Supporting information

for

An insight into structural and biological relevance of the T/R transition of the B-chain N-terminus in human insulin

Lucie Kosinová[‡], Václav Veverka[‡], Pavlína Novotná[†], Michaela Collinsová[‡], Marie Urbanová[†], Nicholas R. Moody[§], Johan P. Turkenburg[§], Jiří Jiráček[‡], Andrzej M. Brzozowski[§] and Lenka Žáková^{‡*}

[‡] Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
[†]Department of Analytical Chemistry and Department of Physics and Measurements, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
[§]York Structural Biology Laboratory, Department of Chemistry, the University of York, Heslington, York, YO10 5YW, United Kingdom

* To whom correspondence may be addressed: zakova@uochb.cas.cz.

Table of Contents

Figure S1
Table S1 3
Figure S2
Determination of receptor binding affinity for the isoform B of human IR (IR-B) 5
Determination of receptor binding affinity for human IGF-1 receptor (IGF-1R) 5
Figure S3
Table S2 6
Figure S4
Table S3 8
Table S4 9
Table S5
References

Figure S1. Schematic representations of Ramachandran plots showing approximate values of allowed dihedral angles for selected amino acids. The plots were created based on different scientific reports (*1-3*). Abbreviations: $\alpha - \alpha$ -helix, $3_{10} - 3_{10}$ helix, II - type II β -turn, $\uparrow \downarrow$ - antiparallel, and $\uparrow\uparrow$ - parallel β -sheet.

	[D-ProB8]-insulin	[NMeAlaB8]-insulin	[NMeAlaB8]-insulin"
PDB Code	4CXL	4CXN	4CY7
Data collection	DI 04 104	DI GI 100	
Beamline/Detector	DLS*, 104,	DLS*, 102	DLS*, 104
0	Pilatus 2M	Pilatus 6M	Pilatus 2M
Wavelength (Å)	0.9200	0.9795	0.9200
Space group	<i>I</i> 2 ₁ 3	<i>I</i> 2 ₁ 3	$P2_{1}2_{1}2_{1}$
Cell dimensions			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	78.66 78.66 78.66	79.17 79.17 79.17	44.30 46.19 51.76
α, β, γ (°)	90.0 90.0 90.0	90.0 90.0 90.0	90.0 90.0 90.0
Resolution (Å)	39.33 - 1.50 (1.54- 1.50)	56.0 – 1.70 (1.74- 1.70)	32.0 - 1.40 (1.44-1.40)
$R_{\rm sum}$	0.052 (0.656)	0.041 (0.769)	0.040 (0.636)
$\langle I / \sigma(I) \rangle$	31.8 (5.0)	36.1 (4.4)	22.3 (2.7)
Completeness (%)	100.0 (100.0)	100.0 (100.0)	98 9 (98 5)
Redundancy	20.0 (20.0)	19 4 (20 2)	65(66)
Wilson B $(Å^2)$	29.7	30.5	14.2
,, iiooii D (/1)	-2.1	50.5	11.4
Refinement			
Resolution (Å)	39.33 - 1.50	56.0 - 1.70	32.0 - 1.40
No. reflections	12441	8872	20063
$R_{\rm work} / R_{\rm free}$	0.167/0.197	0.173/0.209	0.179/0.199
No. atoms	480	445	976
Protein	427	406	816
Ligand/ion	1	-	9
Water	57	39	151
B-factors			
Protein	25.7	34.2	18.3
Ligand/ion	78.6	-	45.4
Water	44 1	46.4	29.2
R m s deviations			_>
Bond lengths (Å)	0.033	0.030	0.027
Bond angles (°)	2 784	2 175	2 537
Ramachandran			
Preferred/Allowed	97.5/2.5	95.4/4.6	93.2/6.8
Crystallization			
insulin: 10 mg/mL	40% v/v MPD,	40% v/v MPD,	$0.0375 \text{ M Na}_2 \text{SO}_4$
in 0.025M HCl,	0.2 M NaCitrate,	0.2 M NaCitrate,	pH 4.0
hanging drop	0.1M Tris/HCl pH 8	0.1M Tris/HCl pH 8	
method, 1:1 or 1:2	1	Ĩ	
protein: well drop			
ratio, (1-2 µL drops)			
no cryoprotection:			
direct flash-cooling			
in liquid N_2			

 Table S1. Data collection and refinement statistics

*DLS – Diamond Light Source, Didcot, UK **Values in parentheses are for highest-resolution shell

Figure S2. Inhibition of binding of human [¹²⁵I]-insulin to IR-A in IM-9 cells by human insulin and insulin analogues. (A) • – human insulin, • – [AibB3]-insulin, • – [AibB5]-insulin; (B) • – human insulin, \circ – [AibB8]-insulin, Δ – [AibB8,LysB28,ProB29]-insulin; (C) • – human insulin, • – [D-Pro]-insulin, \diamond - [*N*MeAlaB8]-insulin. c_M is a molar concentration in mol.1⁻¹.

Determination of receptor binding affinity for the isoform B of human IR (IR-B)

Receptor binding affinity was determined according to Frasca et al (4) using mouse embryonic fibroblasts derived from IGF-1R knock-out mice (5) and transfected with the human IR-B isoform. The cells were a kind gift of Prof. Antonino Belfiore (Catanzaro, Italy). The cells were grown at 37°C in a humid atmosphere (5% CO₂) in 87.6% DMEM containing glucose (4.5 g.1⁻¹), 10% fetal bovine serum, L-glutamine (2 mmol.1⁻¹), penicillin (100 U.ml⁻¹) streptomycin (100 μ g.ml⁻¹) and puromycin (3 μ g.ml⁻¹).

For the assay, the cells (about 38,000 per well) were washed twice with the binding buffer (100 mmol.l⁻¹ HEPES pH 7.6, 100 mmol.l⁻¹ NaCl, 5 mmol.l⁻¹ KCl, 1.3 mmol.l⁻¹ MgSO₄, 1 mmol.l⁻¹ EDTA, 10 mmol.l⁻¹ glucose, 15 mmol.l⁻¹ sodium acetate and 1% bovine serum albumine). The cells were incubated and stirred with increasing concentrations of insulin/analogue and human [125 I]monoiodotyrosyl-A14-insulin (PerkinElmer Life Science, 2200 Ci.mmol⁻¹, 43,000 cpm, 0.043 nM) for 16 h at 5° C in the binding buffer (total volume 250 µl). After incubation, the cells were washed twice with the cold binding buffer and solubilized with 0.1 mol.l⁻¹ NaOH. The solutions of solubilized cells were counted for cell-associated radioactivity. Each point was determined in duplicates. Binding data were analyzed by GraphPad Prism 5 using a non-linear regression and one-site fitting program, which takes the potential ligand depletion into account. The dissociation constant of human ¹²⁵I-insulin was set up to 0.3 nM.

Determination of receptor binding affinity for human IGF-1 receptor (IGF-1R)

Receptor binding affinity for IGF-1R was determined by the same methodology as for receptor binding affinity for IR-B according to Frasca et al (4) but using mouse embryonic fibroblasts derived from IGF-1R knock-out mice (5) and transfected with the human IGF-1R. The cells were a kind gift of Prof. Antonino Belfiore (Catanzaro, Italy).

The cells were grown to about 21,000 per well. As a radiotracer human [125 I]-IGF-1 was used (PerkinElmer Life Science, 2497 Ci.mmol⁻¹, 44,000 cpm, 0.039 nM). The dissociation constant of human 125 I-IGF-1 was set up to 0.2 nM. The concentration of human IGF-1 (Tercica) was determined using an extinction coefficient (ϵ) 4560 M⁻¹.cm⁻¹at 280 nm.

Figure S3. (A) Inhibition of binding of human [¹²⁵I]-insulin to IR-B in mouse embryonic fibroblasts by human insulin and insulin analogues; • – human insulin, \circ – [AibB8]-insulin and \diamond – [*N*MeAlaB8]-insulin. (B) Inhibition of binding of human [¹²⁵I]-IGF-1 to IGF-1R in mouse embryonic fibroblasts by human IGF-1 and insulin analogues; * – human IGF-1, • – human insulin, \circ – [AibB8]-insulin and \diamond - [*N*MeAlaB8]-insulin. c_M is a molar concentration in mol.I⁻¹.

Table S2. Values of K_d and relative binding affinities of human insulin, human IGF-1 and insulin analogues to the isoform B (IR-B) of human IR or to human IGF-1R in membranes of mouse embryonic fibroblasts.

	IR-B		IGF-1R		
Analogue	$K_{\rm d} \pm { m S.D.}^{\rm a}$	Potency ^b [%]	$K_{\rm d} \pm {\rm S.D.}^{\rm a}$	Potency ^b [%]	
Amalogue	[nM] (n)		[nM] (n)	Totelley [70]	
Human insulin	0.670 ± 0.167	100 ± 25	292 ± 54	0.08 ± 0.01	
Human IGF-1	n.d. ^c	n.d. ^c	0.240 ± 0.104	100 ± 43	
[AibB8]-insulin	248 ± 59 (3)	0.27	>2000 (2)	< 0.01	
[NMeAlaB8]-insulin	>1500 (3)	< 0.05	>2000 (2)	< 0.01	

^aEach value represents the mean \pm S.D. of multiple determinations (n).

^bRelative receptor binding affinity (potency) is defined as (K_d of human insulin or IGF-1/ K_d of analogue) × 100.

^cn.d., not determined.

Figure S4. Near-UV CD spectra of insulin analogues in the absence (solid line) and the presence (dashed line) of phenol; (A) human insulin, (B) [AibB8]-insulin, (C) [D-ProB8]-insulin, (D) [*N*MeAlaB8]-insulin.

Table S3. Secondary structures content (in %) in human insulin or insulin analogues with or without phenol calculated from CD spectra (200-260 nm) using CD Spectra Deconvolution software version 2.11.developed in 2001 by Dr. Gerald Böhm, from Institut für Biotechnologie Martin-Luther-Universität Halle-Wittenberg in Germany.

	Insulin (%)	Insulin + phenol (%)		[AibB8]-insulin (%)	[AibB8]-insulin + phenol (%)
Helix	22.2	30.5	Helix	26.9	30.2
Antiparallel	18.7	14.0	Antiparallel	11.0	8.9
Parallel	5.9	6.0	Parallel	10.4	10.3
Beta-Turn	16.7	14.9	Beta-Turn	17.5	17.5
Random Coil	32.0	29.5	Random Coil	36.2	33.3
Total Sum	95.4	95.0	Total Sum	102.0	100.2

	[AibB3]-insulin (%)	[AibB3]-insulin + phenol (%)
Helix	26.5	27.0
Antiparallel	10.1	10.0
Parallel	9.5	9.3
Beta-Turn	17.4	17.4
Random Coil	36.0	35.2
Total Sum	99.5	98.9

	[DProB8]- insulin (%)	[DProB8]-insulin + phenol (%)
Helix	22.2	27.1
Antiparallel	18.9	15.9
Parallel	5.9	6.0
Beta-Turn	16.9	15.8
Random Coil	32.1	30.7
Total Sum	96.1	95.5

	[<i>N</i> MeAlaB8]- insulin (%)	[<i>N</i> MeAlaB8]- insulin + phenol (%)
Helix	26.0	26.2
Antiparallel	16.4	16.2
Parallel	6.0	5.9
Beta-Turn	16.1	16.1
Random Coil	31.0	31.0
Total Sum	95.5	95.4

Non-redundant distance constrains	
Total number of NOE constraints	488
Short-range NOEs (<i>i</i> , <i>i</i> +1)	329
Medium-range NOEs (<i>i</i> , <i>i</i> >1 <i>i</i> \leq 4)	80
Long-range NOEs (<i>i</i> , $i \ge 5$)	79
Distance constraints violations	
In six or more structures > 0.2 Å	0
In six or more structures > 0.3 Å	0
r.m.s. (Å)	0.003 ± 0.002
Ramachandran plot	
Residues within the most favored region	84.2%
Residues within the additionally allowed region	12.5%
Residues within generously allowed region	2.6%
Residues within the disallowed region	0.7%
Cing ROG scores	
ROG (%)	16/16/69
r.m.s.d. to the mean structure	
(residues chain A_{1-21} and chain B_{1-23})	
Backbone heavy atom (Å)	1.49 ± 0.34
All heavy atom (Å)	2.21 ± 0.15

Table S4. NMR constraints and structural statistics for [AibB8,LysB28,ProB29]-insulin

analogue	relative affinity (%)	reference
insulin	100	
[AlaB1]-insulin	79	(6)
[AlaB2]-insulin	110	(6)
[AlaB3]-insulin	134	(6)
[ProB3]-insulin	54	(7)
[SerB3]-insulin	97	(7)
[AlaB4]-insulin	54	(6)
[Cys(B4-A10),desB30]-insulin	132	(8)
[AlaB5]-insulin	31	(9)
[ArgB5]-insulin	40	(10)
[ThrB5]-insulin	20-24	(7, 11)
[AsnB5]-insulin	46	(12)
[AspB5]-insulin	0.4	(12)
[AlaB5]DKP-insulin ¹	129	(13)
[AlaB6]-insulin	1.4	(6, 14)
[GlyB6]-insulin	0.052	(14)
[MetB6]-insulin	15	(14)
[ValB6]-insulin	3.3	(14)
[PheB6]-insulin	10	(14)
[AlaB8]-insulin	1.0 - 3.0	(6, 15, 16)
[D-AlaB8]-insulin	0.11	(15, 16)
[AlaB8]DKP-insulin ¹	3.2 - 3.6	(15, 16)
[D-AlaB8]DKP-insulin ¹	0.17	(15, 16)
[SerB8]DKP-insulin ¹	90	(15, 17)
[D-SerB8]DKP-insulin ¹	1.1	(15, 17)
[D-ArgB8]DKP-insulin ¹	0.05	(15)
[SerB8,desB30]-insulin	23	(18)
[ThrB8,desB30]-insulin	< 0.2	(18)
[LeuB8,desB30]-insulin	< 0.2	(18)
[D-LysB8]-insulin	< 0.5	(19)
[D-TrpB8]-insulin	< 0.6	(19)
[GluB9]-insulin	21	(20)
[AlaB9]-insulin	80	(6)

Table S5. Relative affinities of some insulin analogues with modification at the N-terminus of the B chain reported in literature.

¹DKP-insulin, monomeric insulin analogue containing three substitutions in the B-chain (AspB10, LysB28, ProB29). Relative affinity of DKP-insulin is 160% (*15*)

References

- Mahalakshmi, R., Balaram, P. (2006) The use of D-amino acods in peptide design, in D-Amino acids: A new frontier in amino acid and protein research (Konno, R., Ed.), pp 415–430.
- 2. Karle, I. L., and Balaram, P. (1990) Structural characteristics of alpha-helical peptide molecules containing Aib residues, *Biochemistry 29*, 6747-6756.
- 3. Durani, S. (2008) Protein design with L- and D-alpha-amino acid structures as the alphabet, *Acc. Chem. Res.* 41, 1301-1308.
- Frasca, F., Pandini, G., Scalia, P., Sciacca, L., Mineo, R., Costantino, A., Goldfine, I. D., Belfiore, A., and Vigneri, R. (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells, *Mol. Cell Biol.* 19, 3278-3288.
- Sell, C., Dumenil, G., Deveaud, C., Miura, M., Coppola, D., Deangelis, T., Rubin, R., Efstratiadis, A., and Baserga, R. (1994) Effect of a null mutation of the insulin-like growth-factor-I receptor gene on growth and transformation of mouse embryo fibroblasts, *Mol. Cell Biol. 14*, 3604-3612.
- Kristensen, C., Kjeldsen, T., Wiberg, F. C., Schaffer, L., Hach, M., Havelund, S., Bass, J., Steiner, D. F., and Andersen, A. S. (1997) Alanine scanning mutagenesis of insulin, *J. Biol. Chem.* 272, 12978-12983.
- Gauguin, L., Klaproth, B., Sajid, W., Andersen, A. S., McNeil, K. A., Forbes, B. E., and De Meyts, P. (2008) Structural basis for the lower affinity of the insulin-like growth factors for the insulin receptor, *J. Biol. Chem.* 283, 2604-2613.
- Vinther, T. N., Norrman, M., Ribel, U., Huus, K., Schlein, M., Steensgaard, D. B., Pedersen, T. A., Pettersson, I., Ludvigsen, S., Kjeldsen, T., Jensen, K. J., and Hubalek, F. (2013) Insulin analog with additional disulfide bond has increased stability and preserved activity, *Protein Sci.* 22, 296-305.
- Marki, F., de Gasparo, M., Eisler, K., Kamber, B., Riniker, B., Rittel, W., and Sieber,
 P. (1979) Synthesis and biological activity of seventeen analogues of human insulin,
 Hoppe-Seyler's Z. Physiol. Chem. 360, 1619-1632.
- Wan, Z. L., Huang, K., Hu, S. Q., Whittaker, J., and Weiss, M. A. (2008) The structure of a mutant insulin uncouples receptor binding from protein allostery - An electrostatic block to the TR transition, *J. Biol. Chem.* 283, 21198-21210.

- Sohma, Y., Hua, Q. X., Liu, M., Phillips, N. B., Hu, S. Q., Whittaker, J., Whittaker, L. J., Ng, A., Roberts, C. T., Arvan, P., Kent, S. B. H., and Weiss, M. A. (2010) Contribution of residue B5 to the folding and function of insulin and IGF-I, *J. Biol. Chem.* 285, 5040-5055.
- 12. Burke, G. T., Hu, S. Q., Ohta, N., Schwartz, G. P., Zong, L., and Katsoyannis, P. G. (1990) Superactive insulins, *Biochem. Biophys. Res. Commun. 173*, 982-987.
- Hua, Q. X., Liu, M., Hu, S. Q., Jia, W. H., Arvan, P., and Weiss, M. A. (2006) A conserved histidine in insulin is required for the foldability of human proinsulin Structure and function of an Ala(B5) analog, *J. Biol. Chem.* 281, 24889-24899.
- 14. Nakagawa, S. H., and Tager, H. S. (1991) Implications of invariant residue LeuB6 in insulin-receptor interactions, *J. Biol. Chem.* 266, 11502-11509.
- Nakagawa, S. H., Zhao, M., Hua, Q. X., Hu, S. Q., Wan, Z. L., Jia, W., and Weiss, M. A. (2005) Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain, *Biochemistry* 44, 4984-4999.
- Nakagawa, S. H., Zhao, M., Hua, Q. X., and Weiss, M. A. (1997) The importance of residue B8 in insulin activity, structure and folding, in *Proceedings of the 15th American Peptide Symposium*, (Tam, J. P., and Kaumaya, P. T. P., Eds.), pp 471-472.
- Hua, Q. X., Nakagawa, S., Hu, S. Q., Jia, W., Wang, S., and Weiss, M. A. (2006) Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B chain, *J. Biol. Chem. 281*, 24900-24909.
- Guo, Z. Y., Zhang, Z., Jia, X. Y., Tang, Y. H., and Feng, Y. M. (2005) Mutational analysis of the absolutely conserved B8Gly: Consequence on foldability and activity of insulin, *Acta Biochim. Biophys. Sin.* 37, 673-679.
- Zhao, M., Nakagawa, S. H., Hua, Q. X., and Weiss, M. A. (1997) Exploring the foldability and function of insulin by combinatorial peptide chemistry, in *Proceedings* of the 15th American Peptide Symposium, (Tam, J. P., and Kaumaya, P. T. P., Eds.), pp 369-371.
- Yao, Z. P., Zeng, Z. H., Li, H. M., Zhang, Y., Feng, Y. M., and Wang, D. C. (1999) Structure of an insulin dimer in an orthorhombic crystal: the structure analysis of a human insulin mutant (B9 Ser → Glu), *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 55, 1524-1532.