σ2
K/τj keratinocyte

σ2
E/τj endothelial precursor cell (EPC)

σ2
iF/τj iPSC derived from fibroblast

σ2
iK/τj iPSC from keratinocyte

σ2
iE/τj iPSC from EPC

σ2
ES/τj ESC

as in Fig. 1d in the main text.
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1.3.4 Estimation of Primary eQTL SNP variation

To further dissect the individual variance into genetic and non-genetic variances, we intro-
duced an additional covariate in (1), which is the primary eQTL SNP found in gEUVADIS
project [15]. Because the SNP genotype is only available for iPS lines but not for ES lines in our
study, we modelled the FPKM for 25 iPS lines, such that

ỹj = b1j1 + Z3b3j + Z4b4j + Z5b5j + b6j g̃j + ε j,

where b1j is a scalar mixed intercept drawn fromN (α1, δ2
1/τj) and 1 is a vector of all 1s. Follow-

ing b3j, . . . , b5j and Z3, . . . , Z5 are the mixed effects and the design matrices defined as before.
We don’t have the component b2j because we have no ES lines in the model. The vector g̃j is
the normalised SNP genotype at the primary eQTL for the gene j. We first estimated the pop-
ulation allele frequency π̂j from the SNP genotypes of CEU and GBR populations in the 1000
Genomes Project and then normalised the raw SNP genotype gj of ours by

g̃j =
gj − (2π̂j)1√
2π̂j(1− π̂j)

so that

K̂ =
1

2L

L

∑
j=1

g̃j g̃>j

becomes an unbiased, positive semi-definite estimator for the kinship matrix [14].
There is a problem when we compare the variance explained by the component with others,

because the variance is essentially different for each individual i at gene j;

Var(bj6 g̃ij|τj) = g̃2
ijσ̂

2
g τ−1

j . (3)

One solution would be to calculate the overall transcriptional variation given the set of eQTL
SNPs. By integrating out τj from (3), such that

Var(bj6 g̃ij) =
∫

g̃2
ijσ̂

2
g τ−1

j p(τj)dτj = g̃2
ijσ̂

2
g

ν̂

ν̂− 2
,

we have the averaged variance across all genes

1
L

L

∑
j=1

Var(bj6 g̃ij) =

(
1
L

L

∑
j=1

g̃2
ij

)
σ̂2

g
ν̂

ν̂− 2

= 2K̂iiσ̂
2
g

ν̂

ν̂− 2

≈ σ̂2
g

ν̂

ν̂− 2
,
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where the diagonal element K̂ii → 1/2 as L → ∞ for an outbred individual. The averaged
variance is compatible with the averaged residual variance

1
L

L

∑
j=1

Var(ε j) = σ̂2 ν̂

ν̂− 2
.

Therefore the overall variance explained for the set of eQTL SNPs is given by σ̂2
g /(σ̂2

g + σ̂2).

1.4 Differential Expression Analysis

Although our variance components analysis suggested relatively small effects of tissue of ori-
gin, this could mask subtle effects at important individual genes. We next sought to identify
genes whose expression in iPSCs more closely resembled their somatic progenitors or which
appeared to be significantly diverged from both ESCs and somatic cells. We performed differ-
ential expression analysis using two different approaches; one is using DESeq method [8] and a
novel hierarchical model similar to that introduced in [9]. For both these methods, we analysed
different tissues (skin fibroblast, keratinocyte and EPC) independently.

Our analysis compared mean expression levels of all cell types (adult cell, iPSC and ESC)
simultaneously. We modelled the fragment count Yij for sample i at a gene j using a negative
binomial distribution, such that

Yij ∼ NB(λijKij, θj)

with the cell type specific means

λij =


λA

j Sample i is an adult cell

λI
j iPSC

λE
j ESC

and the offset Kij = 2cijYi correcting GC content and total fragment count bias. Note that the
over-dispersion parameter θj was treated in different way for the two approaches as described
in subsequent sections. Then we introduced the null hypothesis where all cell types share the
same mean expression level:

H0 : λA
j = λI

j = λE
j (Invariant Expression)

compared with the following four alternative hypotheses:

H1 : λA
j 6= λI

j = λE
j (Correct Reprogramming)

H2 : λA
j = λE

j 6= λI
j (Aberrant Reprogramming)

H3 : λA
j = λI

j 6= λE
j (Transcriptional Memory)

H4 : λA
j 6= λI

j 6= λE
j 6= λA

j (Complex)

(4)

where the superscript “A”, “I” or “E” stands for adult cell, iPS cell or ES cell, respectively.
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1.4.1 Gene selection

We filtered out low or unexpressed genes in advance by only including those genes with mean
FPKM> 1 in at least one cell type (A, I or E). We also filtered out genes whose biotypes de-
fined by Ensembl are snRNA, snoRNA, misc RNA, miRNA and rRNA, because, those expres-
sion levels cannot be correctly captured by our RNA extraction protocol. Finally, because read
alignments appeared to be unreliable in many known pseudogenes, these were also removed
from our annotation.

1.4.2 P-value method using DESeq

To identify individual genes of interest, we used gene-by-gene P-value tests. We employed DE-
Seq [8] to estimate the over-dispersion parameter θj across all genes under the null hypothesis
where all cell types share the same mean expression level. We performed hypothesis testing
for each of the four alternative hypotheses in (4) and selected the most significant hypothesis
that gives the minimum P-value. We used nbinomGLMTest implemented in the DESeq package
to obtain the P-values.

Because we selected the minimum P-value from four alternative hypotheses, our P-value
distribution under the null was slightly skewed towards 0. To correct for this, we estimated an
empirical false discovery rate (FDR) from one million permuted data sets, where sample labels
were permuted with respect to the expression data, the same differential expression tests were
performed and the minimum p-value for the four alternative hypotheses was selected. The
genome-wide p-value thresholds corresponding to a 5% FDRs were then estimated separately
for each tissue of origin from the empirical distributions as: Fibroblasts/F-iPSCs – p<0.015;
Keratinocyte/K-iPSCs – p<0.009;EPCs/E-iPSCs – p<0.004).

1.4.3 Hierarchical model

Although the P-value method gave us a rough estimate of the proportion of each alternative
hypothesis that different gene will fall into, estimating these proportions is based on an arbi-
trary FDR threshold, such as 5%. Therefore, to estimate the proportions of genes falling into
either the null or alternative hypotheses across all genes, we employed the following hierarchi-
cal model similar to that proposed in [9].

We first introduced probability Π0 for the invariant expression (null hypothesis) and Π1 =

1−Π0 for differential expression (alternative hypotheses). The probability of observing frag-
ment counts for all samples at gene j, Yj = (Y1j, . . . , YNj), was defined as

p(Yj) = Π0P0
j + Π1P1

j ,

where P0
j denotes the probability of the fragment counts given that there is no expression dif-

ference among the three cell types and P1
j denotes the probability of the fragment counts given

9



that the gene is differentially expressed between the three cell types. Given that the gene j is
differentially expressed, the probability of the observed fragment counts can be given by

P1
j =

4

∑
k=1

πkP1
jk,

where P1
jk is the probability of the fragment counts observed under the alternative hypothesis

k and πk is the prior probability that a gene belongs the alternative hypothesis k such that

∑4
k=1 πk = 1. Overall, the likelihood was given by

L(Π, π) =
L

∏
j=1

p(Yj)

and the mixture parameters Π = {Π0, Π1} and π = {πk}4
k=1 can be estimated by using a

standard EM algorithm [10]. Note that πk in our model does not depend on j which suggests
that the prior distribution is essentially non-informative.

The probability P0
j and {P1

jk}4
k=1 were assumed to be given by the following negative bino-

mial distribution
Yij|β j, θj ∼ NB(λijKij, θj)

with mean parameter log λij = x>i β j, where effect size β j was defined according to the null and
alternative hypotheses, such as

β j =



β0
j Invariant Expression

(βA
j , βI/E

j )> Correct Reprogramming

(βI
j, βA/E

j )> Aberrant Reprogramming

(βE
j , βA/I

j )> Transcriptional Memory

(βA
j , βI

j, βE
j )
> Complex

with a compatible design vector xi indicating the cell type for sample i (xi = 1 for the invariant
expression), where the superscript “A”, “I” or “E” stands for adult cell, iPS cell or ES cell,
respectively and the superscripts “I/E”, “A/E” or “A/I” denotes shared mean for two different
cell types (i.e., I/E stands for λI

j = λE
j ). This definition to that in (4), the mean expression level

λ∗j was reparametrized in the logarithmic scale (e.g., log λA
j = log λI

j = βA/I
j and log λE

j = βE
j

for a transcriptional memory gene) so as to introduce prior distributions on β j as well as θj;

β j|θj ∼ N (0, Σ/θj),

θj ∼ G(κ/2, δ/2),

where N (µ, Σ) denotes a normal distribution with mean µ and variance-covariance matrix Σ
and G(α, β) denotes a gamma distribution with shape parameter α and rate parameter β. The
joint probability was then given by

p(Yj, β j, θj) = p(θj)p(β j|θj)∏
i

p(Yij|β j, θj). (5)
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In order to calculate P0
j and {P1

jk}4
k=1, we needed to integrate out β j and θj from the equation.

There was no closed form for the negative binomial distribution unlike the normal gamma
mixture in [9]. Therefore we used the Laplace approximation such that

p(Yj|Σ, κ, δ) =
∫

p(θj)p(β j|θj)∏
i

p(Yij|β j, θj)dβ jdθj

≈
∫

p(θj)p(β̂ j|θj)|Iβ̂ j
(θj)|−1/2 ∏

i
p(Yij|β̂ j, θj)dθj

≈ p(θ̂j)p(β̂ j|θ̂j)|Iβ̂ j
(θ̂j)|−1/2|Iθ̂j

|−1/2 ∏
i

p(Yij|β̂ j, θ̂j),

where

Iβ j(θj) = EYj

[
− ∂2

∂β j∂β>j
log p(Yj, β j, θj)

]

Iθj = EYj

[
− ∂2

∂θ2
j

{
log p(Yj, β̂ j, θj)−

1
2

log |Iβ̂ j
(θj)|

}]
Here the maximum likelihood estimator of β j and the maximum modified profile likelihood
estimator of θj such that

β̂ j = argmax
β j

log p(Yj, β j, θj),

θ̂j = argmax
θj

log p(Yj, β̂ j, θj)−
1
2

log |Iβ̂ j
(θj)|,

were obtained by using a quasi-Newton method.
The hyperparameters Σ, κ and δ were not integrated out from the joint probability in (5),

instead, we assigned Σ = 103 I and κ = δ = 10−3 suggesting the prior distributions were almost
non-informative compared with the range of β̂ j and θ̂j across all genes (data not shown).

1.4.4 Gene ontology analysis

Genes that were significantly differentially expressed (either transcriptional memory or aber-
rant reprogramming) at a 5% FDR, and showed a more than a 2-fold difference in expression
between ESCs and IPSCs were selected for Gene Ontology analysis. All expressed genes in
each tissue, their derived iPSCs or the ESCs were used as a background. For example, in F-
iPSCs, any gene that was defined as expressed in either fibroblasts, F-iPSCs or ESCs was used
as the background. All GO analysis was performed using the topGO R package [12]

1.4.5 Transposable element transcription

We downloaded annotated LINE and LTR repetitive elements as defined by the UCSC genome
browser. We removed all elements that overlapped an annotated transcribed region as defined
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in Ensembl GRCh37 assemby 69. Using these criteria we identified 533,254 and 305,339 LINE
and LTR elements, respectively, in the human genome. We further removed any elements
whose average mapability for 75bp fragments was less than 1, as defined in the wgEncode-
CrgMapabilityAlign75mer annotation available from UCSC and counted the total number of
fragments that overlapped each annotated repetitive element in our data.

1.5 Allele-specific Expression Analysis

We next focused on the effects of varying genetic background in our iPSCs. Our initial variance
component analysis suggested that differences between individuals had a more significant im-
pact on genome-wide gene expression in iPSCs than factors such as somatic tissue of origin.
However, the number of individuals in our data set was small, a standard expression quan-
titative trait loci (eQTL) mapping experiment (see e.g., [15]) was not possible. Therefore we
performed the allele-specific expression analysis [2] to identify genes whose expression levels
are affected by individual genetic variations and showed that similar effects could be observed
in the iPSCs that were previously observed in adult human tissues [15].

For this analysis, we genotyped all our individuals (S2, S4, S5 and S7) except for H9 human
ES sample using Illumina HumanOmni2.5-8 BeadChip, followed by imputation with the 1000
Genomes Project data and haplotype phasing using Beagle software [5]. For each individual,
we identified all heterozygous exonic SNPs and counted the numbers of fragments separately
for each of the two different alleles at the SNP loci in our RNA-seq samples.

Let mijk and nijk be the allele-specific fragment count for the mutant allele and the total
fragment count at SNP k (k = 1, . . . , Lj) in an exonic region of gene j for the iPSC sample i
(i = 1, . . . , M), where i stands for the iPSC RNA-seq sample identifier for an individual (not
the identifier for the four individuals in our study). For each gene j, we explicitly modelled
the allelic imbalance πjk at heterozygous SNP k using a beta-binomial distribution with an over
dispersion parameter θj across all iPSC samples from one individual, such that

mijk ∼ BB(nijk; πjk, θj),

logit πjk = β jhjk,

where β j is the common effect size of allelic imbalance for gene j across all SNPs and

hjk =

{
1 mutant allele on maternal haplotype,
−1 mutant allele on paternal haplotype.

(6)

Note that maternal/paternal haplotype was arbitrarily determined during the phasing. Then
we asked whether the allelic imbalance is significant at gene j in terms of the likelihood ratio
P-value between the following two hypotheses:

H0 : β j = 0,

H1 : β j 6= 0.
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The parameter estimation followed by hypothesis testing was performed for each gene, inde-
pendently. The over dispersion parameter θj was estimated by using the modified profile like-
lihood [4] given the maximum likelihood estimator of β j, rather than using the maximum like-
lihood estimator. Because of the small sample size, the maximum likelihood estimator would
tend to underestimate the over-dispersion, thereby we would overestimate the number of sig-
nificant genes with a same FDR threshold.

1.5.1 Comparison with eQTL analysis in Lappalainen et al.

For subsequent allele-specific expression analysis, we re-analyzed the RNA-seq data in [15] to
identify genes with eQTLs in lymphoblastoid cell lines. We downloaded the raw fastq files for
162 CEU and GBR HapMap individuals at http://www.geuvadis.org/web/geuvadis. Reads
were aligned and FPKMs were calculated with GC correction as described previously. We
performed principal component (PC) analysis to detect unknown confounding factors in the
experiment. Then, for each gene, we performed a linear regression of the FPKM values on the
first 8 PCs, and replaced the FPKM values with their residuals in that regression as described
in [2]. We finally performed cis-eQTL mapping for each gene using a single linear regression
with a SNP genotype located within 200Kb from both ends of the gene. The SNP with the
minimum P-value for each gene was selected as the cis-eQTL SNP (referred to as eSNP in this
text). The high-expression (+) and low-expression (−) alleles at the eSNP were defined by the
sign of regression coefficient. To estimate FDR, we performed permutation of phenotypes as
described in [2] and defined eQTL genes and eSNPs by setting study-wide false-discovery rate
(FDR) to 5%.

In Figure 2b in the main text, we asked SNP genotypes for our individual at the eSNP and
classified those into homozygote of high-expression alleles (+/+), heterozygote (+/−) and
homozygote of low-expression alleles (−/−). Then, for genes with an eQTL at an FDR of 5%,
we plotted the normalised FPKM ỹij against the classified genotypes.

In Figure 2c in the main text, we identified all individuals heterozygous for the eSNPs
(+/−). Then, in these individuals we classified the “maternal” haplotype into the high-expression
haplotype (+) or low-expression haplotype (−) according to the high/low-expression allele on
the haplotype. Finally, for genes with an eQTL at an FDR of 5%, we plotted logit−1 β̂ j against
the high/low-expression haplotype.
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