
Supplementary Material

Table of Contents

Supplementary Material ... 1
Algorithm descriptions .. 1

MS Numpress positive integer compression (numPic) .. 1
MS Numpress short logged float compression (numSlof) ... 2
MS Numpress linear prediction compression (numLin) .. 2
MS Numpress safe linear prediction (numSafe)... 2
Truncated integer representation .. 2

Implementation notes .. 3
Tools and scripts used for testing .. 3
Missing values ... 3
Supplementary Table 1: MS data files... 4
Supplementary Figure 1: Binary data array length distributions .. 5
Supplementary Table 2: All tested compression schemes ... 6
Supplementary Table 3: Max relative error for numSlof on 10 test set files 7
Supplementary Table 4: Max relative error for numLin on 10 test set files.. 7
Supplementary Table 5: Max relative error for numPic on 10 test set files .. 8
Supplementary Table 6: Max error for numPic on 10 test set files ... 8
Supplementary Table 7: Size and timing statistics .. 9
Supplementary Figure 2: Relative file size ... 10
Supplementary Figure 3: Relative read time ... 11
Supplementary Figure 4: Relative write time.. 12
Supplementary Figure 5: Absolute read time .. 13
Supplementary Figure 6: Absolute write time ... 14
Supplementary Figure 7: Read time for different computers .. 15
Supplementary Figure 8: Write time for different computers ... 16

Algorithm descriptions
The library provides implementations of 4 different algorithms, 1 designed to compress first order
smooth data like retention time or M/Z arrays, 1 designed to transform first order smooth data for more
efficient zlib compression, and 2 for compressing non-smooth data with lower requirements on
precision like ion count arrays.

Implementations and unit test are provided in C++ and java.

MS Numpress positive integer compression (numPic)
Intended for ion count data, this compression simply rounds values to the nearest integer, and stores

 1

these integers in a truncated form which is effective for values close to zero.

MS Numpress short logged float compression (numSlof)
Also targeting ion count data, this compression takes the natural logarithm of values, multiplies by a
scaling factor and rounds to the nearest integer. For typical ion count dynamic range these values fits
into two byte integers, so only the two least significant bytes of the integer are stored.

The scaling factor can be chosen manually, but the library also contains a function for retrieving the
optimal numSlof scaling factor for a given data array. In this case optimal refers to the greatest
precision storable for this data in 2 bytes. Since the scaling factor is variable, it is stored as a regular
double precision float first in the encoding, and automatically parsed during decoding.

MS Numpress linear prediction compression (numLin)
This compression uses a fixed point representation, achieved by multiplication by a scaling factor and
rounding to the nearest integer. To exploit the frequent linearity of the data, linear prediction is then
used in the following way.

The first two values are stored without compression as 4 byte integers. For each following value a
linear prediction is made from the two previous values:
Xpred = (X(n) - X(n-1)) + X(n)

Xres = Xpred - X(n+1)

The residual Xres is then stored, using the same truncated integer representation as in Numpress Pic.

The scaling factor can be chosen manually, but the library also contains a function for retrieving the
optimal numLin scaling factor for a given data array. Again, optimal here refers to the greatest
precision for the fixed point byte size. Since the scaling factor is variable, it is stored as a regular
double precision float first in the encoding, and automatically parsed during decoding.

MS Numpress safe linear prediction (numSafe)
This transformation uses the same linear prediction as numLin, but without the fixed point
representation or integer truncation. This means that no compression is achieved and the resulting
binary array will be exactly the same size as the input array. Note that even so some minimal
degradation will occur due to the double operation rounding errors, but as sequential compression and
decompression is hardly performed the transformation should still be practically lossless.

Truncated integer representation
This encoding works on a 4 byte integer, by truncating initial zeros or ones. If the initial (most
significant) half byte is 0x0 or 0xf, the number of such halfbytes starting from the most significant is
stored in a count halfbyte. This initial count is then followed by the rest of the int's halfbytes, in little-
endian order. A count halfbyte c of

0 <= c <= 8 is interpreted as an initial c 0x0 halfbytes

9 <= c <= 15 is interpreted as an initial (c-8) 0xf halfbytes

 2

Examples:
int c rest

0 => 0x8

-1 => 0xf 0xf

23 => 0x6 0x7 0x1

Implementation notes
We recommend to simply embed the numpress library source files in your source when implementing
numpress support in new tools. At the point of writing, implementations so far are all open source,
which means there are many reference implementations, especially for C++. For the time being, we
also recommend numpress writer implementations to produce mzML 1.1 compliant files, meaning
amongst other things that only one compression per binary should be allowed (uncompressed, zlib,
numPic, numSlof or numLin), and the 32/64-bit tag written out even though it's unnecessary with
numpress compressions.

During this project we also implemented support for reading and writing imzML with ProteoWizard, in
an attempt to investigate eventual gains with not having to encode all data in base64 binary data. While
there is the obvious gain in file size from the reduced redundancy, we did not see any conclusive
improvements in handling speed using our implementation. Nevertheless, we are in contact with the
ProteoWizard team to eventually include this imzML-support in ProteoWizard. It should also be noted
that imzML was simply used as a means for storing binary data in an external binary file, and we have
not added any handling of imaging relevant information.

Tools and scripts used for testing
For testing we have extended ProteoWizards msconvert. Added abilities include supporting numpress
compressions, allowing both numpress and zlib compression on the same binary data array, writing and
reading imzML, as well as explicitly setting the write buffer size. At the time of writing, numpress
support and double compression is already included in the official msconvert, and inclusion of other
amendments is discussed. Access to exact binaries and scripts used for testing will be provided upon
request.

Missing values
We were unable to achieve a few measurements. Because of their proprietary nature we cannot write
custom vendor files. Reading the largest SWATH DIA file in the mzML.gz format crashed on all
computers in a failure to allocate memory, even on the 24 GB machine. Reading of the extracted
chromatograms (file 6) crashed for unknown reasons when trying to read the mz5 and mz5zlib formats.
Unpromising and likely incorrect preliminary results for the imzML-based formats stopped completion
of read and write timing for these formats.

 3

Supplementary Table 1: MS data files

id resolution type original

size (MB) vendor peak
picked instrument

 1 high DDA 724 Agilent no QTOF
 2 low SRM 13.8 Thermo no TSQ Vantage
 3 low DDA 16.2 Thermo no LCQ
 4 high SWATH DIA 4301 ABI Sciex no Triple TOF
 5 high SWATH DIA 25001 ABI Sciex no Triple TOF
 6 high Chrom from 52 219.7 ABI Sciex no Triple TOF
 7 high DDA 520.8 Thermo no Orbitrap XL
 8 high MS+MS/MS 538 Waters no QTOF Ultima
 9 high DDA 2023 Thermo yes Orbitrap XL
 10 high DDA 577 Thermo no Orbitrap Velos

1) The large size difference comes from the very different samples, were 4) is an information sparse
dilution of stable isotope peptides in water, and 5) is a information dense yeast extract (Suppl. Fig. 1).
2) Chromatograms were extracted using a custom extraction tool, by deconvolution using a top-hat filter
of 10 ppm total width. This means peaks within 10 ppm of a known fragment m/z, in MS2 spectra of
the swath corresponding to the known precursor m/z, were summed with weights decreasing linearly
with distance from the exact fragment mass.
3) This is in mzML format since we cannot write custom Thermo raw files.

 4

Supplementary Figure 1: Binary data array length distributions
Distributions of binary data array lengths for the 10 MS data files used for benchmarking. Depending
on instrument speed, a varying amount of MS2 spectra can be seem in relation to the number of MS1
spectra. Also, the more complex MS1 spectra tend to give long binary data arrays compared to the
simpler MS2 spectra, especially for high-resolution and/or high sampling frequency instruments. File 4
and 5 are acquired with the same method on the same instrument, but on hundreds of synthetic peptides
in file 4, and a yeast lysate in file 5.

 5

Supplementary Table 2: All tested compression schemes
Table showing the tested compression schemes

 binary data type

 scheme m/z ion count retention time whole file

 mzML - - - -
 mzML.gz - - - gzip
 zlib zlib zlib zlib -
 mz5 - - - -
 mz5zlib zlib zlib zlib -
 numAll numLin numSlof numLin -
 numAll.gz numLin numSlof numLin gzip

 numAllzlib numLin & zlib numSlof & zlib numLin & zlib gzip
 numLin numLin - numLin -

 numPic - numPic - -
 numSlof - numSlof - -
 numLinZlib numLin & zlib - - -
 numSafeZlib numSafe & zlib - - -
 imzML - - - -
 imzMLnumAll numLin numSlof numLin -
 imzMLnumAllzlib numLin & zlib numSlof & zlib numLin & zlib -
 imzMLzlib zlib zlib zlib -
 vendor - - - -

 6

Supplementary Table 3: Max relative error for numSlof on 10
test set files

file negative positive
06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff -7.43E-005 7.59E-005
110620_fract_scxB05.raw.ms1.clean.diff -0.000151466 0.000176515
110620_fract_scxB05.raw.ms2.clean.diff -0.000127385 0.000134896
120224_006_SW.wiff.ms1.clean.diff -6.63E-005 6.58E-005
120224_006_SW.wiff.ms2.clean.diff -5.44E-005 5.41E-005
120302_006_SW.wiff.ms1.clean.diff -6.73E-005 6.79E-005
120302_006_SW.wiff.ms2.clean.diff -5.71E-005 5.71E-005
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -0.000160543 0.000149204
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -1.03E-005 1.81E-005
ADH_100126_mix.raw.ms1.clean.diff -4.45E-005 4.32E-005
Velos_120905_09.raw.ms1.clean.diff -0.000141388 9.60E-005
Velos_120905_09.raw.ms2.clean.diff -6.37E-005 5.94E-005
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff -9.86E-005 9.84E-005
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms2.clean.diff -1.03E-005 1.81E-005

Supplementary Table 4: Max relative error for numLin on 10
test set files

file negative positive
06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff -2.33E-010 2.33E-010
110620_fract_scxB05.raw.ms1.clean.diff -2.34E-010 2.35E-010
110620_fract_scxB05.raw.ms2.clean.diff -2.67E-010 3.14E-010
120224_006_SW.wiff.ms1.clean.diff -2.33E-010 2.32E-010
120224_006_SW.wiff.ms2.clean.diff -1.61E-009 1.59E-009
120302_006_SW.wiff.ms1.clean.diff -2.33E-010 2.30E-010
120302_006_SW.wiff.ms2.clean.diff -1.57E-009 1.63E-009
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -2.33E-010 2.33E-010
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -1.22E-010 2.79E-010
ADH_100126_mix.raw.ms1.clean.diff -2.33E-010 2.33E-010
Velos_120905_09.raw.ms1.clean.diff -2.32E-010 2.32E-010
Velos_120905_09.raw.ms2.clean.diff -2.39E-010 2.69E-010
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff -2.33E-010 2.31E-010
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms2.clean.diff -1.22E-010 2.79E-010

 7

Supplementary Table 5: Max relative error for numPic on 10
test set files

file negative positive
06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff 0 0
110620_fract_scxB05.raw.ms1.clean.diff 0 0
110620_fract_scxB05.raw.ms2.clean.diff 0 0
120224_006_SW.wiff.ms1.clean.diff 0 0
120224_006_SW.wiff.ms2.clean.diff 0 0
120302_006_SW.wiff.ms1.clean.diff 0 0
120302_006_SW.wiff.ms2.clean.diff 0 0
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -0.66481 0.390022
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -0.14251 0.0750765
ADH_100126_mix.raw.ms1.clean.diff 0 0
Velos_120905_09.raw.ms1.clean.diff -0.52203 0.198162
Velos_120905_09.raw.ms2.clean.diff -0.13293 0.114401
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff -0.00113 0.0011207
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms2.clean.diff -0.14251 0.0750765

Supplementary Table 6: Max error for numPic on 10 test set files
file negative positive
06May2010_TestSuperHirn_BSA30fmol_01.d.ms1.clean.diff 0 0
110620_fract_scxB05.raw.ms1.clean.diff 0 0
110620_fract_scxB05.raw.ms2.clean.diff 0 0
120224_006_SW.wiff.ms1.clean.diff 0 0
120224_006_SW.wiff.ms2.clean.diff 0 0
120302_006_SW.wiff.ms1.clean.diff 0 0
120302_006_SW.wiff.ms2.clean.diff 0 0
121213_PhosphoMRM_TiO2_discovery.RAW.ms1.clean.diff -0.499985 0.5
121213_PhosphoMRM_TiO2_discovery.RAW.ms2.clean.diff -0.42815 0.325621
ADH_100126_mix.raw.ms1.clean.diff 0 0
Velos_120905_09.raw.ms1.clean.diff -0.499939 0.5
Velos_120905_09.raw.ms2.clean.diff -0.49959 0.499481
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms1.clean.diff -0.499939 0.5
peakPicked.121213_PhosphoMRM_TiO2_discovery.ms2.clean.diff -0.42815 0.325621

 8

Supplementary Table 7: Size and timing statistics

color
legend: 20% 50% 100% 200% 500%

 high performance computers all computers

size read time write time read time write time

mean sd mean sd mean sd mean sd mean sd

imzML 79.9% 7.3% 30.7% 31.0% 79.8% 16.6% 32.1% 31.6% 198.5% 581.1%
imzMLnumAll 34.2% 16.1% 26.3% 31.4% 106.2% 37.3% 31.0% 34.1% 288.3% 784.3%
imzMLnumAllzlib 27.1% 21.4% 27.4% 33.1% 144.6% 64.5% 29.4% 33.2% 140.6% 71.9%
imzMLzlib 49.8% 16.1% 30.5% 31.0% 237.4% 107.6% 34.2% 33.4% 257.4% 176.6%
mz5 73.3% 6.4% 23.3% 14.1% 69.7% 15.6% 28.8% 21.2% 135.6% 220.1%
mz5zlib 27.2% 11.1% 39.4% 7.1% 101.1% 22.5% 39.3% 13.6% 118.2% 103.3%
mzML 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%
mzML.gz 43.9% 11.7% 179.2% 53.0% 836.7% 776.5% 153.7% 56.5% 705.3% 713.1%
mzMLzlib 59.9% 14.5% 113.8% 15.0% 257.3% 111.1% 102.5% 35.1% 218.6% 110.8%
numAll 39.0% 12.1% 63.8% 11.2% 97.0% 8.5% 62.3% 22.2% 117.5% 129.3%
numAll.gz 13.2% 5.8% 87.0% 19.8% 281.0% 129.2% 78.9% 29.1% 237.7% 125.1%
numAllzlib 29.3% 18.9% 71.2% 17.8% 136.2% 30.3% 68.6% 28.5% 121.9% 39.9%
numLin 53.8% 9.8% 70.7% 9.8% 92.7% 6.2% 65.8% 20.6% 89.7% 18.5%
numLinZlib 33.8% 21.5% 76.8% 22.4% 157.2% 54.3% 71.8% 31.2% 136.9% 58.3%
numPic 79.7% 5.8% 82.1% 14.9% 111.5% 9.7% 75.4% 24.9% 107.7% 31.0%
numSafeZlib 43.9% 18.1% 102.8% 18.5% 288.5% 137.5% 93.6% 35.1% 240.2% 128.4%
numSlof 85.2% 2.5% 92.7% 1.4% 114.2% 49.6% 85.3% 22.9% 109.7% 41.9%
vendor 60.5% 110.9% 247.4% 499.6% NA NA 208.9% 414.3% NA NA

 9

Supplementary Figure 2: Relative file size
Log2 file size subtracted by log2 mzML file size for all file formats and files. Files are sorted in
descending mzML-size order (same as in Fig 1c). Note that file 6 and 9 do not exists in vendor format,
since they are computer derivates on other files.

 10

Supplementary Figure 3: Relative read time
Log2 read times subtracted by mzML log2 read time for all file formats, computers and files. Files are
sorted in descending mzML-size order (same as in Fig 1c).

 11

Supplementary Figure 4: Relative write time
Log2 write times subtracted by mzML log2 write time for all file formats, computers and files. Files are
sorted in descending mzML-size order (same as in Fig 1c). Note that for us it is not possible to write in
the vendor formats.

 12

Supplementary Figure 5: Absolute read time
The read time in seconds for selected file formats and all files, spanning over 3 orders of magnitude.
Files are sorted in descending mzML-size order (same as in Fig 1c).

 13

Supplementary Figure 6: Absolute write time
The write time in seconds for selected file formats and all files, spanning over 4 orders of magnitude.
Files are sorted in descending mzML-size order (same as in Fig 1c).

 14

Supplementary Figure 7: Read time for different computers
Comparison of read times on different computer hardware for different file formats. Files are sorted in
descending mzML-size order (same as in Fig 1c). Read times were normalized by the median read time
for each file and format.

 15

Supplementary Figure 8: Write time for different computers
Comparison of write times on different computer hardware for different file formats. Files are sorted in
descending mzML-size order (same as in Fig 1c). Write times were normalized by the median write
time for each file and format.

 16

	Supplementary Material
	Algorithm descriptions
	MS Numpress positive integer compression (numPic)
	MS Numpress short logged float compression (numSlof)
	MS Numpress linear prediction compression (numLin)
	MS Numpress safe linear prediction (numSafe)
	Truncated integer representation

	Implementation notes
	Tools and scripts used for testing
	Missing values
	Supplementary Table 1: MS data files
	Supplementary Figure 1: Binary data array length distributions
	Supplementary Table 2: All tested compression schemes
	Supplementary Table 3: Max relative error for numSlof on 10 test set files
	Supplementary Table 4: Max relative error for numLin on 10 test set files
	Supplementary Table 5: Max relative error for numPic on 10 test set files
	Supplementary Table 6: Max error for numPic on 10 test set files
	Supplementary Table 7: Size and timing statistics
	Supplementary Figure 2: Relative file size
	Supplementary Figure 3: Relative read time
	Supplementary Figure 4: Relative write time
	Supplementary Figure 5: Absolute read time
	Supplementary Figure 6: Absolute write time
	Supplementary Figure 7: Read time for different computers
	Supplementary Figure 8: Write time for different computers

